4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2
|
|
|
- れれ すえたけ
- 7 years ago
- Views:
Transcription
1 4 段階推定法 羽藤研 4 芝原貴史 1
2 4 段階推定法とは 予測に使うモデルの紹介 4 段階推定法の課題 2
3 4 段階推定法とは 交通需要予測の実用的な予測手法 1950 年代のアメリカで開発 シカゴで高速道路の需要予測に利用 日本では 1967 年の広島都市圏での適用が初 その後 1968 年の東京都市圏など 人口 30 万人以上の 56 都市圏に適用 3
4 ゾーニング ゾーニングとネットワークゾーン間のトリップはゾーン内の中心点 ( セントロイド ) 間のトリップとして表現する ゾーン中心と実際のネットワークは仮想リンクで結ばれるとする C D E ゾーン セントロイド F ノード リンク 仮想リンク 4
5 4 段階推定法とは 生成交通量の予測 発生 集中交通量の予測 分布交通量の予測 4 段階推定法 分担交通量の予測 配分交通量の予測 生成交通量の予測は 発生 集中交通量の総量制約として考 え 4 段階とする 5
6 4 段階推定法とは 生成交通量の予測 セントロイド C 60 発生 集中交通量の予測 生成交通量 :200 : 発生交通量 分布交通量の予測 : 集中交通量 分担交通量の予測配分交通量の予測 分布交通量 ゾーン C 発生 C 集中
7 4 段階推定法とは 生成交通量の予測 発生 集中交通量の予測 電車 :10 分布交通量の予測 分担交通量 車 :15 分担交通量の予測 車経路 1:4 配分交通量の予測 経路 2:6 経路 3:5 配分交通量 7
8 4 段階推定法とは 調査圏域の設定 ゾーニング 計画データ 都市活動 交通施設 発生 集中モデル 発生 集中交通量 推定 幹線交通網 道路網 公共交通網 分布モデル OD 表 ( 分布交通量 ) 交通調査 現在 OD 表 交通手段分担モデル フィードバック 交通手段別 OD 表 配分モデル 施設利用量 8
9 発生 集中モデル 原単位法 人口 1 人当たり または床面積 1m 当たりの原単位 ゾーン別将来人口 将来面積に乗じて推定 C 回帰モデル法 G i = S ki α gk j = S kj α ak k k 発生交通量 集中交通量 需要関数を求め推定 G i j S kj α gk α ak : 将来の発生交通量 : 将来の集中交通量 : ゾーン別用途別床面積 : 用途別床面積当たり原単位 G i = β 0 + m β m X mi j = γ 0 + m γ m X mj β γ X mi : 回帰モデルのパラメータ : 人口指標等 ( 様々 ) 適合度の高いモデルが得られることが多いので 一般的には回帰モデル 法が用いられる 9
10 分布モデル 現在パターン法 現在の交通量の伸び率 将来値の推定 T ij G i : 将来分布交通量 : 発生交通量 t ij g i : 現在分布交通量 : 発生交通量 j : 集中交通量 a j : 集中交通量 平均成長率法 フレーター法 T ij = t ij 1 2 G i g i + j a j T ij = t ij G i g i j a j 1 2 j g i t ij j / a j + i a j t ij G i / g i T を算出しても G や とは一致しない そのため繰り返し計算が必要 伸び率の合理性から フレーター法を用いて計算機を回すことが多い 10
11 分布モデル 繰り返し計算 ( 例 )a b c の 3 ゾーンの場合 ゾーン a b c 発生 現状 t ij g i a j a b T aa T ab T ac T ba T bb T bc G a G b 発生 集中モデルで計算 G i j c 集中 T ca T cb T cc a b c G c T フレーター法で計算 T ij 繰り返し計算 総量制約の更新 j T ij = G i T ij i = j 11
12 分布モデル 重力モデル 将来的な土地利用条件が大きく変化すると予測されるときに持ちいる 分布構造自体をモデル化して推定 代表的なものとして重力モデルがある T ij = kg i α j β f (D ij ) k α β D ij γ f (D ij ) θ : パラメータ : ゾーン間距離 : 距離抵抗を表す関数 距離抵抗を表す関数 f (D ij ) の表し方は以下の3 通りが代表的 γ f (D ij ) = D ij : べき乗型 最も一般的 f (D ij ) = exp( γd ij ) : 指数型 エントロピー型モデル f (D ij ) = D θ ij exp( γd ij ): ターナー型 車の分布モデルで用いる 12
13 交通手段分担モデル 集計ロジットモデル現況のデータ パラメータ推定 ロジットモデルの式を導出 将来の交通条件を代入し 将来の分担率を推定 exp(v P m = m ),(m =1,, M ) M exp(v m ) m=1 V m = k a k X km P m : 交通機関 m の分担率 X km a k : 交通機関 m の時間や費用等の説明要因 : パラメータ パラメータ推定には最尤推定法か 対数変換して最小二乗法を用いる 13
