() () () 15%85% ( 10 9 kg m 3 ) (10 21 kg m 3 ) C C C C... () Instroduction : 15 2



Similar documents
24.15章.微分方程式

untitled

A A. ω ν = ω/π E = hω. E

A9RF112.tmp.pdf

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


( ) ,


Report10.dvi

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

QMI_10.dvi

pdf

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

Gmech08.dvi

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

untitled

2 p T, Q

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a πk 1 ɛ 0 ɛ 0 (perm

: =, >, < π dθ = dφ = K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

30

03J_sources.key

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

hirameki_09.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

総研大恒星進化概要.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

example2_time.eps

B

CAT. No. 1154b 2008 C-9

The Physics of Atmospheres CAPTER :

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

数学の基礎訓練I

i I

I ( ) 2019

C:/KENAR/0p1.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

I

C: PC H19 A5 2.BUN Ohm s law

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

BH BH BH BH Typeset by FoilTEX 2

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

Part. 4. () 4.. () Part ,

2011de.dvi

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

IA

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

I 1

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

genron-3

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Note.tex 2008/09/19( )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

i

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Microsoft Word - 章末問題

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

基礎地学I.ppt

4 1 Ampère 4 2 Ampere 31

PDF

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4



Part () () Γ Part ,

ii

Untitled


空き容量一覧表(154kV以上)


2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

36 th IChO : - 3 ( ) , G O O D L U C K final 1

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

( )

基礎数学I

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

b3e2003.dvi

Transcription:

email: shibata@sci.kj.yamagata-u.ac.jp URL: http://astr-www.kj.yamagata-u.ac.jp 27 9 29 / Introduction() () () / 1

() () () 15%85% ( 10 9 kg m 3 ) (10 21 kg m 3 ) C C C C... () http://astr-www.kj.yamagata-u.ac.jp/~shibata/ Instroduction : 15 2

(A4 2 )(100 ) 30 3

1 1.1 : km 4m 4m (1 AU ) 1 5000 km (tab1) AU 1/107 0.4 0.7 1.0 1.5 5.2 9.6 19.2 30.1 10000 αcen 2.7 10 5 (4.3 ) 30 km 1 1? π 10 7 sec 3.15 10 7 sec 4

1 1 2πR /4 = 1 km (1) 1AU () = 1 5 km (2) 1ly () = c 1 (3) = 9.46 10 15 m (4) 1pc () = 3.26ly (5) 1 100 1/100 1/100 100 1 2 4m 4 km (1) cm (2) cm (3) cm () 5

3 1. (1AU) 2. 3. () 100bun 6

1.2 () ( = ) ( = ) 4 () kouseiq (kouseiq) 2000 7

137 138 1.3 () 10m 10km 100km 1000km 10000km 8

5 10 m 120km 6.4 10 3 km 6.96 10 8 m 1.5 10 11 m αcen 4.3 ly 30pc 8.5kpc 50kpc 6.7 10 2 kpc 6647km/s 150 9

() 1 km = 1000 m = 10 3 m 1 cm = 1 100 = 10 2 m 1 AU = 1.496 10 11 m ( ) 1 pc = 3.086 10 16 m = 1 AU / 1 =3.26 ly 1 ly = 9.46 10 15 m = tera T = 10 12 giga G = 10 9 mega M = 10 6 kilo k = 10 3 hecto h = 10 2 deca da = 10 deci d = 10 1 centi c = 10 2 milli m = 10 3 micro µ = 10 6 nano n = 10 9 pico p = 10 12 : = π = 3.1416 : 1 = 60 = 3600 1 =1 1 = 1 : l = rθ () : = 365.26 days = 3.16 10 7 s : = c = 3.00 10 8 m/s : = 100 50 (km/s)/mpc x log x 1.00 0.00000 2.00 0.30103 3.00 0.47712 4.00 0.60206 5.00 0.69897 6.00 0.77815 7.00 0.84510 8.00 0.90309 9.00 0.95424 10.00 1.00000 x = 10 a x a log x = 10 a a = log x. (6) 10

