untitled



Similar documents


x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

ALAGIN (SVM)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

24 Region-Based Image Retrieval using Fuzzy Clustering

untitled

[1] SBS [2] SBS Random Forests[3] Random Forests ii

三石貴志.indd

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-

IS1-09 第 回画像センシングシンポジウム, 横浜,14 年 6 月 2 Hough Forest Hough Forest[6] Random Forest( [5]) Random Forest Hough Forest Hough Forest 2.1 Hough Forest 1 2.2


(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA,

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

030801調査結果速報版.PDF

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書


untitled

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

…p…^†[…fiflF”¯ Pattern Recognition

fiš„v3.dvi

johnny-paper2nd.dvi

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

(a) (b) 2 2 (Bosch, IR Illuminator 850 nm, UFLED30-8BD) ( 7[m] 6[m]) 3 (PointGrey Research Inc.Grasshopper2 M/C) Hz (a) (b

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

IPSJ SIG Technical Report Vol.2015-MUS-107 No /5/23 HARK-Binaural Raspberry Pi 2 1,a) ( ) HARK 2 HARK-Binaural A/D Raspberry Pi 2 1.

先端社会研究所紀要 第12号☆/1.巻頭言

わが国企業による資金調達方法の選択問題

fiš„v8.dvi

ii

main.dvi

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

4 2 p = p(t, g) (1) r = r(t, g) (2) p r t g p r dp dt = p dg t + p g (3) dt dr dt = r dg t + r g dt 3 p t p g dt p t r t = Benefit view dp

kut-paper-template.dvi

main.dvi


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

カルマンフィルターによるベータ推定( )

3: OFF WEB 4 4: 30 (3) Radio Frequency Identification RFID RFID RFID IC Suica ICOCA PASMO PiTaPa Edy id 1 RFID RFID RFID 1 1mm 2.3 ON/OFF 3 3 (1) (2)

21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G

地域総合研究第40巻第1号

untitled

aca-mk23.dvi

Microsoft Word - toyoshima-deim2011.doc

Sobel Canny i



No. 3 Oct The person to the left of the stool carried the traffic-cone towards the trash-can. α α β α α β α α β α Track2 Track3 Track1 Track0 1

i

Microsoft PowerPoint - SSII_harada pptx

A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹

25 11M n O(n 2 ) O(n) O(n) O(n)

!!!!!! Agenda 2012/2/6

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

Mantel-Haenszelの方法

第5章 偏微分方程式の境界値問題

131WA (ai).pdf

untitled

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1


経済論集 46‐2(よこ)(P)☆/2.三崎

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

RIMS98R2.dvi

○01 那覇市(7月変更)

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

2003/9 Vol. J86 D I No. 9 GA GA [8] [10] GA GA GA SGA GA SGA2 SA TS GA C1: C2: C3: 1 C4: C5: 692

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

Vol.58 No (Sep. 2017) 1 2,a) 3 1,b) , A EM A Latent Class Model to Analyze the Relationship Between Companies Appeal Poi

ばらつき抑制のための確率最適制御

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

JAPAN MARKETING JOURNAL 116 Vol.29 No.42010

オーストラリア研究紀要 36号(P)☆/3.橋本

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

29 jjencode JavaScript


[1], B0TB2053, i

JAPAN MARKETING JOURNAL 122 Vol.31 No.22011


(255) Vol. 19 No. 4 July (completion) tcsh bash UNIX Emacs/Mule 2 ( ) [2] [9] [11] 2 (speech completion) 3 ( ) [7] 2 ( 7.1 )

IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

フリーソフトではじめる機械学習入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2) 3) LAN 4) 2 5) 6) 7) K MIC NJR4261JB0916 8) 24.11GHz V 5V 3kHz 4 (1) (8) (1)(5) (2)(3)(4)(6)(7) (1) (2) (3) (4)

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

untitled

Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho


DEIM Forum 2019 A7-1 Flexible Distance-based Hashing mori

(1) (2) (3) (4) (5) 2.1 ( ) 2

Transcription:

K-Means

1 5 2 K-Means 7 2.1 K-Means.............................. 7 2.2 K-Means.......................... 8 2.3................... 9 3 K-Means 11 3.1.................................. 11 3.2.................................. 12 4 13 4.1 K-Means..... 13 4.2 K-Means.. 15 4.3....... 16 5 18 5.1 K-Means................ 18 5.2 LVQ K-Means.. 24 5.3 K-Means..... 28 6 34 7 34 35 35 2

1......... 8 2 3....................... 18 3 K =3 K-Means........... 19 4 K=3,m =2 K-Means...................................... 23 5............................ 23 6 K =3 LVQ..................... 24 7 K=3,m =2 LVQ K-Means...................................... 27 8 LVQ K-Means....................................... 27 9 2................... 28 10 K-Means..................... 29 11 K-Means......... 29 12................. 30 13 Km, (-1.027533,1.208392),(0.784579,-0.534775).... 31 14 Km, (-0.433101,-1.341578),(-0.314275,0.821440).... 31 15 Km, (-1.228715,-1.312461),(-3.800445,-0.485205)... 32 16 Km, (-3.217651,-2.154126),(-0.816030,-0.957352)... 32 17 Km, (2.355734,3.346941),(-3.366276,2.438362)..... 33 18 Km, (0.380646,-4.061833),(-4.050100,-0.687073).... 33 1 K-Means......... 19 2............................ 20 3 m =2 K-Means........... 20 4 m =3 K-Means........... 21 5 {R }, {R (m) } {D (m) }....................... 21 6 {ρ (m) }................................ 21 7 {d( c (m =2),p )}. 22 8 {d(r (m =2),p )}..... 22 9 LVQ................... 25 10 m =2 LVQ..................... 25 11 {R }, {R (m) } {D (m) }....................... 25 12 {ρ (m) }................................ 25 3

13 {d(r (m =2),p )}..... 26 14 Km,Km..................... 30 4

1 2 [1][2][3] K-Means [5][8][9] 1 N ( ) 2 1 N K-Means c- [4][7] K-Means (Learning Vector Quantization:LVQ)[6][11] 2 K-Means LVQ K-Means LVQ K-Means [16][17] 5

K-Means K-Means K-Means K K-Means [13][14] K-Means 2 K-Means LVQ 3 K-Means 4 K-Means LVQ 5 K-Means, K-Means,LVQ 2, K-Means 6,7 6

2 K-Means K-Means K 2 2.1 K-Means n x i =(x i1,...,x id ),i=1,...,n X K X, =1,...,K J = min { c,=1,...,k} i=1 n x i X x i c 2. (1) x i c 2 = D d=1 (x id c d ) 2 c =(c 1,..., c D ) (1) K-Means m (m1) { c (t) } x i x i X (t) α α = arg min x i c (t) 2. (2) (m2) {X (t) } c (t+1) = 1 n (t) x i X (t) x i, =1,...,K. (3) n (t) X(t) c (t+1) X (t) ( +1) ɛ c (t+1) c (t) <ɛ (m1) (m2) { c (t) } { c } (1) R R = { x x c 2 < x c i 2 for all i } (4) 7

if x R, x Class (5) { c } 1: 2.2 K-Means K-Means n X p x X q x X p X q X p X p { x} X q X q { x} c p, c q c p, c q X p N p 1, Xq N q +1 J [1] m (m 1) c (t), =1,...,K (m 2) J x i,i=1,...,n (m 2-1) x i X p N p 1 8

J p = J l = N p N p 1 x i c p 2 N l N l +1 x i c l 2, l p J q J l, for all l x i X p X q c p = c p 1 N p 1 ( x i c p ) c q = c q 1 N q +1 ( x i c q ) N p = N p 1 N q = N q +1 J J = J + J q J p X p Xp = X p { x i } X q Xq = X q { x i } x X p x X q x c p 2 = x c q 2 = x X p x c p 2 x X q x c q 2 N p N p 1 x i c p 2 N q N q +1 x i c q 2 2.3 (LVQ) K-Means t t =1, 2,... x(t) R p (t = 1, 2,...) (VQ) m R p, =1,...,K x(t) x(t) 9

m l m l (t) = arg min x(t) m (t). (6) x(t) m l (t) m l (t +1)=m l (t)+α(t)[x(t) m l (t)]. (7) α(t) α(t) =, α 2 (t) <, t =1, 2,... (8) t=1 t=1 α(t) α(t) = /t x(t) x(t) lvq (lvq1) m, =1,...,K (lvq2) t =1, 2,... (lvq2-1) m l = arg min 1 K x(t) m (t) (9) (lvq2-2) m 1 (t),...,m (t) m l (t +1) = m l (t)+α(t)[x(t) m l (t)] m (t +1) = m (t), l x(t) X l 10