14 交通手段分担モデル 非集計ロジットモデル交通手段を選択した際の効用がランダムに決まると仮定 各個人が選択肢を選ぶ確率を求め 交通手段分担率とする U in = V in +ε in U in V in : 交通手段 i を選ぶときの効用 : 効用の確定項 ε P in = Pr U in U jn in P in : 効用の誤差項 : 各個人が交通手段 i を選ぶ確率 誤差項の分布を決めることでモデル形が決まる 正規分布 プロビットモデル ガンベル分布 ロジットモデル ( 参考 ) 多肢選択ロジットモデル (MNL) P i = exp(v i ) exp(v i ) j x 14
15 交通手段分担モデル 集計ロジットモデルと非集計ロジットモデルとの比較 サンプル数 被説明変数 説明変数 集計モデル多く必要ゾーンごとの選択比率個々のトリップの値 非集計モデル少なくて良い個人の選択確率ゾーンごとの代表値等 サンプルが少なくて済む モデル推定が比較的容易 個人属性を入れやすい 膨大な調査が必要 サンプルが少なすぎると モデルが不安定になる 15
16 配分モデル 前提として リンクパフォーマンス関数各経路に流れる交通量とその経路の旅行時間の関係を示したグラフ 旅行時間 (t) t 0 交通量 (x) x=0 を各経路のリンクパフォーマンス関数に代入すると 各経路の所 要時間が出る 経路 1:25 分 0 台 経路 2:30 分 0 台 経路 3:35 分 0 台 所要時間の大小と需要に基づいて交通量配分を行う 16
17 配分モデル 配分計算の手法 1. 需要配分最短経路に交通量を 100% 割り当てる 経路 1:45 分経路 2:30 分 200 台 0 台 経路 3:35 分 0 台 2. 実際配分 交通量を n 回に分けて割り当てる 割当段階で各所要時間の大小を比較する 経路 1:40 分経路 2:38 分経路 3:35 分 120 台 80 台 0 台 3. 最適配分 wardrop の第一原則に基いて均衡配分を行う 詳しくは今泉君のスライドで 経路 1:36 分 経路 2:36 分 経路 3:36 分 100 台 100 台 100 台 17
18 4 段階推定法のまとめと課題 まとめ 将来の交通需要を 段階を踏んで推定するプロセス 生成交通量を予測する段階で 将来の人口や経済状況などを利用 生成交通量の予測 発生 集中交通量の予測 分布交通量の予測 それ以降は前のプロセスで得られた 推定結果を元に予測していく 分担交通量の予測 配分交通量の予測 18
19 4 段階推定法のまとめと課題 課題 4ステップ間の理論的一貫性の欠如 回帰モデル 重力モデル 非集計ロジットモデル 利用者均衡配分 誘発交通の見過ごし 交通サービスの改善 交通需要の増加という現象を表現したいときに 交通サービス水準 ( 所要時間 ) 交通量配分モデルから算出 発生 集中交通量の決定 4 段階推定法の流れと異なる 19
20 4 段階推定法のまとめと課題 静的な予測の限界 1 日の中の時間帯による違いを考慮せず 平均的な状況を予測 時々刻々変化する交通流を推定できない 実際の現象と平均状態を表すモデルが乖離 時間帯別の交通量を表現できない 渋滞現象などの動的な交通現象を再現できない 時間帯別道路料金制度 時間帯別交通規制などの効果を予測できない 動的な現象を表す 一体的なモデルへ 20
21 参考文献 土木計画学研究委員会 交通需要予測技術検討省委員会 (2003) 道路交通需要予測の理論と適用 第 Ⅰ 編 利用者均衡配分の適用に向けて 第 4 章 4 段階推定法 土木学会 新谷洋二 (1993) 都市交通計画 技法堂出版 久保田尚 大口敬 高橋勝美 (2010) 読んで学ぶ交通工学 交通計画 理工図書 21
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
交通計画 A Transportation Planning A 3. 交通需要予測手法 (1) 4 段階推定法とは? 交通発生 集中, 分布 トリップの実態調査 パーソントリップ (PT) 調査 人々がどのような目的で, どこからどこへ, どのような時間帯に, どのような交通手段を利用して移動して
交通画 A Trasportato Plag A. 交通需要予測手法 ( 4 段階推定法とは? 交通発生 集中, 分布 トリップの実態調査 パーソントリップ (PT 調査 人々がどのような目的で, どこからどこへ, どのような時間帯に, どのような交通手段を利用して移動しているかをアンケート形式で調査する. 居住者を無作為に抽出し, 調査員が訪問して, 調査票を配布, 後日記入済みの調査票を回収する
2014 BinN 論文セミナーについて
2014 BinN 論文セミナーについて 内容 論文ゼミは,BinN で毎年行なっているゼミの 1 つで, 昨年度から外部に公開してやっています. 毎週 2 人のひとが, 各自論文 ( 基本英語 ) を読んでその内容をまとめ, 発表 議論するものです. 単に論文を理解するだけでなく, 先生方を交えてどのように応用可能か, 自分の研究にどう生かせそうかなどを議論できる場となっています. 論文ゼミ 基本事項
PowerPoint プレゼンテーション
