n( 3) p n n q n θ = π n p n = 2n sin θ, q n = 2n tan θ 1 sin θ tan θ O θ 1

Similar documents
(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

BD = a, EA = b, BH = a, BF = b 3 EF B, EOA, BOD EF B EOA BF : AO = BE : AE, b : = BE : b, AF = BF = b BE = bb. () EF = b AF = b b. (2) EF B BOD EF : B

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

高等学校学習指導要領

高等学校学習指導要領

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

A

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

i

第86回日本感染症学会総会学術集会後抄録(I)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

arctan 1 arctan arctan arctan π = = ( ) π = 4 = π = π = π = =

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1 I

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

DVIOUT

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

Gmech08.dvi

newmain.dvi

Chap11.dvi

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

DVIOUT-fujin

2000年度『数学展望 I』講義録

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

function2.pdf

- II

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

xy n n n- n n n n n xn n n nn n O n n n n n n n n

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z


O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

LLG-R8.Nisus.pdf


III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

chap1.dvi

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号


高校生の就職への数学II

tnbp59-21_Web:P2/ky132379509610002944

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Part () () Γ Part ,

untitled

no35.dvi

1

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

29

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

70 : 20 : A B (20 ) (30 ) 50 1

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

(2000 )

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Chap9.dvi

CVMに基づくNi-Al合金の

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C


( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

Transcription:

2002 9 27 3.4 n( 3) p n n q n θ π n p n 2n sin θ, q n 2n tan θ sin θ tan θ O θ

p 2n 4n sin θ, q 2 2n 4n tan θ 2 p n, q n, p 2n, q 2n q 2n 2p nq n p n + q n p 2n p n q 2n (p n q n ), () (p n q 2n ). (2) [ ] () 2(2n)2 sin θ tan θ 2n(sin θ + tan θ) 4n sin θ + cos θ 4n 2 sin θ 2 cos θ 2 2 cos 2 θ 2 4n tan θ 2 q 2n. (2) 8n 2 sin θ tan θ2 6n 2 sin θ 2 cos θ 2 tan θ 2 6n 2 sin 2 θ 2 4n sin θ 2 p 2n. n 6 p 6 6, q 6 4 3 () (2) p 2 q 2 2 6 4 3 6 + 4 3 24(2 3). 6 24(2 3) 2 2 3. 2 p n < π < 2 q n n 2, 3.058 < π < 3.253, n 24, 3.326 < π < 3.596, n 48, 3.393 < π < 3.460, n 96, 3.40 < π < 3.427, n 92, 3.44 < π < 3.48. π 96 3.4 92 3.4 2

2 7 x tan θ π 2 < θ < π 2 θ arctan x < x < x tan θ π 2 < θ < π 2 θ arctan x x tan θ dx dθ cos 2 θ + tan2 θ + x 2 d dθ arctan x dx dx (3) + x 2 x < + x 2 x2 + x 4 x 6 + ( ) n x 2n (3) arctan x n0 arctan x x x3 3 + x5 5 x7 7 + n0 ( ) n x2n+ 2n + x < x tan π 4 arctan π 4 (4) x [ ] π 4 3 + 5 7 + ( ) n 2n + n k0 n0 ( ) k x 2k + ( )n x 2n+2 + x 2 0 n ( ) k x 2k dx + x dx + 2 0 k0 0 n k0 ( ) k 2k + 3 0 (4) ( ) n x 2n+2 + x 2 dx. (5)

arctan π 4 2 x 2n+2 0 < 0 + x dx < 2 0 n ( ) k 2k + π 4 k0 x 2n+2 dx 2n + 3 < 2n + 3 n (5) (5) tan x π 4 4 ( ) n (2n + )5 ( ) n. (6) 2n+ (2n + )2392n+ n0 n0 (5) n 4 π 3.459 (5) 3. a n, n x, y f n (x, y) + + + a x a 2 x a 3 x + + a n x + a nx + y, n, f n (x) f n (x, 0) x N n k n f N (x) x k f n (x) x k f(x) + + 4 + a x a 2 x a 3 x + a 4x +...

g(x) x k n f n (x, g(x)) x k f(x) x k [ ] A n, B n { A n A n + a n xa n 2, B n B n + a n xb n 2, n 2, 3,..., A 0, A + a x, B 0, B B n x n f n (x, y) A n y + A n B n y + B n (7) n A 0 + A y B 0 + B y + ( + a x)y + y + a x + y f (x, y). n k f k (x, y) f k (x, ) a k x + y A k 2 a k x + y + A k B k 2 a k x + y + B k A k y + A k + a k xa k 2 B k y + B k + a k xb k 2 A k y + A k B k y + B k n k n (7) y 0 f n (x) A n B n A k B k A k B k (A k + a k xa k 2 )B k A k (B k + a k xb k 2 ) a k x(a k B k 2 A k 2 B k )., k m, m,..., 2 A B 0 A 0 B a x A m B m A m B m ( ) m a a 2 a m x m (8) f m (x) f m (x) A m B m A m B m ( )m a a 2 a m x m B m B m. (9) B m, B m x (9) x x m f N (x) f n (x) N mn+ 5 (f m (x) f m (x))

