グリーンケミストリー_メタン.pdf

Similar documents
Microsoft PowerPoint - 城 ppt[読み取り専用]

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

untitled


PowerPoint プレゼンテーション

水素移動型不斉還元触媒|関東化学株式会社

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

スライド 1

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

No. 432 May BP MOT MOT 2

SPring8菅野印刷.PDF

Nuclear Magnetic Resonance 1 H NMR spectrum PPM

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

X線分析の進歩36 別刷

Microsoft PowerPoint - S-17.ppt

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ


YAKUGAKU ZASSHI 132(11) (2012) 2012 The Pharmaceutical Society of Japan 1297 Regular Article 酵素反応の計算ミューテーション解析 土井富一城, 蒲池高志, 吉澤一成 Computation

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

chap1_MDpotentials.ppt

スライド 1

09_organal2

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Scheme 1 Scheme 2 Chart 1 Scheme ( 44 )

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

yakugaku-kot.ppt

特-7.indd

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

1


資源と素材

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,

Fig. 2 Effect of oxygen partial pressure on interfacial tensions between molten copper and fayalite slag (Fe/Si0 2=1.23) at 1473 K. Fig. s Effect or o

光学

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

eaxys Prize lub Symposium in Japan, March 28, 2014 Profile JSPS Stephan

Stereoelectronic Effect

Activation and Control of Electron-Transfer Reactions by Noncovalent Bond

寄稿論文 高い発ガン活性を示す鉄キレートお構造特性 | 東京化成工業



1_alignment.ppt

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

untitled

Microsoft Excelを用いた分子軌道の描画の実習

製紙用填料及び顔料の熱分解挙動.PDF

Respiration

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

UDC The Structures and Electronic Properties of Endohedral Metallofullerenes: A Theoretical Investigation 厦门大学博硕士论文摘要库

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

寄稿論文 規則性無機ナノ空間が創り出す新しい触媒能 | 東京化成工業

( ) ( ) (action chain) (Langacker 1991) ( 1993: 46) (x y ) x y LCS (2) [x ACT-ON y] CAUSE [BECOME [y BE BROKEN]] (1999: 215) (1) (1) (3) a. * b. * (4)

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

物理予稿01-

news

C 3 C-1 Cu 2 (OH) 3 Cl A, B A, A, A, B, B Cu 2 (OH) 3 Cl clinoatacamite S=1/2 Heisenberg Cu 2+ T N 1 =18K T N 2 =6.5K SR T N 2 T N 1 T N 1 0T 1T 2T 3T

PowerPoint プレゼンテーション

J. Jpn. Inst. Light Met. 65(6): (2015)

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

渡辺(2309)_渡辺(2309)

1

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

SPring-8_seminar_

T05_Nd-Fe-B磁石.indd

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0


TOP10 Innovations A triple-junction compound solar module with a conversion efficiency of 31.17%. Source SHARP CORPORATION (


(2) (3) (3) (4) (5) ABI PRISM 7700 (5) Roche LightCycler TM (7) BioFlux LineGene (9) (10) (12) F. Hoffmann-La Roche Ltd. Roche Molecular Systems Inc.

note4.dvi

Analysis of Hypoxia Dynamics Using Pelagic and Benthic Biogeochemical Model: Focus on the Formation and Release of Hydrogen Sulfide Masayasu IRIE, Shu

輻射の量子論、選択則、禁制線、許容線


9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195


42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤®

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

(2) (2) (3) (3) (5) ABI PRISM 7700 (5) Roche LightCycler TM (7) BioFlux LineGene (9) 1 RT-PCR (10) (12) (13) F. Hoffmann-La Roche Ltd. Roche Molecular


VOL. 37 NO. 3 Key words: Drug allergy, LMIT, Penams, Cephems, Cross-reactivity

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

4/15 No.

量子情報科学−情報科学の物理限界への挑戦- 2018

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

èCémò_ï (1Å`4èÕ).pdf


a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

Transcription:

グリーンケミストリー平成 2 年 月 25 日 大気化学と地球環境 先導物質化学研究所応用化学 ( 機能 ) 塩田淑仁 吉澤一成

天然ガス ( メタン ) を利用した エネルギー戦略 塩田淑仁 先導物質化学研究所 応用化学 ( 機能 ) レポート : メタンについて 資源エネルギー用途環境など

メタン (methane) は最も単純な構造の炭化水素で 1 個の炭素原子に 4 個の水素原子が結合した分子である 化学式は CH 4 和名は沼気 ( しょうき ) 分子は炭素が中心に位置する正四面体構造をとる H C H H H mp 183 C bp 162 C

