hirameki_09.dvi



Similar documents
24.15章.微分方程式

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

: =, >, < π dθ = dφ = K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

本文/020:デジタルデータ P78‐97

A A. ω ν = ω/π E = hω. E


untitled

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

C:/KENAR/0p1.dvi

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

Note5.dvi

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

A

基礎地学I.ppt


2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 2. : ( Wikipedia ) photoelectric effect photoelectron ν E = hν h ν > ν E = hν hν W = hν

untitled

第86回日本感染症学会総会学術集会後抄録(II)

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux EP

基礎数学I

I 1


I ( ) 2019

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

チュートリアル:ノンパラメトリックベイズ

岩手県2012-初校.indd


(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

Gmech08.dvi

i I

BH BH BH BH Typeset by FoilTEX 2

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

pdf

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Part. 4. () 4.. () Part ,

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

ボールねじ

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.


平成18年度弁理士試験本試験問題とその傾向

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

note01

4 2

dynamics-solution2.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

6. [1] (cal) (J) (kwh) ( ( 3 t N(t) dt dn ( ) dn N dt N 0 = λ dt (3.1) N(t) = N 0 e λt (3.2) λ (decay constant), λ [λ] = 1/s

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru


h4_1_et

030801調査結果速報版.PDF

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

豪雨・地震による土砂災害の危険度予測と 被害軽減技術の開発に向けて

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

untitled

i

sec13.dvi

「数列の和としての積分 入門」

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

20_zairyou.pdf

genron-3

2 p T, Q

cm H.11.3 P

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

Note.tex 2008/09/19( )


確率論と統計学の資料

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

宮城県2012-初校.indd

2301/1     目次・広告

総研大恒星進化概要.dvi

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

応力とひずみ.ppt

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2011de.dvi

esba.dvi

2


Gmech08.dvi

A

77

untitled

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

論文/061‐074 山崎(論文)

第138期事業報告書

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

() 73 75

Transcription:

2009 July 31 1 2009 1 1 e-mail: mtakahas@auecc.aichi-edu.ac.jp

2 SF 2009 7 31

3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4............................... 8 1.5.......................... 10 1.6............................ 11 1.7....................... 14 1.8.................................... 16 2 18 2.1... 18 2.2............................ 19 2.3.............................. 20 2.4.................... 22 2.5................................... 25 3 26 3.1.................................. 26 3.2................................... 27 3.3.............................. 29 3.4................................ 31 3.5..................................... 32 3.6... 34 4 36 4.1...................... 36 4.1.1.................................. 37 4.1.2... 39 4.1.3.............................. 40 4.2... 41 4.3... 43 4.3.1................................... 43 4.3.2................................ 44 4.3.3................................ 44 4.4................................. 45 4.5... 45

4 5 47 5.1.......... 47 5.2................................... 48 5.3........................... 52 6 54 6.1........................... 54 6.2...................... 55 6.3..................................... 55 6.4................................ 56 6.5.......................... 59 6.6..................................... 61 6.6.1............................... 61 6.6.2.............................. 62 6.6.3.............................. 63 7 65 7.1....................... 65 7.2...................... 66 7.3.............................. 67 7.4................................. 68 7.5 )... 68 7.6...................... 69

5 1 1.1 ( ) ( ) ( ) ( ) ( )

1 6 ( ) ( ) ( ) 1.2 ( ) ( ) ( ) ( ) ( ) ( ) 1.5

1 7 ( ) ( ) vˆr c ( ) (r ) r v ˆθ 0 v ˆφ 0 ( ) ZAMO (Zero Angular Momentum Observer) (Bardeen 1973) ZAMO FIDO (Fiducial Obserber) 1.3 ( ) ( ) ( ) ( ) ( ) ( )

1 8 A B ( ) ( M m ) r F g F g Mm/r 2 G ( ) [J(=kgm/t 2 )] [kg 2 /r 2 ] G (1798 ) G =6.67 10 11 Nm 2 /kg 2 (1.1) II 1.4 ( ) ( ) ( ) ( ) ( ) ( )

1 9 1.1: ( ) 2 ( ) z ( ) a/m ( ) ( ) ( ) ( ) Smarr (1973) 1.1( ) (stretched horizon ) (event horizon) r H ( ) (θ) 1 r θ φ ( ) 2 ( ) r H ( ) ( ) ( ) ( ) ( ) 1 r H = M + M 2 a 2 M a ( ) 2

1 10 Bardeen et al. (1972) ( ) 1.5 ( ) ( ) ( ) ( ) ( ) Q

1 11 1.2: ( ) ( ) ( ) Q A 1.6 BH

1 12 1.2 ( ) Q 1.4( ) ( ) ( ) ( ) ( ) 1.3: ( )