x n+ f n (x, g(x)) f n (x) ( )n a a n x n g(x) B n (B n + B n g(x)) x n+ 2. a n, n 0 < δ a n δ <, n f(x) + + + a x a 2 x a 3 x + a 4x +... 0 x [0, ] A n [ ] f(x) n B n { A n A n + a n xa n 2, A 0, A + a x, B n B n + a n xb n 2, B 0 B, n 2, 3,..., B n x 0 x B n, n 0 B n B + B k B k a k xb k 2 a k x. n (B k B k ) + (a 2 + + a n )x + (n )δ x. k2 3. a k, b k (b k 0), k λ b + b 2 + a a 2 a 3 b 3 + a 4 b 4 +... 6

k b k a k + λ [ ] A k, B k { A k b k A k + a k A k 2, B k b k B k + a k B k 2, k 2, 3,..., A 0 0, A a, B 0, B b λ k λ k b + b 2 + a a 2 a 3... + a k b k + a k b k A k B k B k b k B k a k B k 2 b k B k ( b k ) B k 2, B k B k ( b k )( B k B k 2 ) ( b k ) ( b 2 )( B B 0 ) ( b k ) ( b 2 )( b ) a a 2 a k 0. 0 < b B B 2 B 3. A k B k A k B k (b k A k + a k A k 2 )B k A k (b k B k + a k B k 2 ) A k B k A B + a k (A k B k 2 A k 2 B k ) ( ) k a a 2 a k. ( A2 B 2 A B ) + + ( Ak A ) k B k B k A B a a 2 B B 2 + + ( ) k a a 2 a k B k B k. (0) 7

a a 2 a k B k B k B k B k B k B k A + A k A k B k B k2 B k A B A B B k B k. () + ( B k ) B k k2 + B a +. (2) b A k λ lim k λ B k 4. c k, k 0 b + b 2 + a a 2 a 3 b 3 + a 4 b 4 +... c a. c c 2 a 2 c b + c 2 c 3 a 3 c 2 b 2 + c 3 b 3 + c 3c 4 a 4 c 4 b 4 +... A k [ ] k, k B k B k { A k b k A k + a k A k 2, B k b k B k + a k B k 2, k 2, 3,..., A 0 0, A a, B 0, B b, { Ãk c k b k à k + c k c k a k à k 2, B k c k b k Bk + c k c k a k Bk 2, k 2, 3,..., à 0 0, à c a, B 0, B c b A k c c 2 c k A k, B k c c 2 c k B k, k Ãk, Bk à k c c 2 c k A k, Bk c c 2 c k B k, k A k B k B k à k à k 4 (83 ) α n (α; n) α(α + ) (α + n ) 8

(α; 0) (; n) n! α, β, γ 0,, 2,... (α; n)(β; n) F (α, β, γ; x) x n (3) (γ; n)n! n0 x < (α; n)(β; n) [ ] a n (γ; n)n! a n a n+ (α; n)(β; n)(γ; n + )(n + )! (α; n + )(β; n + )(γ; n)n! (γ + n)(n + ) (α + n)(β + n) a n lim n a n+ F (α, β, γ; x) α, β, γ xf F (α, 0, α; x) F (α, β, β; x) xf (,, 2; x) ( 2,, 3 ) 2 ; x2 n0 n0 n0 n0 (0; n) x n, n! (α; n) x n n! ( α n n0 n!n! (n + )!n! xn+ n0 2n + ( )n x 2n+ arctan x. ) ( x) n ( x) α, n + xn+ log( x), 5 ( ). F (α, β, γ; x) F (α, β +, γ + ; x) F (α, β, γ; x) F (α +, β, γ + ; x) α(γ β) xf (α +, β +, γ + 2; x), (4) γ(γ + ) β(γ α) xf (α +, β +, γ + 2; x). (5) γ(γ + ) [ ] (α +; n) α (α; n+), (β +; n) β (β +n)(β; n) β (β; n+), (γ + ; n) γ (γ + n)(γ; n), (γ + 2; n) (γ + ) (γ + n + )(γ + ; n) γ (γ + ) (γ + n + )(γ; n + ) 9