3 K-Means K-Means X {R } { c } R R R R K-Means R R K-Means R 3.1 K-Means K = m (2 m M) R R m {R (m),p,p= 1,...,m}, { c (m),p,p=1,...,m} M 2 3 R D (m=1) R (m),p D (m),p = x i R (m),p = m R (m) x i R x i c 2. (10) x i c (m),p 2,m=2,...,M (11) D (m) = m p=1 D (m),p. (12) R ρ (m) =D (m) /D (m 1),m=2,...,M. (13) ρ (m) R m R m R m 1 R m 11

D (m) D (m 1) ρ (m ) = min {ρ (m), m=2,...,m} (14) m η ρ (m ) <η (15) R m R η η 3.2 R {R (m ),p,p =1,...,m } {R (m ),p } { c (m ),p,p =1,...,m } K-Means R m 1 c (m ),p R d( c (m ),p ) ˆd( c (m ),p ) = max p {d( c(m ),p ),p=1,...,m } (16) R (m ),p R p p R (m ),p d( c (m ),p ) d(r (m ),p ) = min x i R (m ),p, x j R l,l d( x i, x j ) (17) ˆd(R (m ),p ) = max p {d(r(m ),p ),p=1,...,m } (18) R (m ),p R R (m ),p ) d(r (m ),p ρ (m ) <η 12

4 SVM(Support Vector Machine)[15] H Φ :R p H H K( x, y) = Φ( x), Φ( y) H (19) Φ( x) RBF K( x, y) = exp( C x y 2 ) (20) K( x, y) = (1 + x, y ) d (21) 4.1 K-Means K-Means (1) K-Means K J = Φ( x i ) m 2 (22) =1 x i X m X m = x X Φ( x) n. (23) Φ Φ Φ( x i ) m 2 K( x i, x j ) D i = Φ( x i ) m 2 H. (24) (22) K J = D i (25) =1 x i X 13

D i = Φ( x i ) m 2 = Φ( x i ) x j X Φ( x j ), Φ( x i ) n x l X Φ( x l ) n = Φ( x i ), Φ( x i ) 2 Φ( x i ), Φ( x j ) + 1 n n 2 Φ( x j ), Φ( x l ) x j X x j, x l X = K( x i, x i ) 2 K( x i, x j )+ 1 n n 2 K( x j, x l ) x j X x j, x l X (26) Km (Km1) X K y j (j = 1,..., K) x i x i X (t) α α = arg min Φ( x i ) Φ( y j ) 2 = arg min K( x i, x i ) 2K( x i, y j )+K( y j, y j ). (27) (Km2) x i (Km2-1) x i α = arg min Φ( x i ) m 2 (28) (Km2-2) Φ( x i ) m 2 (26) 14

4.2 K-Means 4.1 n (25) Km (Km 1) X K y j (j = 1,..., K) x i (27) (Km 2) x i (Km 2-1) x i α = arg min Φ( x i ) m 2 (Km 2-2) x i (Km 2-2) J = D i (29) x i X J = K J. (30) =1 x i X p Xq X p,x q, m p, m q N p,n q Xp = X p { x i }, Xq = X q { x i }, m p = m q = N p N p 1 Φ( x i) m p 2, N q N q +1 Φ( x i) m q 2. J,J p,j q J,J p,j q J = J 15