1.4 () v = H 0 d (7) v d H 0 71(km/sec)/(Mpc) (hubble/p.tex)! 11

Mpc km /s 0.032 170 0.034 290 NGC 6822 0.214 130 NGC 598 0.263 70 NGC 221 0.275 185 NGC 224 0.275 220 NGC 5457 0.45 200 NGC 4736 0.5 290 NGC 5194 0.5 270 NGC 4449 0.63 200 NGC 4214 0.8 300 NGC 3031 0.9 30 Mpc km /s NGC 3627 0.9 650 NGC 4826 0.9 150 NGC 5236 0.9 500 NGC 1068 1.0 920 NGC 5055 1.1 450 NGC 7331 1.1 500 NGC 4258 1.4 500 NGC 4151 1.7 960 NGC 4382 2.0 500 NGC 4472 2.0 850 NGC 4486 2.0 800 NGC 4649 2.0 1090 (Proc. Nat. Acad. Sci., 15, 168) [4] 12

1000 km/sec 0 300 1 2 Mpc () 13

1.5 ( )1/2 = θ = l D (8) l:d: 6 1 radian arcmin 1. : 1.74 10 6 m 3.84 10 8 m 2. : 7.0 10 5 km 1.5 10 8 km 3. : 25 ly 1.3 10 3 ly 4. M13: 98 ly 2.2 10 4 ly 5. M31: 50 kpc 6.7 10 2 kpc 6. : 1 Mpc 6647 km/sec () 1.6 (parallax) 1 / 14

0 ( annual parallax) (arc sec) p D = 1 p pc (9) 1.7 file = LandF.tex ( [Watt/m 2 ] [erg/sec cm 2 ]) (Flux) ( [W] [erg/sec]) (luminosity) F L F = D L 4πD 2 (10) 7 L = 4 10 26 W (flux) () 2mm 15

() LandF-Q f = L/4πD 2 4 10 26 W 4π(1.5 10 11 ) 2 m 2 = 1.4 103 W/m 2 πr 2 r = 1 10 3 4.4 10 3 W 1.8 file = scale.tex () () (magnitute) b = 10 a a = log b (11)..., 1/10, 1, 10, 100, 1000......, 1, 0, 1, 2, 3,... (12) : 2 1/12 = 1.05946... f/f 0 2 0/12 1.00000 Do 1 2 1/12 1.05946 2 2/12 1.12246 Re 9/8 = 1.125 2 3/12 1.18921 2 4/12 1.25992 Mi 5/4 = 1.25 2 5/12 1.33484 Fa 4/3 = 1.333 2 6/12 1.41421 2 7/12 1.49831 Sol 3/2 = 1.5 2 8/12 1.58740 2 9/12 1.68179 La 5/3 = 1.667 2 10/12 1.78180 2 11/12 1.88775 Si 15/8 = 1.875 2 12/12 2.00000 Do 16

= n = 12 log 2 f f 0 (13) f f 0 = 2 n/12 (14) M = 2 3 log 10 E 11.8 (15) f[hz] (Do, Re, Mi,..) () F [W/m 2 ] m 6 () 5 100 (magnitude) = m 1 m 0 = 5 2 log 10 F 1 F 0 = 10 2 5 (m 1 m 0 ) F 1 F 0 = 5 2 log 10 () (16) (17) Linear Scale Log Scale () 0 () F ν F ν = 3.6 10 26 [W/m 2 Hz] (AB ) 8?? 17

() scale 9 f do f re f mi f fa f sol f la f si f DO (1) f sol f do > f DO f sol (2) f sol f do f DO f sol (1) f sol f do < f DO f sol () doremi 1.9 file = mag.tex 10pc () () L (luminosity) Joul/sec = W M (absolute magnitude) 10pc () f (flux) Joul/m 2 sec m (apparent magnitude) 4.7 m M m M = 5 log D(in pc ) 5 (18) 18

