情報処理学会研究報告 IPSJ SIG Technical Report 自動車交通を支える交通情報システムの一考察 清水光 藤井温子 森藤義之 沖俊任 自動車交通は, ドア ツ ドアの輸送や時間の制約がない, 快適な走行などの理由で発展してきた. 一方, 交通量の増加に伴って, 交通渋滞や交通事故

Similar documents
藤井・清水

25 信号制御システムのための交通処理量の解析 桝田温子 * 清水光 ** Analysis of the Net Traffic Flow Rate for Signal Control System Haruko Masuda*, Hikaru Shimizu** Abstract The si

1 基本的な整備内容 道路標識 専用通行帯 (327 の 4) の設置 ( 架空標識の場合の例 ) 自 転 車 ピクトグラム ( 自転車マーク等 ) の設置 始点部および中間部 道路標示 専用通行帯 (109 の 6) の設置 ( 過度な表示は行わない ) 専 用 道路標示 車両通行帯 (109)

スライド 1

交通ミクロシミュレーションを用いた長岡まつり花火大会の交通渋滞緩和施策評価 環境システム工学課程 4 年 都市交通研究室杉本有基 指導教員佐野可寸志 1. 研究背景と目的長岡まつり大花火大会は長岡市の夏の最大イベントである 長岡まつり大花火大会は 昭和 20 年 8 月 1 日の長

国土技術政策総合研究所 研究資料

1 見出し1

1 見出し1

速度規制の目的と現状 警察庁交通局 1

1 見出し1

4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2

Microsoft Word 交通渋滞(有明アーバン)_181017


スライド 1

資料 7-1 特殊車両の通行に関する指導取締要領の一部改正について 国土交通省関東地方整備局道路部交通対策課 1 (1) 特殊車両通行許可制度 2

Microsoft PowerPoint - 6.PID制御.pptx

昨年9月、IOC総会において、東京が2020年のオリンピック・パラリンピック競技大会の開催都市に決定し、日本中が歓喜の渦に包まれた

<4D F736F F F696E74202D F E738C9782C982A882AF82E9837D838B C F A282BD8

<385F8E9197BF F CC8CF889CA BBF2E786477>

目次 1 1. 奈良市中心部の道路交通環境 1) 広域的な自転車利用ネットワーク P2 2) 幹線道路の交通状況 ( 交通量 ) P3 3) 幹線道路の交通状況 ( 混雑状況 ) P4 2. 自転車事故の分析結果 1) 道路種別別 ( 国道 県道 市道 ) 自転車事故発生状況 P5 2) 自動車交通

<4D F736F F F696E74202D E838B93B E907D8BA689EF82CC8EE E B8CDD8AB B83685D>

○福岡県警察交通管制要綱の制定について(通達)

<4D F736F F F696E74202D208D8291AC93B CC8F6191D891CE8DF482C982C282A282C481698B408D5C8D EF A>

ニュースレター「SEI WORLD」2016年6月号

JARTIC 交通情報の例 : 高速道路 2

第 2 章横断面の構成 2-1 総則 道路の横断面の基本的な考え方 必要とされる交通機能や空間機能に応じて, 構成要素の組合せ と 総幅員 総幅員 双方の観点から検討 必要とされる道路の機能の設定 通行機能 交通機能アクセス機能 滞留機能 環境空間 防災空間 空間機能 収容空間 市街地形成 横断面構

NITAS の基本機能 1. 経路探索条件の設定 (1) 交通モードの設定 交通モードの設定 とは どのような交通手段のネットワークを用いて経路探索を行うかを設定するものです NITASの交通モードは 大きく 人流 ( 旅客移動 ) 物流( 貨物移動 ) に分かれ それぞれのネットワークを用いた経路

21m 車両の検証項目 ダブル連結トラック実験 高速道路 3 交通流への影響 4 道路構造への影響 合流部 : 本線 合流部 : ランプ 追越時 車線変更部 検証項目 分析視点 データ等 1 省人化 同一量輸送時のドライバー数 乗務記録表 環境負荷 同一量輸送時のCO2 排出量 2 走行 カーブ (

ひっかけ問題 ( 緊急対策ゼミ ) ステップ A B C D 39.4% 学科試験パーフェクト分析から ひっかけ問題 に重点をおいた特別ゼミ! 2 段階 出題頻度 39.4% D ゼミ / 内容 *(2 段階 24.07%+ 安知 15.28%=39.4

