untitled



Similar documents
On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

[1] SBS [2] SBS Random Forests[3] Random Forests ii

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-


(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

030801調査結果速報版.PDF

untitled

…p…^†[…fiflF”¯ Pattern Recognition

fiš„v3.dvi

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

先端社会研究所紀要 第12号☆/1.巻頭言

わが国企業による資金調達方法の選択問題

fiš„v8.dvi

main.dvi

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

kut-paper-template.dvi

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

カルマンフィルターによるベータ推定( )

21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G


Microsoft PowerPoint - SSII_harada pptx

A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹

25 11M n O(n 2 ) O(n) O(n) O(n)

第5章 偏微分方程式の境界値問題

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x


経済論集 46‐2(よこ)(P)☆/2.三崎

○01 那覇市(7月変更)

2003/9 Vol. J86 D I No. 9 GA GA [8] [10] GA GA GA SGA GA SGA2 SA TS GA C1: C2: C3: 1 C4: C5: 692

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

ばらつき抑制のための確率最適制御

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010

オーストラリア研究紀要 36号(P)☆/3.橋本

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

29 jjencode JavaScript

フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

untitled

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho


(1) (2) (3) (4) (5) 2.1 ( ) 2

Transcription:

K-Means

1 5 2 K-Means 7 2.1 K-Means.............................. 7 2.2 K-Means.......................... 8 2.3................... 9 3 K-Means 11 3.1.................................. 11 3.2.................................. 12 4 13 4.1 K-Means..... 13 4.2 K-Means.. 15 4.3....... 16 5 18 5.1 K-Means................ 18 5.2 LVQ K-Means.. 24 5.3 K-Means..... 28 6 34 7 34 35 35 2

1......... 8 2 3....................... 18 3 K =3 K-Means........... 19 4 K=3,m =2 K-Means...................................... 23 5............................ 23 6 K =3 LVQ..................... 24 7 K=3,m =2 LVQ K-Means...................................... 27 8 LVQ K-Means....................................... 27 9 2................... 28 10 K-Means..................... 29 11 K-Means......... 29 12................. 30 13 Km, (-1.027533,1.208392),(0.784579,-0.534775).... 31 14 Km, (-0.433101,-1.341578),(-0.314275,0.821440).... 31 15 Km, (-1.228715,-1.312461),(-3.800445,-0.485205)... 32 16 Km, (-3.217651,-2.154126),(-0.816030,-0.957352)... 32 17 Km, (2.355734,3.346941),(-3.366276,2.438362)..... 33 18 Km, (0.380646,-4.061833),(-4.050100,-0.687073).... 33 1 K-Means......... 19 2............................ 20 3 m =2 K-Means........... 20 4 m =3 K-Means........... 21 5 {R }, {R (m) } {D (m) }....................... 21 6 {ρ (m) }................................ 21 7 {d( c (m =2),p )}. 22 8 {d(r (m =2),p )}..... 22 9 LVQ................... 25 10 m =2 LVQ..................... 25 11 {R }, {R (m) } {D (m) }....................... 25 12 {ρ (m) }................................ 25 3

13 {d(r (m =2),p )}..... 26 14 Km,Km..................... 30 4

1 2 [1][2][3] K-Means [5][8][9] 1 N ( ) 2 1 N K-Means c- [4][7] K-Means (Learning Vector Quantization:LVQ)[6][11] 2 K-Means LVQ K-Means LVQ K-Means [16][17] 5

K-Means K-Means K-Means K K-Means [13][14] K-Means 2 K-Means LVQ 3 K-Means 4 K-Means LVQ 5 K-Means, K-Means,LVQ 2, K-Means 6,7 6

2 K-Means K-Means K 2 2.1 K-Means n x i =(x i1,...,x id ),i=1,...,n X K X, =1,...,K J = min { c,=1,...,k} i=1 n x i X x i c 2. (1) x i c 2 = D d=1 (x id c d ) 2 c =(c 1,..., c D ) (1) K-Means m (m1) { c (t) } x i x i X (t) α α = arg min x i c (t) 2. (2) (m2) {X (t) } c (t+1) = 1 n (t) x i X (t) x i, =1,...,K. (3) n (t) X(t) c (t+1) X (t) ( +1) ɛ c (t+1) c (t) <ɛ (m1) (m2) { c (t) } { c } (1) R R = { x x c 2 < x c i 2 for all i } (4) 7

if x R, x Class (5) { c } 1: 2.2 K-Means K-Means n X p x X q x X p X q X p X p { x} X q X q { x} c p, c q c p, c q X p N p 1, Xq N q +1 J [1] m (m 1) c (t), =1,...,K (m 2) J x i,i=1,...,n (m 2-1) x i X p N p 1 8