メタンの製造 採掘方法 メタンの利用方法 1. 天然ガス ( ガス田 ) 2. 発酵 ( メタン菌 ) 3. シェールガス ( 頁岩の隙間 ) 4. メタンハイドレート ( 海底 ) 1. 燃焼 2. 水素製造 燃料電池 NH3 の原料 3. 化学原料 C-H 結合変換メタノール 石油代替物

天然ガスとは 油田地帯 ガス田地帯から産出するメタンを主成分とする可燃性ガス クリーンなエネルギー 硫黄分 その他の不純物を含まないため 燃やしても Sx やススを発生しない 豊富に存在 世界各地に存在し 可採年数は67 年と石油の41 年に比べて約 30 年長くなっています

メタン菌によるメタンの生成 嫌気性条件下における水素と二酸化炭素を用いたメタン生成 C 2 + 4H 2 CH 4 + 2H 2 ΔG ( 標準自由エネルギー変化 )= -131 kj/mol 汚泥 水田 沼や哺乳類の消化管などに分布し 代謝産物としてメタンを発生 ( メタン発酵 ) する嫌気性の古細菌 人体に棲むメタン菌 水田のメタン菌

メタン発酵システムの概要メタン菌によるメタンの生成 北海道でのメタン発酵実証プラント

メタンハイドレート 日本近海におけるメタンハイドレートの分布 ガス相当量 7.35 兆 m 3 日本が消費する天然ガスの約 96 年分に相当

メタンハイドレートからのガス分離作業を開始した地球深部探査船 ちきゅう

シェールガス革命

シェールガス革命

3つの革新技術 水平抗井 地下2000 3000mを水平に掘り 進める 水圧破砕 水の圧力でひび割れを作る マイクロサイスミック 地震波の観測技術 問題点 水質汚染 地震の増大

アルカンの C H 結合のエネルギー B3LYP/6-311++G** Methane C H bond 1 C H bonds 2 C H bonds" 3 C H bonds" Benzylic C H bonds" K. Yoshizawa, Acc. Chem. Res., 39, 375 (2006).

バクテリアによるメタンの酸化過程 Methane Methanotrophic bacteria use methane as their sole source of carbon and energy Methanol! Formaldehyde! Formic acid! Carbon dioxide! J. D. Lipscomb, Annu. Rev. Microbiol. 48, 371 (1994).!

触媒化学の 10 大テーマ " Low-temperature oxidation of S 2 to S 3 " Selective oxidation of methane to methanol" Decomposition of Nx to molecular nitrogen and oxygen" Selective production of ethylene, propylene, and styrene from alkanes" xidative coupling of methanol to ethylene" Direct oxidation of benzene to phenol using molecular oxygen" Direct synthesis of hydrogen peroxide from hydrogen and oxygen" Epoxidation of ethylene by molecular oxygen" Direct synthesis of aromatic amines via aromatics and ammonia" Anti-Markovnikov addition of water or ammonia to olefines" C&EN, May 31 (1993).!

バイオエタノールに可能性はあるか 朝日新聞2007年5月29日

ダイレクトメタノール燃料電池 2009 年 10 月 22 日 29,800 円 現在 発売中止

Conversion of methane to methanol (1) Commercial process for the production of methanol from natural gas (Step 1) CH 4 (g) + H 2 (g) C(g) + 3H 2 (g) Ni catalyst, heat (Step 2) C(g) + 2H 2 (g) CH 3 H(g) zeolite catalyst, heat ΔH 0 = 49.3 kcal/mol ΔH 0 = 21.7 kcal/mol (2) Direct conversion of methane to methanol CH 4 (g) + 1/2 2 (g) CH 3 H(l) ΔH 0 = 30.7 kcal/mol Enzymatic alkane hydroxylations by methane monooxygenase (MM) Gas phase methane methanol conversion by transition-metal oxide ions, Mn +, Fe +, Co +

可溶性メタンモノオキシゲナーゼ (smm) Methanotrophic bacteria (Methylococcus capsulatus (Bath) and Methylosinus trichosporium (B3b)) CH 4 + 2 + NADH + H + CH 3 H + H 2 + NAD + Glu243 HN H H 2 N H N His147 N Fe Fe His246 H Glu114 Glu209 Glu144 a carboxylate-bridged diiron center MMH Active site Active site

メタンモノオキシゲナーゼ (MM) CH 4 + NADH + H + + 2 CH 3 H + NAD + + H 2 Methylococcus capsulatus (Bath) Methylosinus trichosporium B3b Hydroxylase (251 K) containing diiron centers that have direct reactivity to methane Cytoplasmic ("soluble") MM Reductase (38.6 K) containing Fe 2 S 2 cluster and FAD Coupling protein (15.5 K) Membrane-bound ("particulate") MM Copper-containing proteins