( 様式 -2a 調査概要 ) Ⅰ 調査概要 1 調査名称 : 平成 26 年度神埼市総合都市交通体系調査 2 報告書目次 1. 業務概要 (1) 都市計画道路見直しの必要性 (2) 都市計画道路見直しのスキーム (3) 検討結果の分類 2. 路線の抽出 (1) 都市計画道路の整理 抽出 (2) 検

< F8BE091F28EA9935D8ED492CA8D738BF38AD490AE94F5834B C FC92E888C4816A2E786477>

1 吾妻町 平成18年3月27日に東村と合併し東吾妻町になりました 2 六合村 平成22年3月28日に中之条町に編入しました 5.2-2

資料 -2 国道 24 号烏丸通 歩行者 自転車通行安全協議会 国道 24 号烏丸通の概要 平成 30 年 3 月 国土交通省近畿地方整備局京都国道事務所

研究成果報告書

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

<4D F736F F F696E74202D20895E935D8E D BB8C7689E68A C4816A72332E >

p1

untitled

資料 2 主要渋滞箇所 ( 案 ) の抽出方針について ( 一般道 ) 平成 24 年 8 月 9 日

8. ピンポイント渋滞対策について 資料 8

130322_GL(素案).xdw

本章では 衝突被害軽減ブレーキ 車線逸脱警報 装置 等の自動車に備えられている運転支援装置の特性 Ⅻ. 運転支援装置を 備えるトラックの 適切な運転方法 と使い方を理解した運転の重要性について整理しています 指導においては 装置を過信し 事故に至るケースがあることを理解させましょう また 運転支援装

Microsoft PowerPoint - 2_資料(最終訂正版1)

1 見出し1

Microsoft PowerPoint - ○ITARDA H29年1~12月( )

2014 BinN 論文セミナーについて

Microsoft PowerPoint 飯沼交差点 接続道路に関する説明会(説明会用)

Microsoft PowerPoint - ○ITARDA H30年1~9月( )JTA改

PowerPoint プレゼンテーション

<4D F736F F D208CA48B8689EF914F8DFC82E85F8AAE90AC94C55F2E646F63>

Microsoft Word - 第2章 ブロック線図.doc

Microsoft Word - 泉南阪南火葬場生活環境影響調査報告書(pdf用)

 

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

横浜市環境科学研究所

事故及び渋滞対策の取り組み 福岡都市高速 北九州都市高速 福岡北九州高速道路公社

<4D F736F F D208D8291AC93B BF8BE08E7B8DF482CC89658BBF92B28DB E92B A2E646F63>

Microsoft PowerPoint - 2_「ゾーン30」の推進状況について

LED 道路 トンネル照明の設置に関する補完資料 Ⅰ LED 道路照明 ( 連続照明 ) の設置について 道路照明のうち連続照明の設計については 道路照明施設設置基準 同解説に基づき 性能指標 ( 規定値 ) 及び推奨値 ( 以下 性能指標等 という ) から所定の計算方法により設置間隔等を算出し

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

<375F8E9197BF F CC8CBB8FF32E786477>

1

untitled

大型建設機械の輸送に係る規制について


NITAS Ver.2.4 システムの概要 利用上の注意等 1.NITAS の概要 動作環境 利用対象者 (1)NITAS の概要総合交通分析システム (NITAS:National Integrated Transport Analysis System) は 道路 鉄道 航空 船舶の各交通機関を

1 日本再興戦略 2016 改革 2020 隊列走行の実現 隊列走行活用事業モデルの明確化ニーズの明確化 ( 実施場所 事業性等 ) 技術開発 実証 制度 事業環境検討プロジェクト工程表技高齢者等の移動手段の確保 ( ラストワンマイル自動走行 ) 事業モデルの明確化 ( 実施主体 場所 事業性等 )

羽藤.pptx

( おさらい ) 自動運転とは レベルレベル1 レベル2 レベル3 レベル4 定義 加速 操舵 制動のいずれかの操作をシステムが行う 加速 操舵 制動のうち複数の操作を一度にシステムが行う ( 自動運転中であっても 運転責任はドライバーにある ) 加速 操舵 制動をすべてシステムが行い システムが要