L = 4πD 2 f (19) = 4π10 2 f 10pc (20) (21) f f 10pc = L/4πD2 L/4π10 2 = 102 D 2 (22) ( ) f log 10 f 10pc = 2 log 10 D + 2 (23) (24) ( ) 5 2 log f = m M (25) f 10pc (23) (25) (M m) 2 5 = 2 log 10 D + 2 (26) M m = 5 log 10 D + 5 (27) M L ( ) 26.74 L M M = 4.74 5 ( ) L 2 log (28) L L = 3.85 10 26 W = 3.85 10 33 erg/sec (Bolometric magnitude, Bolometric luminosity) ( ) () ( CCD) () bolometric () (18) 19

(Type I SNR) () M snr (m snr ) () (magniq)? (α CMa) m = 1.5, d = 2.7pc (α Ori) m = 0.8, d = 150pc 20

2 2.1 file = col.tex ( ) (photon) ν( [Hz]) = 1/P ; P ( [sec]) ω = 2πν; λ( [m] or [cm], [nm],...); k = 2π/λ k c = 3.00 10 10 cm/sec () (...) ϵ = hν = hω h 6.626 10 27 erg sec p = hk h = h/2π p = h/λ () cp = c ν = λ (29) x E(x, t) = E 1 sin(ωt kx) (30) B(x, t) = (k E 1 ) sin(ωt kx) (31) 4 k µ (k 0, k 1, k 2, k 3 ) = (ω/c, k x, k y, k z ) (32) 21

1 1 (3Volt) ev = 1.60 10 19 C 1V = 1.60 10 19 J = 1.60 10 12 erg (33) MeV m e c 2 = (1/2)MeV (76.2MHz FM ) 4m X 3eV kev MeV, GeV, TeV,......Hz 1000GHz...m 0.3mm 390 (550) 720nm () () () (colq) λ, ν, hν 390nm () 720nm 22

() Hz, ev 10 x V x ω n = (n x, n y, n z ) k (k x, k y, k z ) = (kn x, kn y, kn z ) ω (k x, k y, k z) ω, k x, k y, k z ω, k x, k y, k z (Doppler effect) (abberation) () dopplerq 2.2 telsc.tex CCD 2.2.1 2.2.2 () 1 1 () 23

θ θ 1.22 λ D (34) D ( VLBI )VLA(), VSOP () () E/E λ/λ 10msec () F ()O F P F l = P F OF b2 f 2π l/λ OF = f, OP = b O O P Φ(b) b 2π l + Φ(b) = 0 (36) λ F P Q P Q = f 2 + (b + x) 2 (37) OF P Q OF = f { 1 + (35) } 1 2 (b + x)2 f 2 f (38) = b2 f + bx f = l + bx f (39) 24

O F 2π l λ bx bx + Φ(b) + 2π = 2π λf λf b Q a(x) = A(b) P 2πb/λ = Y, x/f = x a(x) = (40) A(b)e (2πbx/λf)i db (41) A(Y )e XY i dy (42) A(b) A(b) δ - A(b) θ XY 1, πd λ x f = θ (43) 11 f 1 f 2 12 () diffrq 25

2.3 :flux Instenisty fi.tex () de da t t + dt ν ν + dν F ν = de dt da dν () flux [erg/sec cm 2 Hz] dω (44) I ν = de dt da dν dω (45) Specific Intensity ( Brightness) [erg/sec cm 2 Hz str ] F ν = I ν cos θdω (46) θ net flux 3 2 = 6 m box (6 ) (3 π/180) (2 π/180) = π 2 /5400str () dθ dφ sin θdφ!) dω = sin θdθdφ (47) 26

