1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1



Similar documents
Microsoft PowerPoint - ノート5章.ppt [互換モード]

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Microsoft Word - ●ipho-text3目次

KENZOU Karman) x

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a πk 1 ɛ 0 ɛ 0 (perm

untitled


Ł\”ƒ-2005

24.15章.微分方程式

2 p T, Q

untitled


(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

日本内科学会雑誌第98巻第3号

untitled

QMI_10.dvi

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

チュートリアル:ノンパラメトリックベイズ

日本内科学会雑誌第102巻第10号

untitled

07N


5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

A B C D E F G H J K L M 1A : 45 1A : 00 1A : 15 1A : 30 1A : 45 1A : 00 1B1030 1B1045 1C1030

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco


46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-


„S”R

2301/1     目次・広告

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

第85 回日本感染症学会総会学術集会後抄録(III)

本文27/A(CD-ROM

パーキンソン病治療ガイドライン2002

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

charpter0.PDF

tnbp59-20_Web:P1/ky108679509610002943

(a) (b) X Ag + + X AgX F < Cl < Br < I Li + + X LiX F > Cl > Br > I (a) (b) (c)

i I

dvipsj.4131.dvi

20 12,, 59 q r Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol


iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

基礎数学I

J. Jpn. Inst. Light Met. 65(6): (2015)

サイバニュース-vol134-CS3.indd

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

3

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

HO…−†[…t†QŁ\1


Baker and Schubert (1998) NOTE 1 Baker and Schubert(1998) 1 (subsolar point) 177.4, ( 1). Sp dig subsolar point equator 2.7 dig Np Sun V

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

Lecture on

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Untitled

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

36 th IChO : - 3 ( ) , G O O D L U C K final 1

0302TH0130.indd

b3e2003.dvi

日本内科学会雑誌第101巻第12号

平成18年度弁理士試験本試験問題とその傾向

<30345F90BC96EC90E690B65F E706466>

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

1 Q A 82% 89% 88% 82% 88% 82%

新入_本文.smd

(CN)


20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

4

アナログ・デジタルの仕様とパフォーマンス特性の用語集

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

SC Ł\†EŒÚ M-KL.ec6

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)


0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

example2_time.eps

30


dプログラム_1

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux EP


「諸雑公文書」整理の中間報告

( ) ( ) ( ) ( ) PID

リスクとは何か?

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

第85 回日本感染症学会総会学術集会後抄録(I)

A A. ω ν = ω/π E = hω. E

Transcription:

CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 2 (isothermal plane) A T 1, T 2 (T 1 > T 2 ) x Q Q Q (T 1 T 2 ) A (1) x (1) λ x (1) ( ) T Q = λ A (2) x T x t T x x T/ x T/ x < 0 (2) Q (heat flux) q [W/m 2 ] q = Q A = λ T (3) x (3) (Fourier s law) λ (thermal conductivity) [W/(m K)] λ ρ [kg/m 3 ] c [J/(kg K)] α α = λ ρc (4) 2

T1 A T2 A Q x 1: 2 α (thermal diffusivity) [m 2 /s] 3. 2 T w T f (T w T f ) (boundary layer) Q A h Q = h(t w T f )A (5) (5) q q = h(t w T f ) (6) h (heat transfer coefficient) [W/(m 2 K)] Q (5) h h h dt solid dt fluid q = λ solid = λ dy fluid (7) surface dy surface 3

Tw Q h Tf 2: y solid, fluid, surface (7) q h 4. 1 3 l T 1 T 2 λ q (3) dt dx = q λ = const. = C 1 (8) x = 0 : T = T 1 x = l : T = T 2 (9) (8) T = C 1 x + C 2 (10) C 1, C 2 T = T 1 (T 1 T 2 ) x (11) l 3 x ( ) T q = λ = T 1 T 2 (12) x l/λ 4

T1 T T2 0 l x 3: l/λ (thermal resistance) [ 1] 6 cm 20, 0 1 1 m 2 0.76 W/(m K) [ ] 912 kj 5. 4 2 1, 2 T f1 T f2 1 2 h 1, h 2 4 x 1 (8) 1 dt 1 dx = q λ 1 = C 1 (13) 2 dt 2 dx = q λ 2 = C 2 (14) T w1, T w2 ( ) dt1 x = 0 : h 1 (T f1 T w1 ) = λ 1 (15) dx x=0 ( ) ( ) dt1 dt2 x = l 1 : λ 1 = λ 2 (16) dx x=l 1 dx x=l 1 x = l 1 : T 1 = T 2 (17) 5