1-1 交通死亡事故全体の推移 10 年前と比較し の死者は 40.7% 65 歳以上の死者は 24.0% それぞれ減少 死者に占める 65 歳以上の割合は 24 年以降増加 27 年中死者の半数以上 (54.6%) を 65 歳以上が占める 10 年前と比較し 人口当たり死者数は 65 歳以上のい

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - DA2_2019.pptx

09-08 第 57 回土木計画学研究発表会 講演集 転回路付き緩速車線を用いた新たな交通運用策に関する研究 茂木翔平 1 下川澄雄 2 森田綽之 3 吉岡慶祐 4 山川英一 5 1 正会員八千代エンシ ニヤリンク 株式会社管理統括本部付 ( 東京都台東区浅草橋 )

平成 26 年度公共事業事後評価調書 1. 事業説明シート (1) ( 区分 ) 国補 県単 事業名道路事業 [ 国道橋りょう改築事業 ( 国補 )] 事業箇所南巨摩郡身延町波高島 ~ 下山地区名国道 300 号 ( 波高島バイパス ) 事業主体山梨県 (1) 事業着手年度 H12 年度 (2) 事

微分方程式による現象記述と解きかた

事例2_自動車用材料

ITS とは 1 ITS の役割 ITS (Intelligent Transport Systemsys) 高度道路交通システム 人と道路と自動車の間で情報の受発信を行い 道路交通が抱える事故や渋滞 環境対策など 様々な課題を解決するためのシステムとして考えられました 常に最先端の情報通信や制御技

PowerPoint プレゼンテーション

PowerPoint Presentation

高速道路への完全自動運転導入によるリスク低減効果の分析 リスク工学専攻グループ演習 10 班 田村聡宮本智明鄭起宅 ( アドバイザー教員伊藤誠 )

画像解析論(2) 講義内容

Microsoft Word - NumericalComputation.docx

ディジタル信号処理

Microsoft Word - 最終版

NITAS Ver.2.5 システムの概要 利用上の注意等 1.NITAS の概要 動作環境 利用対象者 (1)NITAS の概要総合交通分析システム (NITAS:National Integrated Transport Analysis System) は 道路 鉄道 航空 船舶の各交通機関を

無電柱化法第12条運用勉強会資料

資料 四輪車の加速走行騒音規制について ( 乗用車 小型車 ) 現行加速走行騒音試験法の課題 新加速走行騒音試験法の概要 国内走行実態との比較による新加速走行騒音試験法の検証 1

ICT を活用した ITS の概要 1 ITS は内閣府 警察庁 総務省 経済産業省 国土交通省が連携して推進 道路交通情報 VICS (1996 年 ~) FM 多重放送 電波ビーコン 光ビーコンで情報配信 ( 約 5,100 万台 :2016 年 6 月末 ) プローブ情報 携帯電話ネットワーク

と案 目的地を探したら ルートを設定します ルートが設定されると案内がはじまりますので ルート案内にしたがって走行してください 検索した地点を確認 設定する 52 現在の条件でルートを探索する 52 ルートの確認や設定をする 52 検索した地点の位置を修正する 53 検索した地点をルート上に追加する

周波数特性解析

カバーol_束19mm

これらのご要望などを踏まえ 本技術を開発しました 本技術により渋滞予知の精度は大幅に向上し 渋滞があると予測した時間帯において 所要時間の誤差が30 分以上となる時間帯の割合が 従来の渋滞予報カレンダー 7 の8.2% に対して0.8% 20 分以上となる割合が26% に対して6.7% となり また

日心TWS

線形システム応答 Linear System response

DVIOUT

(第14回協議会100630)

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

33_10_10.dvi

Microsoft PowerPoint - 1.プロセス制御の概要.pptx

Transcription:

