2014 BinN 論文セミナーについて
|
|
|
- みさき みのしま
- 6 years ago
- Views:
Transcription
1 2014 BinN 論文セミナーについて
2 内容 論文ゼミは,BinN で毎年行なっているゼミの 1 つで, 昨年度から外部に公開してやっています. 毎週 2 人のひとが, 各自論文 ( 基本英語 ) を読んでその内容をまとめ, 発表 議論するものです. 単に論文を理解するだけでなく, 先生方を交えてどのように応用可能か, 自分の研究にどう生かせそうかなどを議論できる場となっています. 論文ゼミ
3 基本事項 日時 : 毎週金曜日 19:00 21:00 ( 羽藤先生の都合により, 曜日が水 or 土曜に変わることがあります ) 場所 : 工学部 1 号館 4 階セミナー A 発表 :2 人 (BinN 学生 1 人, ゲスト1 人?) 発表について 4 月の間は,BinN 学生で回します. 5 月以降 (7 月末まで ),1 人 1 回 2 回程度, 発表をしていただこうと考えています.(B4 は除く?) 論文ゼミ
4 主なテーマ 古典的な基礎理論 課金 制御 ( 最適化理論 配分 ) 回遊, アクティビティ ( 行動モデル ) Social Networks, 対人相互作用 ( ゲーム理論 ) 歩行者, 避難 ( シミュレーション ) GPS, ビッグデータ ( 統計 確率過程 ) 各自テーマに沿った論文を選んでもらいます. ( いくつかのテーマについてはこちらでリストも作成しています.) 論文ゼミ
5 4/9( 水 )2014 年度第 1 回 BinN セミナー A Fosgerau, M., Frejinger, E., Karlstrom, A., A link based network route choice model with unrestricted choice set Transportation Research Part B, Vol.56, pp.70-80, D1 大山雄己
6 経路選択モデル 1 経路選択モデルはインフラ投資計画, 交通規制, 容量制御といった政策に大きな役割を果たしてきた. 近年,GPS 技術の進展によって, 正確な経路情報が得られるようになっている.( 実際の経路が直接観測可能 ) さまざまな経路選択の要因に対して, パラメータ推定の精度が重要. リンクベースの再帰的な経路選択モデルの提案 (Recursive Logit Model) はじめに
7 リンクベースの動的経路選択モデル 2 簡単のため, 時間に静的なネットワークを考える. 各意思決定において, リンクkの sink-nodeに接続するリンク集合が選択肢となる. 選択肢集合 目的地についてはダミーリンクによる吸収状態を考える. 吸収状態 ダミーリンク 問題設定
8 リンクベースの動的経路選択モデル 3 各選択肢は固有の効用関数と, そのリンクを選んだ場合の目的地までの期待効用を考慮して選択される. 誤差項 : ガンベル分布 価値関数 (1) (2) Bellman 方程式 (Rust,1987) n µ : 意思決定者 : スケールパラメータ リンクの説明変数 問題設定
9 リンクベースの動的経路選択モデル 4 各選択肢は固有の効用関数と, そのリンクを選んだ場合の目的地までの期待効用を考慮して選択される. 状態 k におけるリンク a の選択確率は, ロジットの形式で表される. 誤差項 : ガンベル分布 (1) (2) (3) 価値関数はログサム変数を用いて次のように書き換えられる. (4) : のとき 1, それ以外で 0 問題設定
10 ベルマン方程式の解法 式 (4) を変形すると, 5 (5) 行列をを要素として持つベクトルとすれば, (6) なお, は b は, (4) モデル特性
11 モデル特性 ベルマン方程式の解法 6 (5) (6) e 1 µ V (1)! e 1 µ V (k ) 1 0! 0 1 0! " 0 0! 0 0 e 1 µ V (1)! e 1 µ V (k ) 1 = + (I M) 1 が存在することが, 解を持つ条件となる. 吸収マルコフ連鎖の基本行列 ( 佐佐木,1965) ノードに接続する経路の数や, 効用の確定項の値のバランスによって決まる.