J p = J l = N p N p 1 x i c p 2 N l N l +1 x i c l 2, l p J q J l, for all l x i X p X q c p = c p 1 N p 1 ( x i c p ) c q = c q 1 N q +1 ( x i c q ) N p = N p 1 N q = N q +1 J J = J + J q J p X p Xp = X p { x i } X q Xq = X q { x i } x X p x X q x c p 2 = x c q 2 = x X p x c p 2 x X q x c q 2 N p N p 1 x i c p 2 N q N q +1 x i c q 2 2.3 (LVQ) K-Means t t =1, 2,... x(t) R p (t = 1, 2,...) (VQ) m R p, =1,...,K x(t) x(t) 9

m l m l (t) = arg min x(t) m (t). (6) x(t) m l (t) m l (t +1)=m l (t)+α(t)[x(t) m l (t)]. (7) α(t) α(t) =, α 2 (t) <, t =1, 2,... (8) t=1 t=1 α(t) α(t) = /t x(t) x(t) lvq (lvq1) m, =1,...,K (lvq2) t =1, 2,... (lvq2-1) m l = arg min 1 K x(t) m (t) (9) (lvq2-2) m 1 (t),...,m (t) m l (t +1) = m l (t)+α(t)[x(t) m l (t)] m (t +1) = m (t), l x(t) X l 10

3 K-Means K-Means X {R } { c } R R R R K-Means R R K-Means R 3.1 K-Means K = m (2 m M) R R m {R (m),p,p= 1,...,m}, { c (m),p,p=1,...,m} M 2 3 R D (m=1) R (m),p D (m),p = x i R (m),p = m R (m) x i R x i c 2. (10) x i c (m),p 2,m=2,...,M (11) D (m) = m p=1 D (m),p. (12) R ρ (m) =D (m) /D (m 1),m=2,...,M. (13) ρ (m) R m R m R m 1 R m 11

D (m) D (m 1) ρ (m ) = min {ρ (m), m=2,...,m} (14) m η ρ (m ) <η (15) R m R η η 3.2 R {R (m ),p,p =1,...,m } {R (m ),p } { c (m ),p,p =1,...,m } K-Means R m 1 c (m ),p R d( c (m ),p ) ˆd( c (m ),p ) = max p {d( c(m ),p ),p=1,...,m } (16) R (m ),p R p p R (m ),p d( c (m ),p ) d(r (m ),p ) = min x i R (m ),p, x j R l,l d( x i, x j ) (17) ˆd(R (m ),p ) = max p {d(r(m ),p ),p=1,...,m } (18) R (m ),p R R (m ),p ) d(r (m ),p ρ (m ) <η 12

4 SVM(Support Vector Machine)[15] H Φ :R p H H K( x, y) = Φ( x), Φ( y) H (19) Φ( x) RBF K( x, y) = exp( C x y 2 ) (20) K( x, y) = (1 + x, y ) d (21) 4.1 K-Means K-Means (1) K-Means K J = Φ( x i ) m 2 (22) =1 x i X m X m = x X Φ( x) n. (23) Φ Φ Φ( x i ) m 2 K( x i, x j ) D i = Φ( x i ) m 2 H. (24) (22) K J = D i (25) =1 x i X 13

D i = Φ( x i ) m 2 = Φ( x i ) x j X Φ( x j ), Φ( x i ) n x l X Φ( x l ) n = Φ( x i ), Φ( x i ) 2 Φ( x i ), Φ( x j ) + 1 n n 2 Φ( x j ), Φ( x l ) x j X x j, x l X = K( x i, x i ) 2 K( x i, x j )+ 1 n n 2 K( x j, x l ) x j X x j, x l X (26) Km (Km1) X K y j (j = 1,..., K) x i x i X (t) α α = arg min Φ( x i ) Φ( y j ) 2 = arg min K( x i, x i ) 2K( x i, y j )+K( y j, y j ). (27) (Km2) x i (Km2-1) x i α = arg min Φ( x i ) m 2 (28) (Km2-2) Φ( x i ) m 2 (26) 14