自動車交通を支える交通情報システムの一考察 清水光 藤井温子 森藤義之 沖俊任 自動車交通は, ドア ツ ドアの輸送や時間の制約がない, 快適な走行などの理由で発展してきた. 一方, 交通量の増加に伴って, 交通渋滞や交通事故, 環境負荷の増加などの問題を有している. 本稿では, 交通流の円滑化や安全化, 環境負荷の低減化を目的とする交通情報システムの構成について, 交通流ダイナミクスの制御の観点から提案する. 構成は,6 層の階層構造で, 道路設計, 交通規制, 信号制御システム, 動的経路誘導システム, 統合的交通流制御システム, 交通情報提供システムより成る. 第 1 層から第 6 層までの構成と機能について述べ, 最後に, 現在までの交通情報システムの開発事例について考察する. A ud of affic Infomaion Sm Suppoing Ca affic Hikau Shimizu Hauko Fujii Yohiuki Moio and ohiaka Oki hi pap popo a configuaion of h affic infomaion m which i ffciv o duc h congion, affic accidn, xhauion of CO 2 and gaolin conumpion in uban oad nwok. hi pap udi fom h oad dign, affic gulaion, ignal conol dnamic ou guidanc m and up o h affic infomaion vic m fom h viwpoin of h conol of affic flow dnamic. Fom h imulaion ul, i i confimd ha h dcipion of h ignal conol xnibili of ignal conol algoihm, paam opimizaion, anali of h link avl im and h configuaion of h affic infomaion m a applicabl fo al uban affic nwok. 1. はじめに 経済の発展や道路の整備, 信号のオンライン制御, 車の技術革新などによって自動車交通は発展の一途をたどってきた. また, 自動車交通は, 時間の制約がない, ドア ツ ドアの移動, 快適な高速走行などの特長を有し, 我が国の交通機関の中で年間旅客総輸送量が最も多い 1). 一方, 朝夕のラッシュ時には, 都市の幹線道路を中心に交通渋滞や交通事故が日常的に発生している. 都市道路網における交通流の円滑化や安全化, 環境負荷の低減化などの観点から, 道路設計や交通規制, 信号制御システム, 動的経路誘導システム, 統合的交通流制御システム, 交通情報提供システムなどについて研究が進められている 2)~8). 本稿では, 信号交差点の交通流ダイナミクスを車線単位, サイクル長単位で記述し, 交通流の最適制御や都市道路網の最大有効利用の観点から, 交通情報システムの一構成法について提案する. ドライバーに必要な交通情報をオンラインで提供する交通情報システムは,6 層の階層構造で構成される. すなわち, 第 1 層が道路設計, 第 2 層が交通規制, 第 3 層が信号制御システム, 第 4 層が動的経路誘導システム, 第 5 層が統合的交通流制御システム, 第 6 層が交通情報提供システムとなっている. 2. 交通情報システムの現状 自動車のドライバーにとって, 無事故, 無違反, 円滑で地球環境にやさしい走行は, 最も望んでいることではないかと考えられる. 信号制御システムでは, 車両感知器から交通量や占有率をオンライン入力し, サイクル長や青信号スプリット, オフセットから成る 3 つの信号制御パラメータを, あらかじめ用意された複数のパターンの中から選択し, 遅れ時間と停止回数が最小になるように制御する. 併せて, 信号交差点における自動車と歩行者の錯綜を少なくし, 交通流の安全化を図る. 現行の信号制御システムは, 遅れ時間の減少で一定の効果のあることが確認されているが, パラメータ探索の統一性や精度, 評価関数などについて課題が残されているものと思われる. VICS では, ドライバーに道路の渋滞や旅行時間, 交通規制などの情報を車載器によりオンラインで提供し, 円滑で安全な運転を支援する. 可変表示板では, ドライバーに渋滞長や旅行時間, 交通規制, 駐車場利用などの情報をオンラインで提供し, 運転に必要な情報のサービスを図る. 福山大学 Fukuama Univi 弓削商船高等専門学校 Yug Naional Collg of Maiim chnolog 1 c 2010 Infomaion Pocing Soci of Japan