12 経路の選択確率 7 出発地から目的地までの 経路 は, 一連のリンクとして記述され, コスト ( 効用 ) はリンクコストの和となる. k i k i+1 k i+2 モデルのマルコフ性より, リンクベースの選択確率を用いて経路の観測尤度を算出することができる. σ (7) (3) (5) モデル特性
13 経路の選択確率 式 (3),(5) を用いれば, 式 (7) はより簡単に, 8 (8) P(k i+1 k i ) の分母は e 1 µ V (k i ) ( 式 5) さらに, とおけば, (9) Ω : 経路の選択肢集合 経路の選択確率もロジット型で表わせ,2 経路の確率比も のみに依存する. (3) (7) (5) モデル特性
14 リンクフロー 9 リンクベースの選択確率は交通量の予測 算出にも適用できる. 簡単のため, 複 O 単 D のネットワークで考える ( 展開可能 ). F(k) P(a k) G(a) F(k) G(a) : リンク k (k A) の交通量 : リンク a を通過後, 目的地 D に向かう交通量 このとき, リンク a に存在する交通量は, (10) (11) モデル特性
15 経路選択モデルにおける相関 10 ここまで, 吸収マルコフ連鎖 Bellman 方程式による動的経路選択モデルを記述した. しかしロジット型配分では経路間のリンク重複が問題となる. 下 2 経路の相関が考慮されず, 平等に配分されてしまう. Path Size Logit (Ben-Akiba and Bierlaire, 1999) C-Logit (Cascetta et al., 1996) 経路列挙が必要な (not link additive) ため, 提案したモデルには適用できない. Path-Size 修正項 ( 重複が魅力減少 ) リンク a を通過する経路数 Link Size (LS) 修正項の導入 Link Size の導入
16 Link Size (LS) 修正項 11 経路選択肢の数の代わりに, 期待リンク交通量を用いる. (12) : 設定する ( 説明変数の ) パラメータ は, 発生交通量を としたときの, 式 (11) の解である. = 1 0! 0 (13) 各リンクの LS 値は 0~1 をとる. (11) Link Size の導入
17 モデル間比較 12 U ターン不可 コストはリンク長のみ ( =-1.5) RL(Recursive Logit) では,MNL と同様に重複が考慮されず等配分されてしまっているが,LS を導入することで改善 (PSL と同等 ). 周回経路に微小量が配分されており, 正確な等配分にはならない. 精度は同等だが経路を列挙する必要がない点で優れている. Link Size の導入
18 Link Size と Link 効用の関係 13 リンク長パラメータ LS 修正項のパラメータ Link Size の導入
19 最尤推定法 14 価値関数の計算には,Rust(1987) の NFXP 法に似たアプローチをとる. ( 詳細は書いていない : リクエストすればコードがもらえる ) BFGS 法で各反復の最適化問題を解く. 無限周回経路の除去等, 現実と整合性のある範囲で仮定を置き式 (6) の計算性を確保. さらに正確性を増すために,Analytical Gradient を導入. ( 参考 ) 対数尤度関数は, (14) なので,Analytical Derivative は, (15) (8) (6) モデル推定
20 最尤推定法 15 ( 参考つづき ) (15) 式 (6) を偏微分して, (16) (17) (8) (6) モデル推定
21 効用関数の設定 16 ボルレンゲ ( 瑞典 ) の実ネットワーク (3077 ノード, 7459 リンク ) を用いて計算. (13) : リンク a の旅行時間 : 左折ダミー ( 左方向に40 以上であれば1, それ以外 0) : 交差点が多いリンクで1, それ以外 0のダミー :Uターンダミー( 回転角度 177 以上で1, それ以外 0) 1. シミュレーションデータでのモデル推定 検証 2.GPS データを用いたパラメータ推定 モデル推定
22 シミュレーションデータ 17 10のODサンプルに対して,500 台ずつ流してデータを作成. 各 ODに対して, 平均で39の経路 (35~44) が観測された. 全体の0.7% が周回経路を含んでいるものだった. 旅行時間は平均 9 min (8.8min ~ 12.3min). モデルの仮定の正しさと, 推定可能性を検証 (13) モデル推定
23 実データ推定 台の車から 2 年間で得られた GPS データを使用. 正規化ののち,1832 トリップ ( 最小 5 リンク ) データで推定. 466 の目的地が観測. サンプル数 :37,000( リンク選択 ). 説明力が高い. LS 項を入れることで精度向上. モデル推定
24 結論 19 選択肢集合の制約 ( 経路列挙 ) がない経路選択モデルを提案した. リングベースの選択モデルから, 各経路の選択確率が MNL 型で記述できることを証明した. リンクの和として記述される経路に対して Link Size 項を導入し, 経路の重複を考慮し, 良好な推定結果を得た. まとめ
25 ご清聴ありがとうございました.