= J p + J q + J p,q J p = x X p Φ( x) m p 2 Φ( x i ) m p 2 = Φ( x) m p + Φ( x i) m p 2 N p N x X p 1 N p 1 Φ( x i) m p 2 p = J p N p N p 1 Φ( x i) m p 2 = J p N p N p 1 D ip (31) J q = J q + N q N q +1 D iq. (32) J = J p + J q + p,q J = J p N p N p 1 D ip + J q + N q N q +1 D iq + p,q = J N p N p 1 D ip + N q N q +1 D iq (33) J 4.3 LVQ LVQ m l (t) = arg min Φ( x h ) m (t) (34) m l (t +1) = m l (t)+α(t)[φ( x h ) m l (t)] (35) m m t D i (t) = Φ( x i ) m (t) 2 (36) 16

(34) D il (t) = arg min D i (t) (37) (35) D i (t +1) = Φ( x i ) m (t +1) 2 = Φ( x i ), Φ( x i ) 2 Φ( x i ), m l (t +1) + m l (t +1), m l (t +1) (38) (35) α = α(t) D i (t +1) = Φ( x i ), Φ( x i ) 2{(1 α) Φ( x i ), m l (t) + α Φ( x i ), Φ( x h ) } + {(1 α) 2 m l (t), m l (t) +2α(1 α) Φ( x h ), m l (t) } + α 2 Φ( x h ), Φ( x h ) (39) D il (t +1) = (1 α)d il (t) α(1 α)d hl (t) + α{k( x i, x i ) 2K( x i, x h )+K( x h, x h )} (40) LVQ Klvq (Klvq1) D i,i=1,...,n, =1,...,K (Klvq2) t =1, 2,... (Klvq2-1) x i X l D il (t) = min D i (t) (Klvq2-2) D il (40) 17

5 5.1 K-Means 2 3 1 (x 1,x 2 )= (0, 0), (x 1,x 2 )=(0.1, 0.1) [10] 2 (x 1,x 2 )=(5, 0), (x 1,x 2 )=(2, 2) 3 (x 1,x 2 )=(1, 4), (x 1,x 2 )=(0.2, 0.2) (0.0861, 0.113), (4.98, 0.163), (1.10, 4.04) x 1 x 2 6 5 class1 class2 class3 centroid 4 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 2: 3 18

3 K-Means line1,line2,line3 3 R 1 line1 line3 c 1 =(1.67, 0.383), c 2 =(5.36, 0.146), c 3 =(1.55, 3.86) K-Means 3 130 17 1 6 5 4 c1 c2 c3 cluster-center line1 line2 line3 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 3: K =3 K-Means 1: K-Means R 1 23 c 1 =(1.67, 0.383) R 2 83 c 2 =(5.36, 0.146) R 3 24 c 3 =(1.55, 3.86) 19

2 K-Means D D c D p K-Means 3 2 K-Means M=3 K=m K-Means m m =2, 3 {R } K-Means 3,4 2: D D D p R 1 64.3 24.6 2.43 R 2 168.6 349.5 401.0 R 3 39.1 23.8 9.52 373.0 397.8 412.9 3: m =2 K-Means R (m=2) 1,1 10 c (m=2) 1,1 =(0.0861, 0.113) R (m=2) 1,2 13 c (m=2) 1,2 =(2.89, 0.590) R (m=2) 2,1 45 c (m=2) 2,1 =(4.72, 0.579) R (m=2) 2,2 38 c (m=2) 2,2 =(6.16, 1.05) R (m=2) 3,1 20 c (m=2) 3,1 =(1.10, 4.04) R (m=2) 3,2 4 c (m=2) 3,2 =(3.80, 2.98) 20

4: m =3 K-Means R (m=3) 1,1 10 c (m=3) 1,1 =(0.0861, 0.113) R (m=3) 1,2 2 c (m=3) 1,2 =(2.48, 1.37) R (m=3) 1,3 11 c (m=3) 1,3 =(2.96, 0.947) R (m=3) 2,1 29 c (m=3) 2,1 =(4.70, 1.10) R (m=3) 2,2 34 c (m=3) 2,2 =(5.15, 1.46) R (m=3) 2,3 20 c (m=3) 2,3 =(6.78, 0.218) R (m=3) 3,1 19 c (m=3) 3,1 =(1.05, 3.97) R (m=3) 3,2 1 c (m=3) 3,2 =(2.06, 5.21) R (m=3) 3,2 4 c (m=3) 3,2 =(3.80, 2.98) (10) (12) {R } {R (m) } {D (m) } 5 6 (13) 6 {ρ (m) } ρ (m=2) =1 ρ (m=2) =3 (15) η 0.4 m =2 R 1 R 3 2 5: {R }, {R (m) } {D (m) } D (m=1) D (m=2) D (m=3) =1 64.3 18.7 9.18 =2 269.6 172.5 110.5 =3 39.1 11.1 0.28 6: {ρ (m) } ρ (m=2) ρ (m=3) =1 0.290 0.492 =2 0.640 0.641 =3 0.283 0.781 21