: Instensity : 6 (x, y, z, p x, p y, p z ) (snap shot ) dn = f ph (r, p)dxdydzdp x dp y dp z (48) = h 3 f ph c 3 ν2 dνdωdv (49) = f ν (r, θ, φ)dνdωdv (50) (p x, p y, p z ) (p, θ, ϕ) p = hν/c f ν (θ, φ) dω ( ν ν + dν ) da dt : I ν = cf ν hν (51) D R I ν de R dω D 2 de dω D 2 ( ) I ν I ν = (52) ν ν + dν F ν dν, I ν dν, L ν dν, 27

F ν, I ν, L ν ν F = F ν dν, I = I ν dν, L = L ν dν, 13 1. 1m 2 (Instensity) ν ν + dν I ν flux F ν ( πi ν ) 2. flux F ν ( 0) () fluxq 14 30 () I = 0 I ν dν 1.4 10 6 erg/sec cm 2 1.4 kw/m 2 flux F = 0 F ν dν () intensityq 15 F ν [W/m 2 Hz] 1 AU () I ν [W/m 2 Hz str] F ν I ν () telscq 2.4 intf.tex 28

D λ/d D λ/d D D D D 2 D web pages 16 VLA (Rreen Bank, West Virgnia, USA, National Radio Astronomical Observatory). 27km 1cm 10cm () intfa θ = 1.22 λ D () intfq = 1.22 (1 10)cm 2.7 10 6 cm = (0.45 4.5) 10 6 rad = 0.09 0.9arcsec (53) π 180 3600 (arcsec) 2.5 spec.tex : ( ) () 29

E(t) E(t) = Ê(ω) = 1 E(t)e iωt dt (54) 2π flux () F ω = c Ê(ω) 2 flux F = (c/4π) E(t) 2 dt Parseval s theorem E(t) 2 dt = 2π Ê(ω) 2 dω4π 0 Ê(ω) 2 dω (55) F = 0 F ω dω (56) () Dopper effect (Dark matter ) web pages 2.6 () black.tex T T I ν T B ν I ν = B ν (T ) (57) Planck function I ν = 2hν3 /c 2 e hν/kt 1 B ν(t ) (58) 30

planck () hν max 2.82kT (59) B ν ν B λ (T ) = 8πhc λ 5 1 e hc/λkt 1 (60) λ max hc/4.97kt hν kt Raylei-Jeans law hν kt Wean law I ν 2hν3 c 2 I ν 2ν2 kt (61) c2 ( exp hν ) kt (62) hν max 2.82kT F ν = I ν cos θdω = πi ν = πb ν (63) 2π str F = π 0 B ν (T )dν = 2π5 k 4 15c 2 h 3 T 4 σt 4 (64) 0 x 3 π4 e x dx = 1 15 Stefan-Boltzmann law F = σt 4 σ = 2π5 k 4 31 (65) 15c 2 h 3 T 4 = 5.67 10 5 erg/cm 3 deg 4 sec (66)

17 p = u/3 u () T ds = du + pdv ds = V du T dt dt + 4 u dv (67) ( ) 3 T ( ) S S = dt + dv (68) T V 2 S/ T V V u = at 4 Stefan-Boltzmann law (69) V U T () StefanQ (StefanQ: ) du = d(v u) = V du + udv p = u/3 ( T ( ( ) S V T ( ) ) S V T V T ds = V du + 4 udv (70) 3 V ) T = T = ( ) V du V T dt ( ) 4 u = 4 3 T 3 T du dt = 1 T T ( 1 T 2 u + 1 T ) du dt (71) (72) 4dT/T = du/u ln T 4 = ln u + const., or u = at 4 (73) 18 ν advance () blackq 2.7 efftemp.tex 32