4.2 K-Means 4.1 n (25) Km (Km 1) X K y j (j = 1,..., K) x i (27) (Km 2) x i (Km 2-1) x i α = arg min Φ( x i ) m 2 (Km 2-2) x i (Km 2-2) J = D i (29) x i X J = K J. (30) =1 x i X p Xq X p,x q, m p, m q N p,n q Xp = X p { x i }, Xq = X q { x i }, m p = m q = N p N p 1 Φ( x i) m p 2, N q N q +1 Φ( x i) m q 2. J,J p,j q J,J p,j q J = J 15

= J p + J q + J p,q J p = x X p Φ( x) m p 2 Φ( x i ) m p 2 = Φ( x) m p + Φ( x i) m p 2 N p N x X p 1 N p 1 Φ( x i) m p 2 p = J p N p N p 1 Φ( x i) m p 2 = J p N p N p 1 D ip (31) J q = J q + N q N q +1 D iq. (32) J = J p + J q + p,q J = J p N p N p 1 D ip + J q + N q N q +1 D iq + p,q = J N p N p 1 D ip + N q N q +1 D iq (33) J 4.3 LVQ LVQ m l (t) = arg min Φ( x h ) m (t) (34) m l (t +1) = m l (t)+α(t)[φ( x h ) m l (t)] (35) m m t D i (t) = Φ( x i ) m (t) 2 (36) 16

(34) D il (t) = arg min D i (t) (37) (35) D i (t +1) = Φ( x i ) m (t +1) 2 = Φ( x i ), Φ( x i ) 2 Φ( x i ), m l (t +1) + m l (t +1), m l (t +1) (38) (35) α = α(t) D i (t +1) = Φ( x i ), Φ( x i ) 2{(1 α) Φ( x i ), m l (t) + α Φ( x i ), Φ( x h ) } + {(1 α) 2 m l (t), m l (t) +2α(1 α) Φ( x h ), m l (t) } + α 2 Φ( x h ), Φ( x h ) (39) D il (t +1) = (1 α)d il (t) α(1 α)d hl (t) + α{k( x i, x i ) 2K( x i, x h )+K( x h, x h )} (40) LVQ Klvq (Klvq1) D i,i=1,...,n, =1,...,K (Klvq2) t =1, 2,... (Klvq2-1) x i X l D il (t) = min D i (t) (Klvq2-2) D il (40) 17

5 5.1 K-Means 2 3 1 (x 1,x 2 )= (0, 0), (x 1,x 2 )=(0.1, 0.1) [10] 2 (x 1,x 2 )=(5, 0), (x 1,x 2 )=(2, 2) 3 (x 1,x 2 )=(1, 4), (x 1,x 2 )=(0.2, 0.2) (0.0861, 0.113), (4.98, 0.163), (1.10, 4.04) x 1 x 2 6 5 class1 class2 class3 centroid 4 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 2: 3 18

3 K-Means line1,line2,line3 3 R 1 line1 line3 c 1 =(1.67, 0.383), c 2 =(5.36, 0.146), c 3 =(1.55, 3.86) K-Means 3 130 17 1 6 5 4 c1 c2 c3 cluster-center line1 line2 line3 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 3: K =3 K-Means 1: K-Means R 1 23 c 1 =(1.67, 0.383) R 2 83 c 2 =(5.36, 0.146) R 3 24 c 3 =(1.55, 3.86) 19

2 K-Means D D c D p K-Means 3 2 K-Means M=3 K=m K-Means m m =2, 3 {R } K-Means 3,4 2: D D D p R 1 64.3 24.6 2.43 R 2 168.6 349.5 401.0 R 3 39.1 23.8 9.52 373.0 397.8 412.9 3: m =2 K-Means R (m=2) 1,1 10 c (m=2) 1,1 =(0.0861, 0.113) R (m=2) 1,2 13 c (m=2) 1,2 =(2.89, 0.590) R (m=2) 2,1 45 c (m=2) 2,1 =(4.72, 0.579) R (m=2) 2,2 38 c (m=2) 2,2 =(6.16, 1.05) R (m=2) 3,1 20 c (m=2) 3,1 =(1.10, 4.04) R (m=2) 3,2 4 c (m=2) 3,2 =(3.80, 2.98) 20