Role of transition metals in dioxygen activation The principal kinetic barrier to direct reaction of dioxygen with an organic substrate arises from the fact that the ground state of the dioxygen molecule is triplet. Spin-forbidden reaction 1 3 2 + 1 S 1 S 2 3 2 + 22.5 kcal/mol 1 2 1 2 1 2 + 1 S 1 S Transition metals play an important role in the activation of dioxygen for biochemical reaction with a substrate. 3 2 + 2e 1 2 2 M M M X M M M M M

可溶性メタンモノオキシゲナーゼの活性サイト構造 H 246 E 243 H N N C E 209 C Fe(III) H H 2 C H H N Fe(III) C NH H 147 E 114 H 246 H N N C E 209 E 243 C N Fe(II) Fe(II) H 2 C H 2 C NH H 147 E 114 E144 E144 MMH ox M. capsulatus ( 160 C) MMH red M. capsulatus ( 160 C) A. C. Rosenzweig, P. Nordlund, P. M. Takahara, C. A. Frederick, and S. J. Lippard, Chem. Biol., 2, 409 (1995).

可溶性メタンモノオキシゲナーゼの活性構造 Structural data from Mössbauer and EXAFS measurements of intermediate Q that has a direct reactivity to substrate methane A pair of short Fe bonds of 1.77 Å A pair of long Fe bonds of 2.05 Å Unusually short Fe Fe distance of 2.46 Å +4 Fe 2.46 Å 2.05 Å C 1.77 Å +4 Fe 4.5 /N per Fe Bis(µ-oxo)Fe 2 structure L. Shu, J. C. Nesheim, K. Kauffmann, E. Münck, J. D. Lipscomb, L. Que, Jr. Science, 275, 515 (1997).

可溶性メタンモノオキシゲナーゼによるメタンの水酸化機構 CH 4 Fe Fe MMH Q CH 4 CH 4 Fe Fe H Fe H CH 3 Yoshizawa (1997) Fe CH 3 Fe Siegbahn Crabtree (1997) Fe Fe H CH 3 H + H CH 3 Fe H + Fe Siegbahn (1999) Morokuma (1999) Fe CH 3 H Fe Friesner Lippard (2000) Fe Fe H CH 3 H 3 C H Fe H + Fe H Fe H + CH 3 H

可溶性メタンモノオキシゲナーゼによるメタンの水酸化機構 ( 吉澤 ) K. Yoshizawa, T. Yumura, Chem. Eur. J., 9, 2347 (2003);!

膜結合型メタンモノオキシゲナーゼの X 線構造 Mononuclear copper site Mononuclear zinc site Dinuclear copper site pmm X-ray structure: There are three metal centers per protomer in the crystal structure. Two of these are modeled as mononuclear and dinuclear copper species. The third metal center is occupied by zinc in the crystal. The zinc is derived from crystallization buffer and it is probably occupied by another metal ion in vivo such as copper or iron. R. L. Lieberman and A. C. Rosenzweig, Nature 434, 177 (2005).!

NIM-QM/MM approach to large molecular systems" QM = Quantum Mechanics MM = Molecular Mechanics Molecular Mechanics Quantum Mechanics QM region (B3LYP DFT method) MM region (Amber Force Field) NIM (Morokuma and coworkers) B12-dependent" diol dehydratase QM region His143 Glu170 PD Ser362 K Gln141 Glu221 His143 PD K 1.052 2.759 1.643 2.740 2.736 1.457 1.509 1.381 1.297 1.430 1.578 1.021 Glu170 13,543 atoms Gln296 ribose moiety ribose An optimized structure of TS for an H-atom abstraction. T. Kamachi, T. Toraya, and K. Yoshizawa, J. Am. Chem. Soc. 126, 13908 (2004).

量子化学計算から求めた膜結合型メタンモノオキシゲナーゼの銅単核活性サイトの構造 Resting state Cu III -oxo species" Gln404 Gln404 Glu75 1.297 1.250 Glu75 His72 1.931 4.281 1.931 His48 His72 2.197 2.186 2.078 1.843 His48 K. Yoshizawa and Y. Shiota, J. Am. Chem. Soc., 128, 9873(2006).!

膜結合型メタンモノオキシゲナーゼの銅単核活性サイトにおけるメタンの水酸化 1.970 2.042 2.023 1.847 2.498 1.998 1.841 2.064 1.184 2.091 1.321 3.323 0.971 1.865 2.061 1.964 2.066 2.227 1.842 2.073 2.048 3 R 3 TS1 3 m m Rad m 3 Int m 1 TS1 m 18.8 xo complex + CH 4 1 16.6 3 Rad m R 3.9 m 3.9 Singlet 2.6 3 TS1 m Triplet 0 1.2 3.7 3 1 Rad R m m 3 Int m 11.2 1 Int m 11.8 1 TS2 m 3.4 In kcal/mol! 0.971 1.867 3.423 1.964 2.062 2.060 Cu- = 3.787 1.830 0.976 1.948 1.925 4.416 1.958 1.838 3.774 1.423 3.551 2.074 1.976 2.227 2.002 2.052 1.932 1.927 1 P m 52.9 1 Rad m 1 Int m 1 TS2 m 1 P m