3. 交通情報システムの提案 現在の交通情報システムの問題点として, 信号制御システムの性能向上や動的経路誘導システムの十分な機能整備などが考えられる. ここでは, 現在までの技術やシミュレーションなどの蓄積に基づいて,6 つの階層から構成される交通情報システムの一構成法について提案する. 3.1 第 1 層道路設計道路は, 道路法により, 高速自動車国道, 一般国道, 都道府県道, 市町村道に機能別に階層的に分類されている. 車線幅員や中央帯, 路肩などの道路設計の基準値が道路構造令に示されており, いずれの数値も交通容量解析に使用される. ここで, 交通容量とは, 与えられた道路条件と交通条件のもとで道路を疎通できる最大交通量と定義され,3.3.1 で述べる交通処理量の解析の基礎となる. 3.2 第 2 層交通規制現実の道路網では, 交通流の円滑化や安全化の観点から, 様々な交通規制が実施されている. 幹線道路における道路標識では, 法定速度や右折禁止, 進入禁止, 一方通行, 車線構成, 駐車禁止などがあり, 道路標示では, 専用レーンや優先レーン, 追い越し禁止,U ターン禁止, 横断歩道などがある. また, 信号表示による現示も自動車の走行を車線単位, サイクル長単位で規制する. 以上の交通規制は交通流を規定するものであり, 現地で調査しておかなければならない. 3.3 第 3 層信号制御システム 3.3.1. システムの記述急激な交通量の変動によって発生する渋滞を信号でオンライン制御するために, 交通流ダイナミクスを車線単位, サイクル長単位で記述する. 図 1 に示される二方向交通幹線道路の流入路の各車線において, ある時刻 Δ( ここでは, サイクル長に等しい ) で以下の交通量収支が成立する. x = x k 1) + x x (1) x = ξ x 0 o ψ x i o (2) ここで,j は信号交差点の位置,m は車の流入路 (m=1 は東行き,m=2 は南行き,m=3 は北行き,m=4 は西行き ),k=k Δ(k=1,2,..,k f ) は時刻をそれぞれ表す. また,x (, x i (,x o ( はそれぞれ超過流入交通量, 流入交通量, 捌け交通量を表わし, ψ x ( は各流入路の交通処理量,ξ( はある交通流のもとで x o ( を ψ x ( で除した比率で捌け率と呼ぶことにする. 捌け交通量をある交通流のもとで信号制御パラメータで制御できると仮定して制御入力 u( で置き換えると, 渋滞長の信号制御 システムは次式の非線形ダイナミックシステムで記述される. x = x k 1) + xi u( = l x c m (3) 渋滞長 c ( は状態変数 x ( に変換係数 l m ( を乗じて求められる. ここで, 変換係数 l m ( は待ち車列の平均車頭間隔に相当する. 制御入力 u( は (2) 式の捌け交通量 x o ( に相等し, 交通処理量 ψ x ( の特性に基づき飽和特性を有する. 信号制御システムで, 基準入力に許容渋滞長 l ( を, 制御入力に 3 つの信号制御パラメータを, 出力に渋滞長をそれぞれ対応させる. その時, 各信号交差点における渋滞長のフィードバック制御システムが図 2 で構成される. 制御システムにおいて, 制御偏差 ( を次式で定義する. Δ l (4) + l (k ) m=1 m=3 c j=1 2 N m=2 m=4 Aial : Signalizd incion 図 1 二方向交通幹線道路の交通流 Figu 1 wo-wa affic flow along aial. - Signal conol algoihm Signal conoll Conoll paam affic flow ( u( c ( 図 2 各信号交差点における渋滞長のフィードバック制御システム Figu 2 Fdback conol m of congion lngh a ach ignalizd incion. 2 c 2010 Infomaion Pocing Soci of Japan

