676 Vol. 31 No. 7, pp , Incremental Noise Estimation in Outdoor Auditory Scene Analysis using a Quadrocopter with a Microphone A

Similar documents
IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2

ロボット聴覚オープンソースソフトウェアHARKの紹介

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

Human-Agent Interaction Simposium A Heterogeneous Robot System U

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1

SICE東北支部研究集会資料(2012年)

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU


( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC


特別寄稿.indd

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

3_23.dvi

Vol. 23 No. 4 Oct Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

Sobel Canny i

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

光学

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

知能と情報, Vol.30, No.5, pp


Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

untitled

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

013858,繊維学会誌ファイバー1月/報文-02-古金谷

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

9.プレゼン資料(小泉)R1

5) 2. Geminoid HI-1 6) Telenoid 7) Geminoid HI-1 Geminoid HI-1 Telenoid Robot- PHONE 8) RobotPHONE 11 InterRobot 9) InterRobot InterRobot irt( ) 10) 4

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

Vol. 42 No. SIG 8(TOD 10) July HTML 100 Development of Authoring and Delivery System for Synchronized Contents and Experiment on High Spe

5b_08.dvi

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]


IPSJ SIG Technical Report Vol.2014-MBL-70 No.49 Vol.2014-UBI-41 No /3/15 2,a) 2,b) 2,c) 2,d),e) WiFi WiFi WiFi 1. SNS GPS Twitter Facebook Twit

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

MDD PBL ET 9) 2) ET ET 2.2 2), 1 2 5) MDD PBL PBL MDD MDD MDD 10) MDD Executable UML 11) Executable UML MDD Executable UML

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka

fiš„v8.dvi

IPSJ SIG Technical Report Vol.2014-HCI-158 No /5/22 1,a) 2 2 3,b) Development of visualization technique expressing rainfall changing conditions

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

光学

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

2017 (413812)

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

2007-Kanai-paper.dvi

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

DEIM Forum 2010 A Web Abstract Classification Method for Revie

( ), ( ) Patrol Mobile Robot To Greet Passing People Takemi KIMURA(Univ. of Tsukuba), and Akihisa OHYA(Univ. of Tsukuba) Abstract This research aims a

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

1 1 CodeDrummer CodeMusician CodeDrummer Fig. 1 Overview of proposal system c

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

IPSJ SIG Technical Report Vol.2013-GN-86 No.35 Vol.2013-CDS-6 No /1/17 1,a) 2,b) (1) (2) (3) Development of Mobile Multilingual Medical

XFEL/SPring-8

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

Microsoft Word - mitomi_v06.doc

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

ohgane

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Transcription:

676 Vol. 31 No. 7, pp.676 683, 2013 1 1 2 1 2 Incremental Noise Estimation in Outdoor Auditory Scene Analysis using a Quadrocopter with a Microphone Array Keita Okutani 1, Takami Yoshida 1, Keisuke Nakamura 2 and Kazuhiro Nakadai 1 2 This paper addresses sound source localization using an aerial vehicle with a microphone array in an outdoor environment to realize outdoor auditory scene analysis. It, for instance, aims at finding distressed people in a disaster situation. In such an environment, noise is quite loud and dynamically-changing, and conventional microphone array techniques studied in the field of indoor robot audition are of less use. We, thus, proposed MUltiple SIgnal Classification based on incremental Generalized EigenValue Decomposition (igevd-music). It can deal with dynamically-changing high power noise by introducing incrementally-estimated noise correlation matrices. We developed a prototype system for the outdoor auditory scene analysis based on the proposed method using the Parrot AR.Drone with an 8 ch microphone array and a Kinect device. Experimental results using the prototype system showed that dynamically-changing noise is properly suppressed with the proposed method even when the signal-to-noise ratio is less than 0 db in an outdoor/indoor environment with the hovering/moving AR.Drone. Key Words: Sound Source Localization, Outdoor, Quadrocopter 1. Computational Auditory Scene Analysis, CASA Robot Audition [1] [2] [3] 2012 12 10 1 2 1 Graduate School of Information Science and Engineering, Tokyo Institute of Technology 2 Honda Research Institute Japan Co., Ltd. J-STAGE Fig. 1 Auditory scene analysis in an outdoor environment Fig. 1 3 [4] [5] JRSJ Vol. 31 No. 7 38 Sept., 2013