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2
4 段階推定法 羽藤研 4 芝原貴史 1 4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2 4 段階推定法とは 交通需要予測の実用的な予測手法 1950 年代のアメリカで開発 シカゴで高速道路の需要予測に利用 日本では 1967 年の広島都市圏での適用が初 その後 1968 年の東京都市圏など 人口 30 万人以上の 56 都市圏に適用 3 ゾーニング ゾーニングとネットワークゾーン間のトリップはゾーン内の中心点
PowerPoint プレゼンテーション
第 6 回基礎ゼミ資料 Practice NL&MXL from R 平成 30 年 5 月 18 日 ( 金 ) 朝倉研究室修士 1 年小池卓武 使用データ 1 ~ 横浜プローブパーソンデータ ~ 主なデータの中身 トリップ ID 目的 出発, 到着時刻 総所要時間 移動距離 交通機関別の時間, 距離 アクセス, イグレス時間, 距離 費用 代表交通手段 代替手段生成可否 性別, 年齢等の個人属性
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
Microsoft PowerPoint - H17-5時限(パターン認識).ppt
パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を
第6章 確率的利用者均衡モデル
第 6 章確率的利用者均衡モデル 6.1 確率的配分モデル 6.2 エントロピーモデルとロジットモデル 6.3 確率的利用者均衡配分とその定式化 6.4 確率的利用者均衡配分と等価な最適化問題 6.5 リンク間に相互干渉がある場合の確率的利用者均衡配分 福田研究室修士 1 年平林新 はじめに 2 5 章 : 確定的利用者均衡 (UE: User Equilibrium) すべての利用者がネットワーク状況について完全な情報をもち
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
Microsoft PowerPoint - 14回パラメータ推定配布用.pptx
パラメータ推定の理論と実践 BEhavior Study for Transportation Graduate school, Univ. of Yamanashi 山梨大学佐々木邦明 最尤推定法 点推定量を求める最もポピュラーな方法 L n x n i1 f x i 右上の式を θ の関数とみなしたものが尤度関数 データ (a,b) が得られたとき, 全体の平均がいくつとするのがよいか 平均がいくつだったら
SAP11_03
第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎
PowerPoint プレゼンテーション
20150528 信号処理システム特論 本日の内容 適応フィルタ ( 時間領域 ) 適応アルゴリズム (LMS,NLMS,RLS) 適応フィルタの応用例 適応処理 非適応処理 : 状況によらずいつでも同じ処理 適応処理 : 状況に応じた適切な処理 高度な適応処理の例 雑音抑圧, 音響エコーキャンセラ, 騒音制御など 時間領域の適応フィルタ 誤差信号 与えられた手順に従ってフィルタ係数を更新し 自動的に所望の信号を得るフィルタ
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
PowerPoint プレゼンテーション
復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0
ベイズ統計入門
ベイズ統計入門 条件付確率 事象 F が起こったことが既知であるという条件の下で E が起こる確率を条件付確率 (codtoal probablt) という P ( E F ) P ( E F ) P( F ) 定義式を変形すると 確率の乗法公式となる ( E F ) P( F ) P( E F ) P( E) P( F E) P 事象の独立 ある事象の生起する確率が 他のある事象が生起するかどうかによって変化しないとき
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
第6章 実験モード解析
第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法
memo
数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) [email protected].~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
スライド 1
第 13 章系列データ 2015/9/20 夏合宿 PRML 輪読ゼミ B4 三木真理子 目次 2 1. 系列データと状態空間モデル 2. 隠れマルコフモデル 2.1 定式化とその性質 2.2 最尤推定法 2.3 潜在変数の系列を知るには 3. 線形動的システム この章の目標 : 系列データを扱う際に有効な状態空間モデルのうち 代表的な 2 例である隠れマルコフモデルと線形動的システムの性質を知り
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft Word doc
. 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,
Excelを用いた行列演算
を用いた行列演算 ( 統計専門課程国民 県民経済計算の受講に向けて ) 総務省統計研究研修所 この教材の内容について計量経済学における多くの経済モデルは連立方程式を用いて記述されています この教材は こうした科目の演習においてそうした連立方程式の計算をExcelで行う際の技能を補足するものです 冒頭 そもそもどういう場面で連立方程式が登場するのかについて概括的に触れ なぜ この教材で連立方程式の解法について事前に学んでおく必要があるのか理解していただこうと思います