各信号交差点の各流入路における飽和度は一般的に一様ではなく, 飽和度が最大となる流入路を優先的に制御する考えより, 以下の関数 g( を定義する. 二方向交通幹線道路の渋滞長制御システムの目的は, 次の評価関数 J a ( を最小にする制御入力 u( である 3 つの信号制御パラメータを統一的に探索することである. g( Δ 0 ( J ( a = N 4 j= 1 m= 1 ( 0 ( < 0 g( (5) (6) (3) 式で記述される信号制御システムは, 車線単位, サイクル長単位の交通量収支に基づいており, 渋滞流や非渋滞流にかかわらず, また, 単独信号交差点や幹線道路, 都市道路網にかかわらず成立する. 3.3.2. システム構成幹線道路の信号制御システムは, 交通流の円滑化や安全化, 環境負荷の低減化を図るために設計される. そのシステム構成は, 図 3 に示されるように車両感知器よりリンク走行速度や待ち車列長, 交通量をコンピュータにオンライン入力し, 信号制御法 9) を用いて 3 つの信号制御パラメータの最適値を探索し, それらを用いて信号機の表示をリアルタイムで制御する. また, 主要信号交差点の渋滞長を可変表示板に出力し, 一般のドライバーに提供する. 3.4 第 4 層動的経路誘導システム動的経路誘導システムは, 道路網の出発地 (Oigin) から目的地 (Dinaion) までの最短 OD 旅行時間経路をリアルタイムで探索し, ドライバーに提供し, 交通流の適正なリンク配分を図るシステムである. このシステムの開発は, リンク旅行時間の解析や測定, 推定, 最短 OD 旅行時間経路の探索, などから構成される. 本稿では, 信号交差点における交通流ダイナミクスや信号制御パラメータ, 自動車の進行方向などを考慮に入れて, リンク旅行時間を解析し, 推定する. システムを実用化するにあたっては, 車両感知器の配置や信号制御システムとのオンライン接続などが必要になる. 3.4.1. リンク旅行時間の解析各リンクの旅行時間は, 走行時間と停止時間の和より求められる. また, 平均リンク旅行時間は交通渋滞の有無やオフセット制御の有無, 下流側信号交差点での車の進行方向などを考慮に入れて場合分けし, 車線単位, サイクル長単位で解析する. さらに, 交通ネットワークの或る出発地から目的地までの平均 OD 旅行時間については, その OD を構成する各リンクの平均旅行時間の総和より求める 10). 以下の式で使用する変数の意味については abl1 に示す. 渋滞無し オフセット制御有りの場合この場合, 自動車は信号交差点間を最も円滑に走行できる. なお, 式を簡潔に表現するために右辺の変数については, 添字 (i, を省略する. ⅰ) 下流側信号交差点を直進 走行時間 = un (7) 停止時間 = P { P ( /2+ + ) (8) + P ( /2+ )}, un Congion lngh Vaiabl ign Vhicl dco Quu lngh Running pd Volum Compu (Signal conol algoihm) Signal conol paam affic ignal 図 3 信号制御システムの構成 Figu 3 Configuaion of ignal conol m. Link unning im 表 1 変数の意味 abl 1 Noaion l v Quu lngh Link opping im Running pd of aighawa lan P c,, Sopping a a h downam ignalizd incion Ougoing im of igh-un lan quu g Gn, Yllow and Rd im, P P g Pobabili of gn, llow and d im C Ccl lngh P, d Link lngh q q ϕ ϕ d Saighawa lan quu Righ-un lan quu Sauaion flow on h appoach of aighawa lan a h downam ignalizd incion Sauaion flow on h appoach of igh-un lan a h downam ignalizd incion im diffnc of gn iniiaion bwn aighawa and igh-un dicion Saing dla 3 c 2010 Infomaion Pocing Soci of Japan

ⅱ) 下流側信号交差点を右折 走行時間 = un + c (9) 停止時間 = d / 2 + (10) 下流側信号交差点を左折する場合については, 右折と同様な考えで解析する. 渋滞無し オフセット制御無しの場合この場合, 自動車は下流側信号交差点において, 青, 黄, 赤のいずれかの信号に遭遇する. ⅰ) 下流側信号交差点を直進 走行時間 = P g un + P ( + P ( + P ( un un 停止時間 = P ( /2+ + ) c + ) c /2+ ) + ) (11) (12) 下流側信号交差点を右折, 左折する場合については, 渋滞無し オフセット制御有りの場合と同様な考えで走行時間と停止時間に分けて解析する. 以上の式で, un = ( d l ) / v (13) c = q / 2ϕ (14) c = q / 2ϕ (15) また,P g (i,,p (i,,p (i, は, 各信号時間をサイクル長で除した値である. 渋滞の場合ここでは, 信号制御が適切に行われ, 青信号で交差点に進入した場合, その青信号を 1 回見送り, 次の青信号で通過できると仮定する. リンク旅行時間は, 上記の二つの場合と同様に直進, 右折, 左折の場合に分け, 走行時間と停止時間について解析する. 3.4.2. 動的経路誘導システムの構成都市道路網の動的経路誘導システムは, 図 4 のシステム構成に示されるようにドライバーが車載入出力装置より目的地をオンライン入力し, 経路探索アルゴリズムと交通情報を用いて最短平均 OD 旅行時間経路を含む幾つかの推奨経路を探索し, それらを平均 OD 旅行時間の短い順に車載入出力装置にリアルタイムで出力する. ドライバーは複数の推奨経路の中から最も適当と判断した経路を選択し走行する. また, 利用頻度の大きい主要な平均 OD 旅行時間を可変表示板にリアルタイムで出力し, 一般のドライバーに提供する. これらの交通情報に基づいて特定のリンクへの交通流の集中や 2 つの特定 OD 経路間における交通流の交互の増減 ( 振動 ) を防ぎ, 交通渋滞を回避, および軽減する安定なシステムである. 動的経路誘導システムは, 信号制御システムにおける制御入力の限界 ( 飽和特性 ) を補うことができる. 3.5 第 5 層統合的交通流制御システム都市道路網の交通流の円滑化と安全化を最も効果的に実現するシステムとして, 信号制御システムと動的経路誘導システムをオンライン接続する統合的交通流制御システムが考えられる. このシステムでは, 信号制御システムにより, 道路網の渋滞長の総和が最小になるようにサイクル長単位で信号表示が制御される. また, 動的経路誘導システムにより, 出発地から目的地までの最短 OD 旅行時間経路と平均 OD 旅行時間が, ドライバーにリアルタイムで提供され, 特定リンクへの自動車の集中が避けられ, 交通渋滞の軽減や解消に貢献する. さらに, 信号制御システムの制御入力の飽和特性による限界を補うことが期待できる. これらの二つのシステムは独立に稼働し, Vhicl dco Running pd Quu lngh Volum Oigin and Dinaion GPS Inpu/oupu dvic Evaluaion of avl im and Rou ach algoihm Vaiabl ign Rcommndabl ou and Man OD avl im avl im Signal conol paam 図 4 動的経路誘導システムの構成 Figu 4 Configuaion of dnamic ou guidanc m. Fil m 4 c 2010 Infomaion Pocing Soci of Japan