1 2 Tw1 Tf1 h1 h2 q λ1 λ2 Tw2 0 l1 l2 x Tf2 4: ( ) dt2 x = l 1 + l 2 : λ 2 = h 2 (T w2 T f2 ) (18) dx x=l 1 +l 2 (13), (14) T 1 = C 1 x + C 2 (19) T 2 = C 3 x + C 4 (20) C 1, C 2, C 3, C 4 (15) (18) T w1, T w2 2 2 (19), (21) (20), (22) C 1, C 2, C 3, C 4 x = 0 : T 1 = T w1 (21) x = l 1 + l 2 : T 2 = T w2 (22) T w1 = C 2 (23) T w2 = C 3 (l 1 + l 2 ) + C 4 (24) C 1 = 1 λ 1 (T f1 T f2 ) ( 1 h1 + l 1 λ 1 + l 2 λ 2 + 1 h 2 ) (25) C 2 = T f1 1 h 1 (T f1 T f2 ) ( 1 h1 + l 1 λ 1 + l 2 λ 2 + 1 h 2 ) (26) C 3 = 1 λ 2 (T f1 T f2 ) ( 1 h1 + l 1 λ 1 + l 2 λ 2 + 1 h 2 ) (27) 6

C 4 = T f2 + ( ) l1 λ 1 + l 2 λ 2 + 1 h ( 2 1 + )(T l 1 h1 λ 1 + l 2 λ 2 + 1 f1 T f2 ) (28) h 2 (19), (20) q ( ) ( ) dt1 dt2 q = λ 1 = λ 2 dx dx = (T f1 T f2 ) ( 1 h1 + l 1 λ 1 + l 2 λ 2 + 1 h 2 ) (29) (29) (overall thermal resistance) (29) λ 1, λ 2,, λ n l 1, l 2,, l n 1 q = (T f1 T f2 ) ( 1 + ) = K(T l 1 h1 λ 1 + l 2 λ 2 + ln λ n + 1 f1 T f2 ) (30) h 2 K K = 1 ( 1 + ) (31) l 1 h1 λ 1 + l 2 λ 2 + ln λ n + 1 h 2 K (overall heat transfer coefficient) [W/(m 2 K)] [ 2] 10 mm 100 mm 5 mm 10 W/(m 2 K) 1.2, 0.76, 0.15 W/(m K) [ ] K = 1/( 1 + 0.01 + 0.1 + 0.005 + 1 )= 1/0.373 = 2.68 W/(m2 K) 10 1.2 0.76 0.15 10 7

6. 3 h h dimensional analysis 6.1 h ρ µ λ c p u l L M T Θ H h λ c p ρ µ u l [ H L 2 T Θ ] [ H LT Θ] [ H MΘ] [ M L 3 ] [ M LT ] [ L T 5 7 H Θ (H/Θ) 1 4 π 7 4 = 3 h h 6 ] [L] h = f(λ, c p, ρ, µ, u, l) (32) f n 1, n 2,, n 7 (33) h n1 λ n2 c n 3 p ρ n4 µ n5 u n6 l n 7 (33) [ ( ) H n1 ( ) H n2 ( ) H n3 ( ) M n4 ( ) M n5 ( ) L n6 (L) 7] n L 2 T Θ LT Θ MΘ L 3 LT T 4 H Θ : n 1 + n 2 + n 3 = 0 L : 2n 1 n 2 3n 4 n 5 + n 6 + n 7 = 0 T : n 1 n 2 n 5 n 6 = 0 M : n 3 + n 4 + n 5 = 0 7 4 3 h, c p, u n 1, n 3, n 6 4 n 2 = n 1 n 3, n 4 = n 6, n 5 = n 3 n 6, n 7 = n 1 + n 6 8

(33) (34) h n1 λ n 1 n3 c n 3 p ρ n6 µ n 3 n6 u n6 l n 1+n 6 (34) ( ) n1 hl λ ( ) cp µ n3 λ ( ulρ n 1, n 3, n 6 ( hl ulρ λ = f µ, c ) pµ (35) λ hl λ Nusselt number µ = ) n6 Nu (36) ulρ µ = ul µ/ρ = ul ν = Re (37) Reynolds number 2 c p µ λ = ν α = Pr (38) Prandtl number Pr ν α 1 (35) Nu = f(re, Pr) (39) f (39) Nu = Re f(pr) (40) 9

1: Pr Pr 20 C 7.11 60 3.02 100 1.76 R-12(CF 2 Cl 2 ) 30 4.79 0 3.83 20 168 60 59.4 0 0.72 20 0.71 100 0.70 100 1.09 0 0.78 0 0.029 6.2 u F b F b = g(ρ ρ w ) = ρgβ(t w T ) (41) g, ρ, β w, β = 1/T h (32) u F b h = f(λ, c p, ρ, µ, F b, l) (42) h λ c p ρ µ F b l [ ] [ [ [ ] [ ] [ ] H H H M M ML L 2 T Θ LT Θ] MΘ] [L] L 3 LT L 3 T 2 6.1 hl λ = f ( Fb ρl 3, c pµ µ 2 λ 1 F b Gr (Grashof number) Gr ) (43) Gr = F bρl 3 = ρg(ρ ρ w )l 3 = gβ(t w T )l 3 (44) µ 2 µ 2 ν 2 10