7: {d( c (m =2),p )} R 1 R 2 R 3 d( c (m =2),p ) R (m =2) 1,1 3.39 1.81 d( c (m =2) 1,1 )=1.81 R (m =2) 1,2 0.688 2.36 d( c (m =2) 1,2 )=0.688 R (m =2) 3,1 2.31 3.11 d( c (m =2) 3,1 )=2.31 R (m =2) 3,2 1.18 0.434 d( c (m =2) 3,2 )=0.434 8: {d(r (m =2),p )} R 1 R 2 R 3 d(r (m ),p ) R (m =2) 1,1 3.04 3.09 d(r (m =2) 1,1 )=3.04 R (m =2) 1,2 0.366 0.882 d(r (m =2) 1,2 )=0.366 R (m =2) 3,1 1.97 2.60 d(r (m =2) 3,1 )=1.97 R (m =2) 3,2 0.882 0.628 d(r (m =2) 3,2 )=0.628 (16) {R (m =2),p, =1,p =1, 2} {R (m =2),p, =3,p =1, 2} {d( c (m =2),p )} 7 R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 8 (17) R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 4 K-Means R 1 line11 2 R 2 R 3 line33 2 R 2 5 22

6 5 4 3 2 c11 c12 c21 c22 c31 c32 cluster-center line1 line2 line3 line11 line33 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 4: K=3,m =2 K-Means 6 5 4 c1 c2 c3 line1 line2 line3 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 5: 23

5.2 LVQ K-Means K-Means LVQ LVQ K-Means 2 LVQ 6 9 6 130 11 LVQ LVQ LVQ [12] 6 5 "c1" "c2" "c3" "first_centroid" 4 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 6: K =3 LVQ 24

9: LVQ R 1 17 c 1 =(0.695, 0.073) R 2 89 c 2 =(5.23, 0.131) R 3 24 c 3 =(1.27, 3.97) 10: m =2 LVQ R (m=2) 1,1 10 c (m=2) 1,1 =(0.0861, 0.113) R (m=2) 1,2 7 c (m=2) 1,2 =(2.52, 0.391) R (m=2) 2,1 50 c (m=2) 2,1 =(4.54, 0.662) R (m=2) 2,2 39 c (m=2) 2,2 =(6.09, 1.03) R (m=2) 3,1 20 c (m=2) 3,1 =(1.10, 4.04) R (m=2) 3,2 4 c (m=2) 3,2 =(3.80, 2.98) 11: {R }, {R (m) } {D (m) } D (m=1) D (m=2) D (m=3) =1 35.63 7.82 5.31 =2 306.8 190.9 123.41 =3 41.17 11.07 8.64 12: {ρ (m) } ρ (m=2) ρ (m=3) =1 0.220 0.681 =2 0.627 0.653 =3 0.271 0.786 M=3 K=m LVQ K- Means m m =2 {R } K-Means 10 {R } {R (m) } {D (m) } 11 12 (13) η 0.4 {ρ (m) } m =2 R 1 R 3 2 7 25

LVQ (17) 13 R (m =2) 1,2 R 2 R (m =2) 3,2 R 2 LVQ K-Means 8 13: {d(r (m =2),p )} R 1 R 2 R 3 d(r (m ),p ) R (m =2) 1,1 2.66 3.09 d(r (m =2) 1,1 )=2.66 R (m =2) 1,2 0.333 1.82 d(r (m =2) 1,2 )=0.333 R (m =2) 3,1 1.97 2.17 d(r (m =2) 3,1 )=1.97 R (m =2) 3,2 1.82 0.628 d(r (m =2) 3,2 )=0.628 26