信号制御システムがサイクル長単位で常時稼働するのに対して, 動的経路誘導システムはドライバーから要求が発生した時にのみ, 経路探索を行い, 必要な情報をドライバーに返す. 統合的交通流制御システムの制御アルゴリズムは以下のように示される. Sp 1: 統合的交通流制御システムのパラメータや初期値などを設定する. 信号制御システム Sp 2: 車両感知器よりサンプリング周期 Δ でオンライン入力された走行速度や待ち車列長, 交通量の測定値をネットワーク制御アルゴリズム 9) に入力する. Sp 3: ネットワーク制御アルゴリズムを用いて渋滞長の総和に関する評価関数を最小にする 3 つの信号制御パラメータの最適値を求める. 求められた最適信号制御パラメータと車両感知器より入力された測定データを統合的交通流制御システムのファイルシステムに入力する. Sp 4: 3 つの最適信号制御パラメータを用いて交通信号機の現示 ( 表示時間 ) を制御し, 交通ネットワーク内の渋滞長の総和を最小にする. また, 主要信号交差点の渋滞長を可変表示板に表示する. 以上の Sp2 から Sp4 までの処理をサンプリング周期 Δ で常時実行する. 動的経路誘導システム Sp 5: ドライバーは, 車載入出力装置から出発地と目的地を経路探索アルゴリズムに入力する. Sp 6: 走行速度や待ち車列長, 交通量, 最適信号制御パラメータなどをファイルシステムより経路探索アルゴリズムに入力し, 求められた推奨経路を平均 OD 旅行時間の短い順にソートし, 車載入出力装置に表示する. また, 利用頻度の大きい主要な OD 旅行時間を可変表示板にリアルタイムで表示する. Sp 7: ドライバーは, 出力された複数の推奨経路の中から最も適当と判断した目的地までの走行経路を選択する. 以上の Sp5 から Sp7 までの一連の処理はドライバーの要求時に稼働し, 主要な OD 旅行時間の算定と表示はサンプリング周期 Δ で常時実行する統合的交通流制御アルゴリズムの処理手順を示すと図 5 のようになる. 3.6 第 6 層交通情報提供システム第 1 層から第 5 層までは, 交通流の円滑化や安全化, 環境負荷の低減化という目的を共有している. 交通情報提供システムの目的は, ドライバーが安全で快適な運転ができるように必要な情報をリアルタイムで提供することである. ドライバーが必要とする交通情報として, 最短平均 OD 旅行時間経路, 推奨経路, 平均 OD 旅行時間, 渋滞長, 走行速度, 混雑度, 赤信号時間, などが考えられる. これらの交通情報は, 第 1 層から第 5 層までのシステムが仕様通りに設計されたならば, すべてリアルタイムでドライバーに提供可能となる. 4. システム開発の事例 広島県福山市内道路網において, 第 1 層から第 4 層までのシステム開発事例と第 5 層から第 6 層までのシステム開発計画について紹介する. 第 1 層の道路設計については, 図 6 に示されるように,11 の主要信号交差点から構成され, 駅前通りは片側 3 か Pocing flow SEP1 Signal conol m Ingad affic flow conol m Run b a piod Δ SEP2 SEP3 SEP4 Vhicl dco Dnamic ou guidanc m Fil m affic ignal SEP5 SEP6 SEP7 Inpu/oupu dvic 図 5 統合的交通流制御アルゴリズムの処理手順 Figu 5 Pocdu of ingad affic flow conol algoihm. 図 6 福山市内道路網 Figu 6 Road nwok in Fukuama ci. Vaiabl ign Fukuama N Signalizd Incion Link lngh (m) Lgal pd (km/h) 1.1 628 1.2 525 1.3 625 1.4 175 40 30 40 40 Lan numb 288 50 305 40 288 40 2.1 Rou 2 m=1 m=2 600 525 600 2.2 2.3 2.4 50 50 50 488 40 m=3 m=4 363 50 355 50 475 50 580 3.2 525 3.3 410 40 40 40 3.4 5 c 2010 Infomaion Pocing Soci of Japan