[ (Rayleigh number) ] (43) Nu = f(gr, Pr) (45) f Nu = 4 Gr f(pr) (46) 7. h Nu 7.1 l Nu : : Nu = hl λ = 0.664Re1/2 Pr 1 3 (Re < 3 10 5 ) (47) Nu = hl λ = 0.037Re0.8 Pr 1 3 (5 10 5 < Re < 10 7 ) (48) 7.2 D : Nu = hd λ = 4.36 (Re < 2 103 ) (49) Nu = hd λ = 3.66 (Re < 2 103 ) (50) : Nu = hd λ = 0.023Re0.8 Pr n (5 10 3 < Re < 5 10 5 ) (51) n = 0.4 : n = 0.3 : Re Re = ud/ν 7.3 l Nu : Nu = hd λ = (2Gr) 1 4 : Pr 1 2 [5(1 + 2 Pr 1 2 +2 Pr)] 1 4 (10 4 < Gr Pr < 10 9 ) (52) Nu = hl λ = 0.120(Gr Pr) 1 3 (5 10 9 < Gr Pr < 10 12 ) (53) 11

8. 8.1 (pool boiling) (flow boiling) (forced convective boiling) (subcooled boiling) (surface boiling) (degree of subcooling) T sub (saturated boiling) (bulk boiling) 8.2 T w q T w T sat T sat = T w T sat q 5 T sat (degree of superheating) T sat A q AE E q (Critical Heat Flux point, CHF) AB (nucleation site) AB (nucleate boiling) E D.N.B. (Departure from Nucleate Boiling) T sat B F BCD T sat B-F (burnout) 12

log q E B C D M F G A log Tsat 5: M B B (burnout point) (Minimum Heat Flux point, MHF) D DFG (film boiling) T sat 5 GFD D D BCD (transition boiling region) (Leidenfrost) 5 D 5 (boiling curve) T sat q 9. (condensation) (condensor) 13

q [W/(m 2 K)] 7 10 8 6 4 2 6 10 1 2 4 6 8 10 2 4 6 8 100 2 4 6 T=Tsat - Tw [K] 6: (film condensation) (dropwise condensation) 3 mm 6 6 T sat T w T q T T 5 10. 0.38 0.77 µm 0.3 15 µm 1.3 µm 1.3 14

7: mm E E a E r E t (absorptivity) : a = E a /E (reflectivity) : r = E r /E (transmissivity) : t r = E t /E : a + r + t r = 1 ( ) : t r = 0, a + r = 1 : r + t r = 0, a = 1 : r = 0, a + t r = 1 10.1 (black body) 7 15

10 14 5800 K Wien's displacement law 10 12 2000 K Ebλ [W/m 3 ] 10 10 10 8 10 6 1000 K 500 K 300 K 200 K 10 4 10 2 0.1 100 K Visible 50 K 2 4 6 8 2 4 6 8 2 4 6 8 1 10 100 Wavelength, λ [µm] 8: 10.2 (Planck s law) (M. Planck, 1858-1947) 1900 T λ E bλ (spectrum) E bλ = C 1λ 5 e C 2/λT 1 (54) C 1 = 3.742 10 16 W m 2 C 2 = 1.439 10 2 m K (54) 8 10.3 (Wien s displacement law) 8 λ m (54) λ m T = 2.8976 10 3 µm K (55) (55) 8 (55) λ m E bλ,max E bλ,max = C 3 T 5 (56) C 3 = 1.314 10 5 W/(m 3 K 5 ) 16

0 Ag, Al, Cu, Cr, Au Ni, Pt 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cu 9: ε 10.4 (Stefan-Boltzmann s law) T E b 8 (54) λ = 0 E b = 0 C 1 λ 5 e C 2/λT 1 dλ = σt 4 (57) σ = 5.67 10 8 W/(m 2 K 4 ) E b T 4 σ [ 3] W 1.8 m 2 0 W [ ] 943 W [Q = AσT 4 ] 376 W [Q = Aσ(T 4 T 4 a )]. 10.5 a < 1 E (57) E = εe b = εσt 4 (58) ε (emissivity) ε 9 10 17

Eλ ε=1/3 3 1 3 λ 1 10: (gray body) 10.6 (Kirchhoff s law) a ε a = ε (59) (59) ε a 10 1., (1989), 2., (1983), 3., (1995), 4. JSME, (2005), 18