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
umeda_1118web(2).pptx
選択的ノード破壊による ネットワーク分断に耐性のある 最適ネットワーク設計 関西学院大学理工学部情報科学科 松井知美 巳波弘佳 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 0 / 20 現実のネットワーク 現実世界のネットワークの分析技術の進展! ネットワークのデータ収集の効率化 高速化! 膨大な量のデータを解析できる コンピュータ能力の向上! インターネット! WWWハイパーリンク構造
Microsoft Word - thesis.doc
剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
Learning Bayesian Network from data 本論文はデータから大規模なベイジアン ネットワークを構築する TPDA(Three Phase Dependency Analysis) のアルゴリズムを記述 2002 年の発表だが 現在も大規模用 BN モデルのベンチマークと
@mabo0725 2015 年 05 月 29 日 Learning Bayesian Network from data 本論文はデータから大規模なベイジアン ネットワークを構築する TPDA(Three Phase Dependency Analysis) のアルゴリズムを記述 2002 年の発表だが 現在も大規模用 BN モデルのベンチマークとして使用されている TPDA は BN Power
<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074>
市街化区域外の地価推定に関する研究 不動産 空間計量研究室 筑波大学第三学群社会工学類都市計画主専攻宮下将尚筑波大学大学院システム情報工学研究科社会システム工学専攻高野哲司 背景 日本の国土の区域区分 都市計画区域 市街化区域 市街化を促進する区域 市街化調整区域 市街化を抑制する区域 非線引都市計画区域 上記に属さない区域 非線引き市街化調整区域市街化区域 都市計画区域 本研究での対象区域 都市計画区域外
OpRisk VaR3.2 Presentation
オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション
交通ミクロシミュレーションを用いた長岡まつり花火大会の交通渋滞緩和施策評価 環境システム工学課程 4 年 都市交通研究室杉本有基 指導教員佐野可寸志 1. 研究背景と目的長岡まつり大花火大会は長岡市の夏の最大イベントである 長岡まつり大花火大会は 昭和 20 年 8 月 1 日の長
交通ミクロシミュレーションを用いた長岡まつり花火大会の交通渋滞緩和施策評価 環境システム工学課程 4 年 10333288 都市交通研究室杉本有基 指導教員佐野可寸志 1. 研究背景と目的長岡まつり大花火大会は長岡市の夏の最大イベントである 長岡まつり大花火大会は 昭和 20 年 8 月 1 日の長岡空襲からの復興を意義ある日とするために毎年 8 月 2 日 3 日に開催されるようになり, 現在では
untitled
に, 月次モデルの場合でも四半期モデルの場合でも, シミュレーション期間とは無関係に一様に RMSPE を最小にするバンドの設定法は存在しないということである 第 2 は, 表で与えた 2 つの期間及びすべての内生変数を見渡して, 全般的にパフォーマンスのよいバンドの設定法は, 最適固定バンドと最適可変バンドのうちの M 2, Q2 である いずれにしても, 以上述べた 3 つのバンド設定法は若干便宜的なものと言わざるを得ない
Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]
S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法
情報システム評価学 ー整数計画法ー
情報システム評価学 ー整数計画法ー 第 1 回目 : 整数計画法とは? 塩浦昭義東北大学大学院情報科学研究科准教授 この講義について 授業の HP: http://www.dais.is.tohoku.ac.jp/~shioura/teaching/dais08/ 授業に関する連絡, および講義資料等はこちらを参照 教員への連絡先 : shioura (AT) dais.is.tohoku.ac.jp
RP/SPモデル推定のための SP調査の最適設計
行動モデルの応用 : サンプル数が小さい時 名古屋大学山本俊行 2016/09/24 第 15回行動モデル夏の学校 1 ビッグデータの時代にサンプル数が小さい?? 個人間の異質性を突き詰めていくと個人毎のモデル推定 現時点で需要の小さい選択肢こそ需要予測が求められる 2016/09/24 第 15回行動モデル夏の学校 2 離散選択モデルにおける 個人間異質性の表現 定数項を社会経済特性の関数にする
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
経路選択モデルの動向
経路選択モデルの動向 東京工業大学 福田大輔 [email protected] 経路選択モデルを巡る 最近の実務的話題 首都圏都市鉄道需要予測 ( 交通政策審議会 ) 目標年次 2030 年とした検討 ( ポスト 18 号答申 ) が本格化 特に, 空港アクセス線評価, ならびに, 未着手の A1/A2 路線の評価が課題 需要予測勉強会 ( 岩倉 加藤先生 福田, 社会システム
Microsoft PowerPoint - H22制御工学I-10回.ppt
制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
PowerPoint プレゼンテーション