() F F obs R D ( ) 2 D F = F obs (74) R σt 4 (75) F DR L = 4πR 2 F 4πR 2 σt 4 (76) (effective temperature) T eff LRT; L = 4πR 2 σt 4 eff (77) T eff () F U,B,V,R,I () m 2 m 1 = 5 2 log ( Bλ1 B λ1 B λ1 = λ5 2 e hc/λ2kt 1 B λ1 λ 5 1 e hc/λ 1kT 1 ) 5 2 log λ5 2 λ 5 + hc ( 1 1 ) = a + b 1 kt λ 2 λ 1 T (78) (79) a,b 2.8 HR HRzu.tex 33

O A... O B A F G S K M R N (Russell s students in Princeton O Be A Fine Girl Kiss Me Right Now, Smack!) () HR (Hertzsprung-Russel Diagram) HR (77) HR = () HR HR HR HR HR 19 L T R 34

() efftempq 20 HR () HRzuQ 21 HR () HR2Q (HR2Q: ) HR ( ) ( ) T F = σt 4 σ R L = 4πR 2 σt 4 HR 22 (α CMa) m = 1.5 2.7pc M (α Ori) m = 0.8 150pc M () startypeq (startypeq: ) M = m 5 log D + 5 m pc D M = 1.5 5 log(2.7) + 5 = 1.3 (or 1.4) (80) log 2.7 0.301 + (0.477 0.301) 0.7 = 0.38 1.4() (81) log 2.7 = log 3 + log 9 1 = 0.431() (82) 35

M = 0.8 5 log(150) + 5 = 5.1 (83) log 150 = log 1.5 + 2 0.301 0.5 + 2 2.15() (84) log 150 = log 3 + log 5 + 1 = 2.176() (85) 10pc 15 10pc 15 2 = 225 100 5 2.5 1 6 0.8 6 = 5.2 10pc 1/3.7 3.7 2 = 14 2.5 2.5 2.5 = 15.6 3 1.5 + 3 = 1.5 4.7 L L = 4πσR 2 T 4 (86) (1) A 1 (10000/6000) 4 = 7.7 (5/2) log 7.7 = 2.2 3 (2) M 3000 10 1 100 ( ) 400 HR 1500 100 36

(M core > M ch ) (He ) (RGB) () L M 3.5 He 2 3α CO (AGB:Asymptotoic Giant Branch) CO < 8M 10M CO H He CO 56 Fe () H,Si,(O,Ne,Mg),(C,O),He,H 1.3 2M () 56 Fe 13 4 He + 4n 124.4MeV (87) 4 He 2p + 2n 28.3MeV (88) 161MeV 0.1 37

1: (10 8 K) (20M ) H pp CNO 4 He 0.15-0.2 1 3 4 He 12 C He 12 C + 12 C 1 6O + γ 14 C 16 O 1.5 C 12 C + 12 C 23 Na + p 12 C + 12 C 20 Ne + α Ne, Na Mg, Al 7 100 Ne 20 Ne + γ 16 O + α 20 Ne + α 24 Mg + γ O Mg 15 O 16 O + 16 O 28 Si + α 16 O + 16 O 28 P + p Si, P, S Cl, Ar, Ca 3 28 Si + γ 24 Mg + α Si 24 Mg + γ 23 Na + p 24 Mg + γ 20 Ne + α Cr, Mn Ge, Co, Ni, Cu 40 M /m F e = 2 10 55 1.2 10 52 erg GM /R 2 NR = 3 10 53 erg R NS 10km 2.9 radtransfer.tex Intensity I ν I ν = B ν (T ) T 6000K I ν = B ν (T room ) T room 300K 38