ら 4 車線, 国道 2 号線は片側 3 車線とリンクの交通容量が大きく設計されている. 第 2 層の交通規制については, 駅前通りと国道 2 号線で朝のラッシュ時にバス専用レーンが設置されている. 法定速度は, 片側 2 車線以上の主要道路で 50km/h となっている. 第 3 層の信号制御システムについては,(1) 式のダイナミックシステムに基づき, 道路網の信号交差点における渋滞長の総和を最小にするように, ネットワーク制御アルゴリズムを用いて 3 つの信号制御パラメータが統一的に探索され, 制御される. 車線単位, サイクル長単位で信号制御パラメータがきめ細かく制御され, 現実に運用されているパターン選択法に比べて有効な結果を得ることができた 9). 第 4 層の動的経路誘導システムについては, 出発地から目的地までの右左折を含む推奨経路と平均 OD 旅行時間が比較的精度良く求められた 10). 第 5 層の統合的交通流制御システムについては, 現在までに開発された信号制御システムと動的経路誘導システムをデータベースを介してオンラインで接続し, 交通流制御アルゴリズムをシミュレーションにより検証していく計画である. 第 6 層の交通情報提供システムについては, 都市道路網の交通流の円滑化と安全化, 環境負荷の低減化に有効な情報を, リアルタイムでドライバーに提供できるデータベースを構築する計画である. 10) 小林, 清水他 : 交通ネットワークの動的経路探索アルゴリズム, 第 17 回交通工学研究発表会論文報告集, pp.169-172 (1997) 5. まとめ 広島県福山市内道路網における交通情報システムの機能と構成について考察した. 交通工学や制御工学, 情報工学などの複数の専門分野にわたっており, プロジェクトチームによってシステムを開発することが適していると思われる. 今後の当面の課題として, 信号制御システムの遅れ制御や動的経路誘導システムにおける自動車の右左折確率の推定, 車両感知器の適正な設置などが考えられる. 参考文献 1) 国土交通省 : 国土交通白書 2008, p258(2008). 2) 今西, 石田, 筧 : 道路整備後の交通量 CO 2 排出量の短期的変化に関する実証的研究, 交通工 学, Vol.43, No.3, pp53-63(2008). 3) 大口敬 : 交通運用を活かす道路設計試論, 交通工学, Vol.38, 増刊号, pp.14-20 (2003). 4) 森本励 : 地域に応じた道路構造の見直し, 交通工学, Vol.38, 増刊号, pp.21-25 (2003). 5) 宇佐美, 榊原 : 道路網の信号制御システム, 計測と制御, Vol.41, No.3, pp.205-210 (2002). 6) 天目, 山口 : 道路網の動的経路誘導システム, 計測と制御, Vol.42, No.3, pp.211-216 (2002). 7) N. H. Gan: Combind Modl fo Signal Conol and Rou Aignmn in Uban affic Nwok, 計測と制御, Vol.42, No.3, pp.217-224 (2002). 8) 情報システムと情報技術事典編集委員会編 : 情報システムの実際 1 官公庁 公共サービス システム : 培風館, pp.66-81 (2003). 9) 石川, 清水他 : 交通ネットワークの渋滞長制御, 情報処理学会論文誌, Vol.45, No.4, pp.1154-1162 (2004) 6 c 2010 Infomaion Pocing Soci of Japan