1 13 1.4: ( ) ( ) ( ) 1.4 C F ( ) ( ) 1.5 90 ( ) ( ) 1.5 ( ) 1.5

1 14 ( ) Q ( ) 1.7 ( ) ( ) ( )

1 15 ( ) ( ) ( ) 1.5: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 km ( ) ( )

1 16 ( ) ( ) SF 1.8 Δg Δg =(2m/r 3 )Δr 3 r 3 (Δr) (r =2m) (Δg) H =(1/4m 2 )Δr (M = M ) g E Δg 10 9 g E (M =10 6 M ) Δg 10 3 g E 3 D 2 z μ dλ 2 = R μ ανβ kα k β z ν (1.2) ( )

1 17 ( ) (Δg) =g E r =(2mΔr/g E) 1/3 (Δr/4m 2 g E) 1/3 4 2 (Δr =2) 10 300 10 5 4 c G 1 m =1.5 10 3 g E =10 16 ( ) 1

= 18 2 ( ) SF 2.1 0 1 ( ) 2 3 z x z t y t = t 2 3 4 x t y t = t 1 2.1: 1 1 1 3 1 3+1=4 4

2 19 2.2 4 4 2.2 ( ) ( ) ( ) 2.2 ( ) ( ) t y x ( ) ( ) ( 4 ) ( ) 2.2: (x-y ) t (manifold

2 20 GPS 4 4 4 3+1 2.3 ( ) ( ) ( ) ( ) ( ) ( ) ()

2 21 2.3: = 0 = 0 2.4: ( ) ( ). ( ) 2.3 ( ) ( ) ( ) ( )

2 22 ( 2.4 ) ( ) 2.4 90 ( ) 90 2.4 ( ) ( )

2 23 1 ( ) 2.5 r t τ r t C G 1 c = G =1 ( ) (c = G =1 ) Time / M 70 60 50 40 30 20 10 t : Schwarzschild coordinate time τ : proper time 0 0 2 4 6 8 10 r / M 2.5: (r =9M ) r ( t τ) M kg ( ) c =2.998 10 8 m/s G =6.67259 10 11 N m 2 /kg 2 GM/c 2 GM/c 3 c = G =1 M 2M ISCO 6M 2 r =9M τ =30M M km M GM/c 2 1 2 ISCO(innermost stable circular orbot) ( )

2 24 M c G M GM/c 3 M c G ( ) M M =1.989 10 30 kg m km ( ) 30M ( ) 10 6 10 8 M m 1 =1.50 10 11 m 2.5 t ( ) ( τ: ) (r =2M) r ( ) ( ) ( ) 2.5 30M r =0 ( ) ( ) ( ) ( ) ( ) ( )

2 25 ( ) 2.5 ( )

26 3 ( ) 3.1 ( ) 1) ( ) r =0 ( ) 2) 3) 4)

3 27 ( ) 3.2

3 28 z r sinθ dφ dr r dθ dz θ r dy dx x y φ r sinθ dφ 3.1: x y z dx dy dz r θ φ dr rdθ r sin θdφ x, y, z t 1 A B A B (Δs) 2 =(Δx) 2 +(Δy) 2 +(Δz) 2 (3.1) A B Δt (Δs) 2 =(Δx) 2 +(Δy) 2 +(Δz) 2 c 2 (Δt) 2 (3.2) cδt cδt Δt c Δt ( 1 ()

3 29 ) r x θ z φ (Δs) 2 =(Δr) 2 + r 2 (Δθ) 2 + r 2 sin 2 θ(δφ) 2 c 2 (Δt) 2 (3.3) ( ) (Δθ) 2,(Δφ) 2 1 Δθ, Δφ θ, φ 3.1 ( ) 3.3 ( ) ( ) (Δs) 2 =(Δx) 2 +(Δy) 2 +(Δz) 2 c 2 (Δt) 2 (3.4) ( ) Δs Δx Δy Δz ( ) ds 2 = c 2 dt 2 + dx 2 + dy 2 + dz 2 (3.5)

3 30 ( Δx ) ( ) ds 2 = c 2 dt 2 + dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 (3.6) t x y z t r θ φ x x 0 x 1 x 2 x 3 ds 2 = g 00(cdx 0 ) 2 + g 11(dx 1 ) 2 + g 22(dx 2 ) 2 + g 33(dx 3 ) 2 (3.7) g 00 = 1 g 11 =1 g 22 =(x 1 ) 2 g 33 =(x 1 ) 2 sin 2 (x 2 ) g ( ) g ( ) μ( ) ν( ) g μν μ ν ds 2 = dtdφ ( dx 0 dx 3 ) dtdr ( dx 0 dx 1 ) ( ) μ ν 4 4=16 ds 2 = 3 3 ds 2 = g μνdx μ dx ν (3.8) μ=0 ν=0 g μν x μ ( g μν = g μν(x 0,x 1,x 2,x 3 ) ) μ ν ds 2 = g μνdx μ dx ν (3.9) ( ) g μν R μν, R g μν 2 R μν 1 gμνr = κtμν (3.10) 2 N N S km S S km S (x, y, z) S =(2, 1, 0) S x =2 S y = 1 S z =0 S a ( a = x, y, z ) A abc... a, b, c,... 2 R μν ( ), R ( )