(4) (α; n)(β + ; n) x n α(γ β) (γ + ; n)n! γ(γ + ) x n0 n0 γ(β + n)(α; n)(β; n) x n β(γ + n)(γ; n)n! n0 n0 γ(β + n)(α; n)(β; n) x n (γ β)n(α; n)(β; n) β(γ + n)(γ; n)n! β(γ + n)(γ; n)n! n0 n ( ) γ(β + n) (γ β)n (α; n)(β; n) + x n β(γ + n) (γ; n)n! n (α; n)(β; n) + x n F (α, β, γ; x). (γ; n)n! n (α + ; n)(β + ; n) x n (γ + 2; n)n! (γ β)(α; n + )(β; n + ) x n+ β(γ + + n)(γ; n + )n! F (α, β, γ; x) F (β, α, γ; x) (4) α β (5) (4) F (α, β +, γ + ; x) F (α, β, γ; x) F (α, β +, γ + ; x) α(γ β) γ(γ + ) x F (α, β +, γ + ; x) F (α +, β +, γ + 2; x) (5) (α, β, γ) (α, β +, γ + ) F (α, β+, γ+; x) F (α+, β+, γ+2; x) F (α +, β +, γ + 2; x) F (α, β +, γ + ; x) F (α +, β +, γ + 2; x) F (α, β, γ; x) F (α, β +, γ + ; x) x n (β + )(γ + α) xf (α+, β+2, γ+3; x). (γ + )(γ + 2) (β + )(γ + α) (γ + )(γ + 2) x α(γ β) x γ(γ+) (β+)(γ+ α) x (γ+)(γ+2) F (α+,β+,γ+2;x) F (α+,β+2,γ+3;x) F (α+,β+,γ+2;x) F (α+,β+2,γ+3;x) (α, β, γ) (α +, β +, γ + 2) F (α, β, γ; x) F (α, β +, γ + ; x) + + 0 a x a 2 x + a 2n x F (α+n,β+n,γ+2n;x) F (α+n,β+n+,γ+2n+;x).... (6)

α(γ β) a γ(γ + ), a (β + )(γ + α) 2, (γ + )(γ + 2) (α, β, γ) (α + n, β + n, γ + 2n 2) n a 2n (α + n )(γ + n β) (γ + 2n 2)(γ + 2n ), a 2n (β + n)(γ + n α) (γ + 2n )(γ + 2n). (7) 6 (Gauss). F (α, β, γ; x)/f (α, β +, γ + ; x) x < F (α, β, γ; x) F (α, β +, γ + ; x) + + + a x a 2 x a 3 x + a 4x +... a 2n, a 2n (7) [ ] c k 2, k 4 + + a x 2a x + a 2 x 4a 2 x 2 + a 3 x 4a 3 x + + a 2 + 4x +. 2 + 4a 4x.. 2 + (8) 0 < r < lim n a 2n lim n a 2n 4 N 4a 2n x 4 a 2n r, 4a 2n x 4 a 2n r, n N, x r a k 4a 2N+k x, b k 2 b k 2 a k +, k 3 g N (x) 4a 2N x 2 + 4a 2N+x 2 + 4a 2N+2x 2 + b + a a 2 b 2 + a 3 b 3 + (9)

(9) k 3 A k B k B k B k ( b k ) ( b 2 )( b ) a a 2 a k B k k + m > n m kn+ A k A k B k B k m kn+ ( B k ) B k B n B m < n + x r B k 0 A k B k x < r g N (x) x < r B 2N 2, B 2N 0 x g N (0) 0 (8) A 2N 2g N (x) + A 2N B 2N 2 g N (x) + B 2N x < r x 0 0 < r < (8) x < (8) k A k B k f 2n (x, y) f 2n (x) A 2n y + A 2n B 2n y + B 2n A 2n B 2n y + F (α + n, β + n, γ + 2n; x) F (α + n, β + n +, γ + 2n + ; x) a a 2n x 2n y B 2n (B 2n + B 2n y). y x F (α, β, γ; x) F (α, β +, γ + ; x) f 2n(x) f 2n (x, y) f 2n (x) a a 2n x 2n B 2n (B 2n + B 2n y) y x 2n+ F (α, β, γ; x) (8) F (α, β +, γ + ; x) x 2n n x 0 x < F (α, β, γ; x) F (α, β +, γ + ; x) (8) α γ, β 0 2 F ( 2, 0, ) ( 2 ; x2, xf 2,, 3 ) 2 ; x2 arctan x 2

6 x arctan x + a x 2 a 2 x 2 + + a 2nx 2 +... x. arctan x + + x. a x 2 a 2 x 2 + a 2nx 2 +... ( 2 a 2n + n ) ( ( + n ) 2 + 2n 2) ( + 2n ) (2n )2 (4n 3)(4n ), 2 2 n ( 2 a 2n + n ) ( 2 + 2n ) ( (2n)2 + 2n) (4n )(4n + ), n. 2 2 a n n 2 (2n )(2n + ), n x < arctan x 3

arctan x + + +... x x 2 3 (2x) 2 3 5 (3x) 2 5 7 +... (nx) 2 (2n )(2n+)... + 3 + 5 + x x 2 (2x) 2 (3x) 2 (20) 2n + (nx)2 [0, ] [0, ] (20) x 0 arctan π 4 π π 4 + 3 + 5 + 2 2 2 3 2 7 + 42 9 +... (2) {A n }, {B n } A n (2n + )A n + n 2 A n 2, n 3, 4..., A 3, A 2 9, B n (2n + )B n + n 2 B n 2, n 3, 4..., B, B 2 6. 4

A n B n + 3 + 5 + 4 7 + 2 2 2 3 2 + n2 2n + n 5 π n A n B n A n /B n 3 3 3 2 9 6 9/6 3.66 3 60 5 60/5 3.37 4 744 555 744/555 3.42 5 2384 7380 644/205 3.44 A 2 /B 2 3059428896/973843685 3.45926546 8. [],,, 999. [2],,, 994. 5