677 Acoustic Vector Sensor AVS Unmanned Aerial Vehicle UAV [6] [7] [8] [9] [10] Root-MUSIC [11], ES- PRIT [12] [13] Multiple Signal Classification MUSIC [14] Signal-to-Noise Ratio SNR MUSIC MUSIC Generalized EigenValue Decomposition, GEVD MUSIC GEVD-MUSIC 10 [db] [15] [16] GEVD-MUSIC GEVD-MUSIC incremental GEVD-MUSIC igevd-music [17] 24 [bit] A/D Kinect 2 igevd-music 3 4 5 2. igevd-music 2. 1 Standard EigenValue Decomposition, SEVD MUSIC SEVD-MUSIC SEVD-MUSIC GEVD-MUSIC GEVD-MUSIC igevd-music Table 1 2. 2 igevd-music M f X M X(ω, f) = N(ω, f) = LX A l (ω, θ l )S l (ω, θ l, f) + N(ω, f) 1 l=1 JX A n j (ω, θ j )N j (ω, θ j, f) + N d (ω, f) 2 j=1 A S l l ω L θ l l N θ j N j J N d A n SEVD-MUSIC S l N j S l L + J = M N j S l Table 1 Variables and parameters M number of microphones (8) L number of sound sources (L < M) m microphone index (1 m M) l sound source index (1 l L) f frame index ω frequency bin index θ l l-th sound source direction ψ direction of a steering vector X m (ω, f) observation for m-th microphone at f-th frame X(ω, f) [X 1 (ω, f), X 2 (ω, f),..., X M (ω, f)] T G(ω, ψ) steering vector R(ω, f) correlation matrix of X(ω, f) ( C M M ) e m(ω, f) m-th Eigen vector of R(ω, f) E(ω, f) [e 1 (ω, f),..., e M (ω, f)] λ m (ω, f) m-th Eigenvalue of R(ω, f) (λ 1 λ 2... λ M ) Λ(ω, f) diag(λ 1,...λ M ) ω l ω h minand max frequencies for MUSIC (500, 2,800 [Hz]) T R number of frames for averaging correlation matrices 31 7 39 2013 9

678 Table 2 Configuration of moving microphone array hardware device size & weight quadrocopter AR.Drone 525 515 [mm], payload:130 [g] recording device RASP-24 55 90 33 [mm], 104 [g] microphone MEMS 20 15 [mm], 3 [g] Fig. 2 Noise correlation matrix estimation in igevd-music GEVD-MUSIC igevd-music N L < M G(ω, ψ) ψ ψ 5 R(ω, f) T R R(ω, f) = 1 fx X(ω, τ)x (ω, τ) T R τ=f T R 3 K GEVD-MUSIC K igevd-music Fig. 2 K(ω, f) = 1 T N f f X s τ=f f s T N X(ω, τ)x (ω, τ) 4 T N K f s R K T N f s R R 4 igevd-music R(ω, f) K 1 (ω, f) GEVD R(ω, f) K SEVD R(ω, f) igevd GEVD SEVD K 1 (ω, f)r(ω, f) = E(ω, f)λ(ω, f)e (ω, f) 5 K 1 (ω)r(ω, f) = E(ω, f)λ(ω, f)e (ω, f) http://www.ros.org/ R(ω, f) = E(ω, f)λ(ω, f)e (ω, f) 6 7 Λ(ω, f) E(ω, f) Λ(ω, f) e m (ω, f) ψ G(ω, ψ) MUSIC P (ω, ψ, f) P (ω, ψ, f) = G (ω, ψ)g(ω, ψ) P M m=l+1 G (ω, ψ)e m(ω, f) 8 L P (ω, ψ, f) ω P (ψ, f) = 1 ω H ω L + 1 ω H X ω=ω L P (ω, ψ, f) 9 ω H ω L P (ψ, f) L ψ P (ψ, f) 3. Fig. 3 PC 3. 1 Fig. 4 Table 2 AR.Drone 130 [g] AR.Drone 115 [g] Kinect 35 [mm] 3. 2 8 ch PC Fig. 3 PC ROS Kinect igevd-music HARK [18] JRSJ Vol. 31 No. 7 40 Sept., 2013