(absorption) (emission) (radiation)( ) () ( ) Radiation emission [] ν σ ν n dl κ ν = nσ ν dl [] (emission coefficient) j [erg/cm 3 sec str]: ν ν + dν monochromatic emission coefficient j ν (Intensity)I di ν ds = α νi ν + j ν (89) s (radiation transfer equation) di ν /ds = 0I ν = B ν (T ) j ν /α ν = B ν (T ) T j ν α ν = B ν (T ) (90) Kirchoff s Law L α ν ()( I 0 ) I ν = I 0 e ανl (91) 39

l ν l ν = κ 1 ν τ ν = α ν ds (92) () τ ν 1 τ ν 1 (Source function) S ν = j ν α ν (93) : di ν dτ ν = I ν + S ν (94) I ν > S ν I ν (95) I ν < S ν I ν (96) I ν τ ν I ν S ν, (97) S ν B ν (T ) 23 F ν [W/m 2 Hz] 1 AU () I ν [W/m 2 Hz str] F ν I ν () telscq 2.10 α ν l ν ν E = hν 0 (T 1 ) (T 2 ) 40

ν 0 I ν0 = B ν0 (T 1 ) I ν0 = B ν0 (T 2 ) I ν0 = B ν0 (T 2 ) ν 0 I ν = B ν (T 1 ) I ν I ν0 () = B ν0 (T 2 ) (98) I ν () = B ν (T 1 ) (99) T 1 > T 2 B ν (T 1 ) > B ν0 (T 2 ) (line absorption) ν 0 (line emission) (line absorption) (line emission) 10 6 K 6000K () 6000K 41

3 : : : SN1087A : (): :... 3.1 () crossing time () t cross = R v (100) R v V 250km/s 50kpc t coss 10 8 yr 35 ( ) m 1 m 2 () r F = G m 1m 2 r 2 (101) G = 6.773 10 8 dyn/cm 2 g 2 42

1 : F 1 = F 2 + F 2 + F 3 +... + F n (102) () 24 g :T = 27.3 :R = 3.84 10 8 m g/g g = 9.8m/s 2 2 R (R = 6.37 10 6 ) 2 (R/R ) 2 () 2 inv2q g = R(2π/T ) 2 = 2.72 10 3 m/s g/g = 3.63 10 3 (R/R ) 2 = 3.60 10 3 3.2 Virial () () I 1 2 N m i ri 2 (103) i=2 d 2 I/dt 2 d 2 I = W + 2T (104) dt2 T = 1 2 m ivi 2 = (105) W = G m im j (106) r ij allpairs 43

W + 2T W + 2T = 0 M = m i v 2 = 2T/M (): r g W = GM 2 /r g v 2 = GM r g (107) : 4 25 1. 9.8 m/s 2 2. 3. () newtonjq 26 () () () kyoriq (kyoriq: ) () θ R 0 D = θr 0 44

() ()( ) ( ) () M m ( D [pc] m M = 5 log D 5 ) (): v D v = H d H 71 km/s Mpc v 27 () iroirotelq 28 6000 (K) () suntempq 29 () globq 30 85% (dark matter) () darkmq ( darkmq) () v 2 /R R (dark matter) 45

31 A B (1) A B (2) A (3) B (4) A B (5) () expq 32 () impressq 46

() x log x 1.00 0.00000 2.00 0.30103 3.00 0.47712 4.00 0.60206 5.00 0.69897 6.00 0.77815 7.00 0.84510 8.00 0.90309 9.00 0.95424 10.00 1.00000 x = 10 a x a log x = 10 a a = log x. (108) log(4 10 4 ) log 4 + 4 log 10 = 4.60206 log 6.4 0.4(log 7 log 6) + log 6 = 0.805 log 6.4 = log(64/10) = 2 log 8 1 = 0.80618 π = 3.14159263 G = 6.67 10 8 dyncm3/g 2 c = 3.00 10 10 cm/s h = 1.05 10 27 ergs e = 4.80 10 10 esu m p = 1.67 10 24 g m e = 9.11 10 28 g σ SB = 5.67 10 5 erg/scm 2 K 4 1eV = 1.60 10 12 erg M = 5.97 10 27 cm M = 1.99 10 33 g L = 3.90 10 33 erg/s 1AU = 1.50 10 13 cm 1pc = 3.08 10 18 cm 1ly = 0.946 10 18 cm (109) σ SB Stefan Boltzman const. 47