3 31 ( ) μ ν 4 4 4=16 10 μ μ = t, x, y, z μ = t, r, θ, φ (principle of general relativity) T μν T μν =0 T μν 0 ds 2 = ( 1 2m r ) c 2 dt 2 + 1 ( 1 2m r ) dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 (3.11) m = GM/c 2 (M ) r =2m g tt =0 g rr = 3.4 τ σ

3 32 (i) (ii) r, θ, φ (FIDO: fiducial observers) ( ) 3.5 τ ( ) ( (Δs) 2 = 1 2m ) (cδt) 2 1 + ( r 1 2m )(Δr) 2 + r 2 (Δθ) 2 + r 2 sin 2 θ(δφ) 2 (3.12) r ( Delta ) Δr =Δθ =Δφ =0 (Δs) 2 = (Δτ) 2

3 33 3.11 (Δs) 2 = (1 2m/r)(Δt) 2 [(Δs) 2 ] 1 Δt = ( ) 1 2m 1/2 Δτ (3.13) r 1/(1 2m/r) 1/2 lapse finction 3 (r =3m) 1 1.7 r =2.9m r =2.8m r =2.7m r =2m r =2m r =2m r =2m (event horizon) : r (Δθ =Δφ =0 ) (Δτ =0) Δl Δr ( Δr = 1 2m ) 1/2 Δl (3.14) r r =3m 1m 0.58m Δt =Δr =0 Δτ =Δl =0 r c c

3 34 c a = 0 Light Rays a = 0 Wave Fronts Black Hole Black Hole 3.2: m 2m ( ) 3.6 ( ) r =0

3 35 2π Δr Δl (t, r, θ, φ) ( ) l 2π ( ) r Schwarzschild radial coordinate ( ) proper radial distance R (proper radial diistance) r (Schwarzschild radial coordinate) R 2M = r 2M 1 2M r dr [ ] R =2M + r(r 2M)+2M ln r/2m 1+ r/2m R 2M 3.3: (a) (b) ( ) (c) ( ) (a) ( ) (b)

36 4 ( ) 4.1 I/II ( ) ( ) ( ) ( )

4 37 ( ) ( ) 4.1.1 4.1: 4 1 1 H 4 2 He + 2e+ + ν (4.1) ( ) ( )

4 38 ( ) ( ) ( ) 10 7 K ( ) 10 10 K K 10 7 K ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4 39 β β β 1000 10 10 10 39 10 15 m ( ) TNT ( ) ( ) 1000 ( ) 4.1.2 4.2 4.2: ( II ) 50 60 Fe ( ) Fe Fe E =Δm c 2 (Δm c 2 )/A A

4 40 ( ) 10 8 4.08 ev 1932 ( ) 7 3 Li + 1 1 H 2 4 2He (4.2) E = mc 2 0.2 17.4MeV 4.1.3 K ( )

4 41 4.3: 4.2 ( ) X X X Cyg X- 4.4: X ( ) ( ) B X 8.7 X

4 42 ( ) ( ) ( ) ( ) X Cyg X- X X 100keV X ( ) ( 100km ) ( X ) X X Cyg X- ( ) ( ) 1. ( ) 2. ( ) ( ) 3. ( ) 4. X 5. 6.

4 43 7. ( ) 4.3 4.3.1 (QSO) ( ) 1000 ( ) ( ) ( ) ( )

4 44 4.5: M87 5900 4.3.2 1943 ( ) 4.3.3

4 45 4.4 ( ) ( ) 10 15 g ( ) 6 10 27 g cm [ 146.6m 230.4m 230.4m (1/3)] 10 13 g 4.5 : ( )

4 46 : κ GM rc 2 λ GM r 3 c 2 AGN κ 1 λ λ

47 5 II 5.1 5.1: ( ) 545.5 m 10 m 3 /sec 335 10 6 W ( ) (http://www.kurobe-dam.com/whatis/index.html )

5 48 Q 1 ( ) (1) ( ) U = mgh m [kg/s] 1 g =9.8m/s 2 h (2) (3) A (1) 5326.3 10 6 W, (2) 6.3%, (3) 0.59 10 13 %. 1 5.2 II r>r e R e m r ( V (r) = GM ) em x 2 dx = GM em (5.1) r M e F = m GM e R 2 e = mg (5.2) R e = 5371 km M e =5.97 10 24 kg g =9.8 m/sec 2 g R e M e GM e = gre 2 V (r) = mgr2 e r (5.3) E = 1 2 mv2 mgr2 e r (5.4) 1 0.59 10 13 % 10 1 % 10 8 10 10 %