679 Fig. 3 System structure for outdoor auditory scene analysis Fig. 4 Quadrocpoter with microphone array a) Hovering b) Moving Fig. 5 Position of a vehicle and spekaers igevd-music SEVD-MUSIC, GEVD-MUSIC AR.Drone Kinect AR.Drone 4. 1 4. igevd-music Ex1. Ex2. Ex3. + Fig. 5 2 1.5 [m] 1 1 1 45 7 1 1 Fig. 5a) 12 Fig. 5b) http://ardrone.parrot.com/parrot-ar-drone/jp/ http://www.sifi.co.jp/solution/product.php?contentid=7& categoryid=4&page name=rasp-24 a) Indoor b) Outdoor Table 3 Fig. 6 Experimental environments Loudness of sound and noise sources sound source indoor outdoor propeller utterance sound level[db] 35 45 89 75 1 1.5 [m] Fig. 6 Table 3 4. 2 SEVD-MUSIC GEVD-MUSIC igevd-music 4 1 9 P (ψ, f) MUSIC 2 3 P (ψ, f) 4 igevd-music T N f s 31 7 41 2013 9

680 Fig. 7 Spatial spectrograms and localization results (Indoor-hovering) Fig. 8 Spatial spectrograms and localization results (Indoor-moving) Fig. 9 Spatial spectrograms and localization results (Outdoor-hovering) 4. 2. 1 MUSIC P (ψ, f) Fig. 7 9 b) d) MUSIC 5 0.1 Kinect Fig. 7 9 a) 2 Kinect Kinect 3.5 [m] 1.3 [cm] Kinect Kinect AR.Drone Table 4 Noise suppression performance Method std. dev. SEVD-MUSIC 0.14 GEVD-MUSIC 0.12 igevd-music 0.058 Table 5 Utterance-based localization performance (%) Condition SEVD GEVD igevd LAR LCR LAR LCR LAR LCR Indoor-Hovering -100 36 93 93 100 100 Indoor-Moving -186 39 42 92 50 92 Outdoor-Hovering -207 29-121 14 64 79 Fig. 7 9 Fig. 7 AR.Drone 89 [db] SEVD GEVD igevd Fig. 8 AR.Drone GEVD 160 igevd GEVD Fig. 9 JRSJ Vol. 31 No. 7 42 Sept., 2013

681 Fig. 10 Normalized histograms Fig. 11 Difference between speaking area and non-speaking area 45 [db] 10 15 [db] SEVD GEVD igevd 2 4. 2. 2 LAR Localization Accuracy Rate LCR Localization Correct Rate LAR = N t N S N D N I N t LCR = N t N S N D N t 10 11 N t N S N D N I LAR LCR ±0.2 ±5 ±5 Table 5 igevd LAR LCR igevd 4. 2. 3 P (ψ, f) Fig. 10 Table 4 Fig. 10 1 0 P P Table 4 c) igevd igevd-music 4. 2. 4 igevd-music Fig. 2 T N f s igevd- MUSIC P (ψ, f) T N f s Fig. 11 T N f s P T N f s 1 0.01 [s] igevd-music 31 7 43 2013 9

682 (a) Spatial spectrograms, localization results and pictures Fig. 12 (b) Reference Outdoor localization experiment T N 4. 3 2 1 1 1 2 [m] 2 24 igevd- MUSIC T N = 90 [frame] f s = 140 [frame] Fig. 12 Fig. 12 (a) MUSIC Fig. 12 (b) LAR = 21% LCR = 42% N D [19] [20] 5. igevd-music Kinect igevd-music 15 30% 80% MUSIC JRSJ Vol. 31 No. 7 44 Sept., 2013