4: m =3 K-Means R (m=3) 1,1 10 c (m=3) 1,1 =(0.0861, 0.113) R (m=3) 1,2 2 c (m=3) 1,2 =(2.48, 1.37) R (m=3) 1,3 11 c (m=3) 1,3 =(2.96, 0.947) R (m=3) 2,1 29 c (m=3) 2,1 =(4.70, 1.10) R (m=3) 2,2 34 c (m=3) 2,2 =(5.15, 1.46) R (m=3) 2,3 20 c (m=3) 2,3 =(6.78, 0.218) R (m=3) 3,1 19 c (m=3) 3,1 =(1.05, 3.97) R (m=3) 3,2 1 c (m=3) 3,2 =(2.06, 5.21) R (m=3) 3,2 4 c (m=3) 3,2 =(3.80, 2.98) (10) (12) {R } {R (m) } {D (m) } 5 6 (13) 6 {ρ (m) } ρ (m=2) =1 ρ (m=2) =3 (15) η 0.4 m =2 R 1 R 3 2 5: {R }, {R (m) } {D (m) } D (m=1) D (m=2) D (m=3) =1 64.3 18.7 9.18 =2 269.6 172.5 110.5 =3 39.1 11.1 0.28 6: {ρ (m) } ρ (m=2) ρ (m=3) =1 0.290 0.492 =2 0.640 0.641 =3 0.283 0.781 21

7: {d( c (m =2),p )} R 1 R 2 R 3 d( c (m =2),p ) R (m =2) 1,1 3.39 1.81 d( c (m =2) 1,1 )=1.81 R (m =2) 1,2 0.688 2.36 d( c (m =2) 1,2 )=0.688 R (m =2) 3,1 2.31 3.11 d( c (m =2) 3,1 )=2.31 R (m =2) 3,2 1.18 0.434 d( c (m =2) 3,2 )=0.434 8: {d(r (m =2),p )} R 1 R 2 R 3 d(r (m ),p ) R (m =2) 1,1 3.04 3.09 d(r (m =2) 1,1 )=3.04 R (m =2) 1,2 0.366 0.882 d(r (m =2) 1,2 )=0.366 R (m =2) 3,1 1.97 2.60 d(r (m =2) 3,1 )=1.97 R (m =2) 3,2 0.882 0.628 d(r (m =2) 3,2 )=0.628 (16) {R (m =2),p, =1,p =1, 2} {R (m =2),p, =3,p =1, 2} {d( c (m =2),p )} 7 R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 8 (17) R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 4 K-Means R 1 line11 2 R 2 R 3 line33 2 R 2 5 22

6 5 4 3 2 c11 c12 c21 c22 c31 c32 cluster-center line1 line2 line3 line11 line33 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 4: K=3,m =2 K-Means 6 5 4 c1 c2 c3 line1 line2 line3 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 5: 23

5.2 LVQ K-Means K-Means LVQ LVQ K-Means 2 LVQ 6 9 6 130 11 LVQ LVQ LVQ [12] 6 5 "c1" "c2" "c3" "first_centroid" 4 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 6: K =3 LVQ 24

9: LVQ R 1 17 c 1 =(0.695, 0.073) R 2 89 c 2 =(5.23, 0.131) R 3 24 c 3 =(1.27, 3.97) 10: m =2 LVQ R (m=2) 1,1 10 c (m=2) 1,1 =(0.0861, 0.113) R (m=2) 1,2 7 c (m=2) 1,2 =(2.52, 0.391) R (m=2) 2,1 50 c (m=2) 2,1 =(4.54, 0.662) R (m=2) 2,2 39 c (m=2) 2,2 =(6.09, 1.03) R (m=2) 3,1 20 c (m=2) 3,1 =(1.10, 4.04) R (m=2) 3,2 4 c (m=2) 3,2 =(3.80, 2.98) 11: {R }, {R (m) } {D (m) } D (m=1) D (m=2) D (m=3) =1 35.63 7.82 5.31 =2 306.8 190.9 123.41 =3 41.17 11.07 8.64 12: {ρ (m) } ρ (m=2) ρ (m=3) =1 0.220 0.681 =2 0.627 0.653 =3 0.271 0.786 M=3 K=m LVQ K- Means m m =2 {R } K-Means 10 {R } {R (m) } {D (m) } 11 12 (13) η 0.4 {ρ (m) } m =2 R 1 R 3 2 7 25