第 6 回基礎ゼミ資料 Practice NL&MXL from R 平成 30 年 5 月 18 日 ( 金 ) 朝倉研究室修士 1 年小池卓武 使用データ 1 ~ 横浜プローブパーソンデータ ~ 主なデータの中身 トリップ ID 目的 出発, 到着時刻 総所要時間 移動距離 交通機関別の時間, 距離 アクセス, イグレス時間, 距離 費用 代表交通手段 代替手段生成可否 性別, 年齢等の個人属性
2-2 需要予測モデルの全体構造交通需要予測の方法としては,1950 年代より四段階推定法が開発され, 広く実務的に適用されてきた 四段階推定法とは, 以下の4つの手順によって交通需要を予測する方法である 四段階推定法将来人口を出発点に, 1 発生集中交通量 ( 交通が, どこで発生し, どこへ集中
資料 2 2 需要予測 2-1 需要予測モデルの構築地下鉄などの将来の交通需要の見通しを検討するに当たっては パーソントリップ調査をベースとした交通需要予測手法が一般的に行われている その代表的なものとしては 国土交通省では 近畿圏における望ましい交通のあり方について ( 近畿地方交通審議会答申第 8 号 ) ( 以下 8 号答申 と略す ) などにおいて 交通需要予測手法についても検討が行われ これを用いて提案路線の検討が行われている
第6章 確率的利用者均衡モデル
第 6 章確率的利用者均衡モデル 6.1 確率的配分モデル 6.2 エントロピーモデルとロジットモデル 6.3 確率的利用者均衡配分とその定式化 6.4 確率的利用者均衡配分と等価な最適化問題 6.5 リンク間に相互干渉がある場合の確率的利用者均衡配分 福田研究室修士 1 年平林新 はじめに 2 5 章 : 確定的利用者均衡 (UE: User Equilibrium) すべての利用者がネットワーク状況について完全な情報をもち
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
NITAS の基本機能 1. 経路探索条件の設定 (1) 交通モードの設定 交通モードの設定 とは どのような交通手段のネットワークを用いて経路探索を行うかを設定するものです NITASの交通モードは 大きく 人流 ( 旅客移動 ) 物流( 貨物移動 ) に分かれ それぞれのネットワークを用いた経路
NITAS の基本機能 1. 経路探索条件の設定 (1) 交通モードの設定 交通モードの設定 とは どのような交通手段のネットワークを用いて経路探索を行うかを設定するものです NITASの交通モードは 大きく 人流 ( 旅客移動 ) 物流( 貨物移動 ) に分かれ それぞれのネットワークを用いた経路探索を行うことができます また 道路 + 船モード 鉄道 + 航空モード 道路 + 鉄道モード では
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
Microsoft PowerPoint - S11_1 2010Econometrics [互換モード]
S11_1 計量経済学 一般化古典的回帰モデル -3 1 図 7-3 不均一分散の検定と想定の誤り 想定の誤りと不均一分散均一分散を棄却 3つの可能性 1. 不均一分散がある. 不均一分散はないがモデルの想定に誤り 3. 両者が同時に起きている 想定に誤り不均一分散を 検出 したら散布図に戻り関数形の想定や説明変数の選択を再検討 残差 残差 Y 真の関係 e e 線形回帰 X X 1 実行可能な一般化最小二乗法
Microsoft PowerPoint - mp13-07.pptx
数理計画法 ( 数理最適化 ) 第 7 回 ネットワーク最適化 最大流問題と増加路アルゴリズム 担当 : 塩浦昭義 ( 情報科学研究科准教授 ) [email protected] ネットワーク最適化問題 ( 無向, 有向 ) グラフ 頂点 (verex, 接点, 点 ) が枝 (edge, 辺, 線 ) で結ばれたもの ネットワーク 頂点や枝に数値データ ( 距離, コストなど ) が付加されたもの
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
all.dvi
38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
koji07-01.dvi
2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推
7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
<4D F736F F F696E74202D E738A5889BB8BE688E68A4F82CC926E89BF908492E882C98AD682B782E98CA48B862E707074>
市街化区域外の地価推定に関する研究 不動産 空間計量研究室 筑波大学第三学群社会工学類都市計画主専攻宮下将尚筑波大学大学院システム情報工学研究科社会システム工学専攻高野哲司 背景 日本の国土の区域区分 都市計画区域 市街化区域 市街化を促進する区域 市街化調整区域 市街化を抑制する区域 非線引都市計画区域 上記に属さない区域 非線引き市街化調整区域市街化区域 都市計画区域 本研究での対象区域 都市計画区域外
Microsoft PowerPoint - 14回パラメータ推定配布用.pptx