非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
PowerPoint プレゼンテーション
担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング
不偏推定量
不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
PowerPoint プレゼンテーション
1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定
Microsoft PowerPoint - ch04j
Ch.4 重回帰分析 : 推論 重回帰分析 y = 0 + 1 x 1 + 2 x 2 +... + k x k + u 2. 推論 1. OLS 推定量の標本分布 2. 1 係数の仮説検定 : t 検定 3. 信頼区間 4. 係数の線形結合への仮説検定 5. 複数線形制約の検定 : F 検定 6. 回帰結果の報告 入門計量経済学 1 入門計量経済学 2 OLS 推定量の標本分布について OLS 推定量は確率変数
Microsoft PowerPoint - ICS修士論文発表会資料.ppt
2011 年 9 月 28 日 ICS 修士論文発表会 我が国の年齢階級別 リスク資産保有比率に関する研究 2011 年 3 月修了生元利大輔 研究の動機 我が国では, 若年層のリスク資産保有比率が低いと言われている. 一方,FP の一般的なアドバイスでは, 若年層ほどリスクを積極的にとり, 株式等へ投資すべきと言われている. 高齢層は本来リスク資産の保有を少なくすべきかを考察したい. Sep 28,
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
リスク分析・シミュレーション
はじめての Crystal Ball 操作マニュアル編 株式会社構造計画研究所 164-0012 東京都中野区中央 4-5-3 TEL:03-5342-1090 Copyright 2012 KOZO KEIKAKU ENGINEERING Inc. All Rights Reserved. はじめに 本マニュアルは 初めて Crystal Ball を操作する方向けに作成された入門マニュアルです
0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい
基礎理論(2) 不確実性下の意思決定・保険の役割
基礎理論 (2) 不確実性下の意思決定 保険の役割 公共政策論 II No.2 麻生良文 内容 不確実性下の意思決定 状態空間モデル 期待効用理論 リスクに対する態度 危険 ( リスク ) 回避的, 危険中立的, 危険愛好的 リスク プレミアム 危険回避度 保険の原理 リスク分散との違い 不確実性下の意思決定 不確実性 実現する状態が事前にはわからない ---------------------------------------------
2-2 需要予測モデルの全体構造交通需要予測の方法としては,1950 年代より四段階推定法が開発され, 広く実務的に適用されてきた 四段階推定法とは, 以下の4つの手順によって交通需要を予測する方法である 四段階推定法将来人口を出発点に, 1 発生集中交通量 ( 交通が, どこで発生し, どこへ集中
資料 2 2 需要予測 2-1 需要予測モデルの構築地下鉄などの将来の交通需要の見通しを検討するに当たっては パーソントリップ調査をベースとした交通需要予測手法が一般的に行われている その代表的なものとしては 国土交通省では 近畿圏における望ましい交通のあり方について ( 近畿地方交通審議会答申第 8 号 ) ( 以下 8 号答申 と略す ) などにおいて 交通需要予測手法についても検討が行われ これを用いて提案路線の検討が行われている
1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動
/ 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る
Microsoft PowerPoint - 6.PID制御.pptx
プロセス制御工学 6.PID 制御 京都大学 加納学 Division of Process Control & Process Systems Engineering Department of Chemical Engineering, Kyoto University [email protected] http://www-pse.cheme.kyoto-u.ac.jp/~kano/
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
U U U car Vcar car bus Vbus bus rail Vrail bus 多項ロジットモデル ε~iidガンベル 2 独立で (Independently) 同一 (Identically) の分散を持つ 0 分布 (Distributed) 0 Cov(U)
ral ral 多項ロジットモデル ε~iidガンベル 独立で (Iply) 同一 (Ially) の分散を持つ 分布 (Dsrbu) Cov() 6 愛媛大学倉内慎也 [email protected] u.a.jp.5.5..35.3.5..5..5 f(ε) ε -3 -.5 - -.5 - -.5.5.5.5 3 3.5.5 5 図. 正規分布とガンベル分布の確率密度関数 f xp xp xp F ε xp
多次元レーザー分光で探る凝縮分子系の超高速動力学
波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 [email protected] ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =
1.民営化
参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方