6 5 4 "c11" "c12" "c21" "c22" "c31" "c32" "centroid" 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 7: K=3,m =2 LVQ K-Means 6 5 "cluster1" "cluster2" "cluster3" 4 3 2 x2 1 0-1 -2-3 -4-1 0 1 2 3 4 5 6 7 8 9 x1 8: LVQ K-Means 27

5.3 K-Means 9 2 (ball) (ring) 200 K-Means 10 K-Means 11 C =0.1 RBF 5 4 "b" "r" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 9: 2 28

5 4 "c1" "c2" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 10: K-Means 5 4 "b15" "r15" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 11: K-Means 29

400 2 100 13-18 3 13,14 15,16 17,18 12 12: K-Means (Km) K-Means (Km ) 100 14 2 14: Km,Km method Km 0.21 13.23 Km 0.24 6.94 30

5 4 "output/b15" "output/r15" "output/init_pnt15" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 13: Km, (-1.027533,1.208392),(0.784579,-0.534775) 5 4 "output/b71" "output/r71" "output/init_pnt71" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 14: Km, (-0.433101,-1.341578),(-0.314275,0.821440) 31

5 4 "output/b27" "output/r27" "output/init_pnt27" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 15: Km, (-1.228715,-1.312461),(-3.800445,-0.485205) 5 4 "output/b41" "output/r41" "output/init_pnt41" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 16: Km, (-3.217651,-2.154126),(-0.816030,-0.957352) 32

5 4 "output/b18" "output/r18" "output/init_pnt18" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 17: Km, (2.355734,3.346941),(-3.366276,2.438362) 5 4 "output/b72" "output/r72" "output/init_pnt72" 3 2 1 x2 0-1 -2-3 -4-5 -5-4 -3-2 -1 0 1 2 3 4 5 x1 18: Km, (0.380646,-4.061833),(-4.050100,-0.687073) 33

6 K-Means K-Means K-Means LVQ K-Mean LVQ LVQ 7 K-Means K-Means K-Means K-Means 34

[1] Duda R.O., Hart P.E., Stor D.G., Pattern Classification (2nd Edition), John Wiley & Sons, INC., 2001. [2] Jain A.K., Dubes R.C., Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1988. [3] Gordon A.D., Classification (2nd Edition), Chapman & Hall/CRC, 1999. [4] Bezde J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, 1981. [5] MacQueen J., Some Methods for Classification and Analysis of Multivariate Observations, Proc. 5th Bereley Symp. on Math. Stat. and Prob. 1, Univ. of California Press, Bereley and Los Angeles, pp. 281-297, 1967. [6] Linde Y., Buzo A., Gray R.M., An Algorithm for Vector Quantizer Design, IEEE Trans. Commun., Vol.28, pp. 84-95, 1980. [7], :,,, 1999. [8] Tarsitano A., A Computational Study of Several Relocation Methods for K-Means Algorithm, Pattern Recognition, Vol.36, pp.2955-2966, 2003. [9] Yu J., General C-Means Clustering Model, IEEE Trans. PAMI., Vol.27, No.8, pp.1197-1211, 2005. [10] Press W.H., Flannery B.P., Teuolsy S.A., Vetterling W.T., Numerical Recipes in C, Cambridge University Press, 1988. [11] T.Kohonen, Self-Organizing Maps (2nd Edition), Springer, Berlin, 1997. [12],,, Vol.46, pp.912-918, 2005. [13] M.Girolami, Mercer ernel based clustering in feature space, IEEE Trans. on Neural Networs, Vol.13, No3, pp.780-784, 2002. 35

[14] S.Miyamoto, Y.Naayama, Algorithms of hard c-means clustering using ernel functions in support vector machines, J. of Advanced computational Intelligence and Intelligent Informatics, Vol.1.7, No.1, pp.19-24, 2003. [15] V.Vapni, Statistical Learning Theory, Wiley, New Yor, 1998. [16] F.Morii, K.Kurahashi, Clustering by the K-Means Algorithm Using a Split and Merge Procedure, Proceedings of SCIS&ISIS, SA-F2-6, pp.1767-1770, 2006. [17],, K-Means,, PRMU, vol.106, No.470, pp.67-71, 2007. 36