パラメータ推定の理論と実践 BEhavior Study for Transportation Graduate school, Univ. of Yamanashi 山梨大学佐々木邦明 最尤推定法 点推定量を求める最もポピュラーな方法 L n x n i1 f x i 右上の式を θ の関数とみなしたものが尤度関数 データ (a,b) が得られたとき, 全体の平均がいくつとするのがよいか 平均がいくつだったら
Microsoft Word doc
. 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
SAP11_03
第 3 回 音声音響信号処理 ( 線形予測分析と自己回帰モデル ) 亀岡弘和 東京大学大学院情報理工学系研究科日本電信電話株式会社 NTT コミュニケーション科学基礎研究所 講義内容 ( キーワード ) 信号処理 符号化 標準化の実用システム例の紹介情報通信の基本 ( 誤り検出 訂正符号 変調 IP) 符号化技術の基本 ( 量子化 予測 変換 圧縮 ) 音声分析 合成 認識 強調 音楽信号処理統計的信号処理の基礎
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
ミクロ経済学Ⅰ
労働需要 労働力を雇う側の意思決定 労働力を雇うのは企業と仮定 企業は利潤を最大化する 利潤最大化する企業は どのように労働力を需要するか? まず 一定の生産量を生産する際の 費用最小化問題から考察する 企業の費用最小化 複数の生産要素を用いて生産活動を行なう企業を想定 min C( w, r; y) = wl + rk LK, subject to FKL (, ) y Cwr (, ; y) 費用関数
分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の
JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A
NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
) 9 81
4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2
0 部分的最小二乗回帰 Partial Least Squares Regression PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 部分的最小二乗回帰 Parial Leas Squares Regressio PLS 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 部分的最小二乗回帰 (PLS) とは? 部分的最小二乗回帰 (Parial Leas Squares Regressio, PLS) 線形の回帰分析手法の つ 説明変数 ( 記述 ) の数がサンプルの数より多くても計算可能 回帰式を作るときにノイズの影響を受けにくい
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu
集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
Microsoft PowerPoint - R-stat-intro_12.ppt [互換モード]
R で統計解析入門 (12) 生存時間解析 中篇 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv /fkh /d 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. 2 の場所に移動し, データを読み込む 4. データ
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
交通ミクロシミュレーションを用いた長岡まつり花火大会の交通渋滞緩和施策評価 環境システム工学課程 4 年 都市交通研究室杉本有基 指導教員佐野可寸志 1. 研究背景と目的長岡まつり大花火大会は長岡市の夏の最大イベントである 長岡まつり大花火大会は 昭和 20 年 8 月 1 日の長
交通ミクロシミュレーションを用いた長岡まつり花火大会の交通渋滞緩和施策評価 環境システム工学課程 4 年 10333288 都市交通研究室杉本有基 指導教員佐野可寸志 1. 研究背景と目的長岡まつり大花火大会は長岡市の夏の最大イベントである 長岡まつり大花火大会は 昭和 20 年 8 月 1 日の長岡空襲からの復興を意義ある日とするために毎年 8 月 2 日 3 日に開催されるようになり, 現在では
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
Microsoft PowerPoint - S-PLUS_shimada_tsukuba.ppt
2010 年度 S-PLUS 学生研究奨励賞 発表内容 我が国の三大都市圏における 地価分布の推計 筑波大学大学院 システム情報工学研究科博士前期課程 1 年 嶋田章 地価の分布をみる意義 地価は都市構造を反映 地形, 人口, 交通網など様々な要素と関係 都市にまつわる研究では古くから注目されている指標 地價は都市の言語である 石川栄耀 (1931) 地価の面的な分布は都市構造の把握や政策立案の資料になりうる