LVQ (17) 13 R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 LVQ K-Means 8 13: {d(r (m =2),p )} R 1 R 2 R 3 d(r (m ),p ) R (m =2) 1,1 2.66 3.09 d(r (m =2) 1,1 )=2.66 R (m =2) 1,2 0.333 1.82 d(r (m =2) 1,2 )=0.333 R (m =2) 3,1 1.97 2.17 d(r (m =2) 3,1 )=1.97 R (m =2) 3,2 1.82 0.628 d(r (m =2) 3,2 )=0.628 26

6 5 4 "c11" "c12" "c21" "c22" "c31" "c32" "centroid" 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 7: K=3,m =2 LVQ K-Means 6 5 "cluster1" "cluster2" "cluster3" 4 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 8: LVQ K-Means 27

5.3 K-Means 9 2 (ball) (ring) 200 K-Means 10 K-Means 11 C =0.1 RBF 5 4 "b" "r" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 9: 2 28

5 4 "c1" "c2" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 10: K-Means 5 4 "b15" "r15" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 11: K-Means 29

400 2 100 13-18 3 13,14 15,16 17,18 12 12: K-Means (Km) K-Means (Km ) 100 14 2 14: Km,Km method Km 0.21 13.23 Km 0.24 6.94 30

5 4 "output/b15" "output/r15" "output/init_pnt15" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 13: Km, (-1.027533,1.208392),(0.784579,-0.534775) 5 4 "output/b71" "output/r71" "output/init_pnt71" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 14: Km, (-0.433101,-1.341578),(-0.314275,0.821440) 31

5 4 "output/b27" "output/r27" "output/init_pnt27" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 15: Km, (-1.228715,-1.312461),(-3.800445,-0.485205) 5 4 "output/b41" "output/r41" "output/init_pnt41" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 16: Km, (-3.217651,-2.154126),(-0.816030,-0.957352) 32

5 4 "output/b18" "output/r18" "output/init_pnt18" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 17: Km, (2.355734,3.346941),(-3.366276,2.438362) 5 4 "output/b72" "output/r72" "output/init_pnt72" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 18: Km, (0.380646,-4.061833),(-4.050100,-0.687073) 33

6 K-Means K-Means K-Means LVQ K-Mean LVQ LVQ 7 K-Means K-Means K-Means K-Means 34

[1] Duda R.O., Hart P.E., Stor D.G., Pattern Classification (2nd Edition), John Wiley & Sons, INC., 2001. [2] Jain A.K., Dubes R.C., Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1988. [3] Gordon A.D., Classification (2nd Edition), Chapman & Hall/CRC, 1999. [4] Bezde J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, 1981. [5] MacQueen J., Some Methods for Classification and Analysis of Multivariate Observations, Proc. 5th Bereley Symp. on Math. Stat. and Prob. 1, Univ. of California Press, Bereley and Los Angeles, pp. 281-297, 1967. [6] Linde Y., Buzo A., Gray R.M., An Algorithm for Vector Quantizer Design, IEEE Trans. Commun., Vol.28, pp. 84-95, 1980. [7], :,,, 1999. [8] Tarsitano A., A Computational Study of Several Relocation Methods for K-Means Algorithm, Pattern Recognition, Vol.36, pp.2955-2966, 2003. [9] Yu J., General C-Means Clustering Model, IEEE Trans. PAMI., Vol.27, No.8, pp.1197-1211, 2005. [10] Press W.H., Flannery B.P., Teuolsy S.A., Vetterling W.T., Numerical Recipes in C, Cambridge University Press, 1988. [11] T.Kohonen, Self-Organizing Maps (2nd Edition), Springer, Berlin, 1997. [12],,, Vol.46, pp.912-918, 2005. [13] M.Girolami, Mercer ernel based clustering in feature space, IEEE Trans. on Neural Networs, Vol.13, No3, pp.780-784, 2002. 35

[14] S.Miyamoto, Y.Naayama, Algorithms of hard c-means clustering using ernel functions in support vector machines, J. of Advanced computational Intelligence and Intelligent Informatics, Vol.1.7, No.1, pp.19-24, 2003. [15] V.Vapni, Statistical Learning Theory, Wiley, New Yor, 1998. [16] F.Morii, K.Kurahashi, Clustering by the K-Means Algorithm Using a Split and Merge Procedure, Proceedings of SCIS&ISIS, SA-F2-6, pp.1767-1770, 2006. [17],, K-Means,, PRMU, vol.106, No.470, pp.67-71, 2007. 36