5 49 (5.4) ( ) 2 v(r) = E + mgr2 e (5.5) m r E (r ) E 0 E <0 v g moon (1/6)g earth R moon (1/3.6)R earth c (Schwarzschild radius) (M gal =2 10 11 M ) E <0 L = r p p = mv (r, φ) L = L = mr(r φ) =constant v 2 =(ṙ) 2 +(r φ) 2 1 2 m(ṙ2 + r 2 φ2 ) GMm = E = constant (5.6) r 1 2 mṙ2 + L2 2mr 2 GMm = E (5.7) r φ V eff (r) L2 2mr 2 GMm r (5.8)

5 50 v r ṙ (5.7) E = 1 2 v2 r + V eff (5.9) (5.8) r r 0 r r V 0 r 5.2: r E>0

5 51 A Black Hole 0.9 V/m Black Hole 0.9 V/m B 0.8 0.7 8 6 2 x/m 2 6 8 8 6 2 2 6 y/m 8 0.8 0.7 8 6 2 x/m 2 6 8 8 6 2 2 6 y/m 8 5.3: ( ) ( :L =0) ( :L 0) ( ) (Black Hole) (Event Horizon) (Schwarzschild) φ r [( d 1 2M ) ] ṫ =0, (5.10) dλ r d [ r 2 sin 2 θ dλ φ ] =0. (5.11)

5 52 ṫ = dt/dλ φ = dφ/dλ λ τ/m [ ] E/m ( 1 2M ) ṫ = constant r (5.12) L/m r 2 sin 2 θ φ = constant (5.13) r m 2 ṙ 2 = E 2 V (r) (5.14) ( V (r) 1 2M r ) )(m 2 + L2 r 2 (5.15) 5.3 ( ) ( ) ( ) (

5 53 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ω F Ω F > ω H BH ω H Ω F < ω H BH 5.4: ( ) ( ) ( ) ( ) ( )

54 6 6.1 X ( ) S

6 55 6.1: ( ) 6.2 X 6.3

6 56 6.2: X (Cygnus X-1) η ( ) 6000 X 1967 8.7 ( 26km) 20% ( ) ( B ) 500 (http://en.wikipedia.org/wiki/cygnus X-1 ) (?) 6.4 ( )

6 57 6.3: 6.4: ( ) ( ) ( ) ( ) ( ) ( )

6 58 ( ) ( ) 6.3 6.4 6.3 ( ) 90 ( ) 6.4 ( ) ( ) 6.3 ( ) ( 6 4 2 0 BH y [M] -2-4 -6-8 -10-8 -6-4 -2 0 2 4 6 8 x [M] 6.5: ( )

6 59 ) 6.4 ( ) 6.5

6 60 6.6 X 6.6: (http://www.shokabo.co.jp/sp radio/spectrum/ radiow/window.htm ) 6.7: (Sgr A ) ( ) ( ) Q (VLA, VLBI)

6 61 6.8: NGC4258 6.6? II 6.6.1 ( ) ( ) ( ) ( ) ( ) ( )

6 62 6.9: ( ) 1 ( ) ( ) 6.6.2 ( ) 1 II

6 63 6.10: ( II ) 6.10 ( ) ( ) ( ) 6.6.3 ( ) ( ) ( ) ( ) c 6.11:

6 64 ( ) ( ) G.Walker, Nature, 378, 332 (1995) ( p.50 ) 6.12: (MCG-6-30-15) ( ) BH 6.13: Cygnus X-1

65 7 ( ) SF ( ) 7.1 ( ) ( ) ( )

7 66 ( ) 6.57 10 6 (M/M ) 16.5 10 6 (M/M ) 10 14 M 40 7.2 ( ) ( ) ( ) ( 1 1

7 67 ( ) Q 7.3 2 ( ) 7.1: 2 Schwarzschild black hole Kruskal coordinate system ( )

7 68 7.4 7.5 ) ( ) SF ( ) ( ) TV SF ( ) SF ( ) ( ) (

7 69 ) ( ) ( ) ( ) ( ) 7.6 ( ) 7.2: ( ) (http://ja.wikipedia.org/wiki/ :Worm3.jpg )

(?) ( ) ( ) ( ) ( ) 70

S II II F Gravitation C.W.Misner, K.S.Thorne, & J.A.Wheeler, W.H.Freeman and Company: New York (1970) Black Holes, White Dwarfs, and Neutron Stars S.L.Shapiro & S.A.Teukolsky, JohnWiley &Sons: New York (1983) Black Holes: The Membrane Paradigm K.S.Thorne, R.H.Price, & D.A.Macdonald, Yale Univ. Press: New Haven and London (1986) ( ) (2007) 71