683 24118702 22700165 [ 1 ] I. Hara, F. Asano, H. Asoh, J. Ogata, N. Ichimura, Y. Kawai, F. Kanehiro, H. Hirukawa and K. Yamamoto: Robust speech interface based on audio and video information fusion for humanoid HRP-2, Proc. of IEEE/RAS International Conference on Intelligent Robots and Systems (IROS 2004), pp.2404 2410, 2004. [ 2 ] J.-M. Valin, F. Michaud and J. Rouat: Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering, Robotics and Autonomous Systems Journal, vol.55, no.3, pp.216 228, 2007. [ 3 ] Simon THOMPSON 64ch 32 AI Challenge pp.3 8, 2010. [ 4 ] 12 pp.2381 2384, 2011. [ 5 ] K. Okutani, T. Yoshida, K. Nakamura and K. Nakadai: Outdoor auditory scene analysis using a moving microphone array embedded in a quadrocopter, Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp.3288 3293, 2012. [ 6 ] B. Kaushik, D. Nance and K. K. Ahuj: A review of the role of acoustic sensors in the modern battlefield, 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference), pp.1 13, 2005. [ 7 ] Hans-Elias de Bree: Acoustic vector sensors increasing UAV s situational awareness, SAE Technical Paper, pp.2009 01 3249, 2009. [ 8 ] B. D. Van Veen and K. M. Buckley: Beamforming: a versatile approach to spatial filtering, IEEE ASSP Magazine, vol.5, no.2, pp.4 24, 1988. [ 9 ] J. Burg: Maximum entropy spectral analysis, 37th Meeting Society Exploration Geophysicists, 1967; reprinted in Modern Spectrum Analysis (D.G. Childers, ed.). pp.34 39, IEEE press, 1978. [10] S.S. Reddi: Multiple source location a digital approach, IEEE Trans. on Aerospace and Electronic Systems, AES-15:95 105, 1979. [11] B.D. Rao and K.V.S. Hari: Performance analysis of rootmusic, IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.37, no.12, pp.1939 1949, 1989. [12] R. Roy and T. Kailath: Esprit estimation of signal parameters via rotational invariance techniques, IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.37, no.7, pp.984 995, 1989. [13] A. Swami and J. M. Mendel: Cumulant-based approach to harmonic retrieval and related problems, IEEE Trans. on Signal Processing, vol.39, no.5, pp.1099 1109, 1991. [14] R. Schmidt: Multiple emitter location and signal parameter estimation, IEEE Trans. on Antennas and Propagation, vol.34, no.3, pp.276 280, 1986. [15] K. Nakamura, K. Nakadai, F. Asano, Y. Hasegawa and H. Tsujino: Intelligent sound source localization for dynamic environments, Proc. of IEEE/RSJ Int l Conf. on Intelligent Robots and Systems (IROS 2009), pp.664 669, 2009. [16] K. Nakamura, K. Nakadai, F. Asano and G. Ince: Intelligent sound source localization and its application to multimodal human tracking, Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp.143 148, 2011. [17] 30 DVD-ROM 3D1-2, 2012. [18] K. Nakadai, T. Takahashi, H.G. Okuno, H. Nakajima, Y. Hasegawa and H. Tsujino: Design and implementation of robot audition system HARK open source software for listening to three simultaneous speakers, Advanced Robotics, vol.24, no.5 6, pp.739 761, 2010. [19] G. Ince, K. Nakadai and K. Nakamura: Online learning for template-based multi-channel ego noise estimation, Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp.3282 3287, 2012. [20] T. Yoshida and K. Nakadai: Active audio-visual integration for voice activity detection based on a causal bayesian network, Proceedings of the 2012 IEEE RAS International Conference on Humanoid Robots (Humanoids 2012), pp.370 375, 2012. Keita Okutani 2011 2013 3 Keisuke Nakamura 2007 University of Strathclyde 2010 2013 2010 Takami Yoshida 2008 2010 3 2013 3 Kazuhiro Nakadai 1993 1995 NTT NTT JST ERATO 2003 2006 2008 2009 2010 2011 2011 IEEE 31 7 45 2013 9