量子化学計算から求めた膜結合型メタンモノオキシゲナーゼの銅二核活性サイトの構造 Resting state" Bis(µ-oxo)Cu II Cu III species" His139 His137 Glu35 1.250 1.301 2.038 1.972 2.474 2.061 2.266 His33 His137 Glu35 His139 1.243 1.335 2.030 1.902 1.762 1.972 2.024 2.757 1.998 1.933 1.804 His33 - = 2.405 K. Yoshizawa, Y. Shiota, submitted.!

膜結合型メタンモノオキシゲナーゼの銅二核活性サイトにおけるメタンの水酸化 1.396 1.992 2.009 1.132 1.988 1.972 2.613 2.065 1.918 1.985 3.834 2.059 2.829 2.063 2.739 2.735 2.027 2.023 2.058 1.871 2.059 2.1121.846 1.870 1.868 1.882 1.868 1.917 1.976 2.006 2.118 2.136 2 TS1 d 2 Rad d 2 TS2 d 2 TS1 d 17.6 2 Rad d 12.5 2 TS2 d 21.5 In kcal/mol! xo complex + CH 4 Doublet 0 1.3 4.1 2 R d 2 Int d 2.057 2.038 3.717 1.884 1.7791.918 2.748 1.975 1.932 1.805 1.869 2.093 3.141 2.135 1.900 2.112 1.940 1.790 1.920 2.067 49.2 2 R d 2 2 P Int d 2 d P d 1.898 3.906 1.797 3.110 1.787 1.917 2.012

Methane hydroxylation by the bare iron-oxo complex" Helmut Schwarz's group Ion cyclotron resonance conditions Fe + N 2 CH 3 H (41%) N 2 H Fe + CH 3 Fe + FeH + + CH 3 (57%) FeCH 2 + + H 2 (2%) CH 4 Chem. Eur. J., 3, 1160 (1997); J. Am. Chem. Soc., 120, 564 (1998); rganometallics, 17, 2825 (1998); J. Biol. Inorg. Chem., 3, 318 (1998); J. Am. Chem. Soc., 121, 147 (1999); J. Am. Chem. Soc., 121, 5266 (1999); J. Chem. Phys., 111, 538 (1999); J. Phys. Chem. A, 104, 2552 (2000); J. Phys. Chem. A, 104, 9347 (2000); J. Am. Chem. Soc., 122, 12317 (2000); rganometallics, 20, 1397 (2001); J. Phys. Chem. A, 106, 621 (2002); Coord. Chem. Rev., 226, 251 (2002); J. Chem. Phys., 118, 5872 (2003).!

Energy diagram for the conversion of methane to methanol by Fe +" Fe + ( 4 Δ) + CH 4 Fe + ( 6 Σ) + CH 4 28.6 22.8 Quartet Sextet 6.4 0.0 Fe + CH 4 Methane complex Energy in kcal/mol TS1 31.1 22.1 Spin inversion H + Fe H C H 3-22.2 + Fe CH 3 + Fe H TS2 15.1 6.4 CH 3-21.1-23.9 Hydroxo intermediate Fe + ( 4 F) + CH 3 H Fe + ( 6 D) + CH 3 H -27.2 31.4 10.2 Spin inversion CH 3 + Fe H Product complex K. Yoshizawa, Y. Shiota, and T. Yamabe, Chem. Eur. J. 3, 1160 (1997); J. Am. Chem. Soc. 120, 564 (1998).

Energy diagram for the conversion of methane to methanol by Sc +" Triplet ScH + +CH 3 H 41.8 CH 3 Sc + 23.9 TS1 Sc + ( 1 Σ + ) +CH 4 12.3 Singlet 0-13.5-20.7 Reactant complex Hydroxo intermediate H Sc + CH 4 Sc + CH 3 H CH 3 Sc + + CH 3 H Sc + 93.4 (76.2) TS2 57.9 (52.7) 73.5 50.4 41.3 (32.6) 28.6 Product complex CH 3 H Sc +

Energy diagrams for the conversion of methane to methanol by Cu + " Cu + ( 3 Π) +CH 4 Y. Shiota and K. Yoshizawa, J. Am. Chem. Soc. 122, 12317 (2000). Singlet Triplet 32.3 (0.1) 0 (-36.5) -3.2-45.8 H-atom abstraction TS1 (-11.8) -13.0 + Cu H C H 3 Spin inversion xygen-rebound step + Cu TS2-17.6 CH 3 Cu + + CH 3 H -12.6-45.6-56.1 H -50.0-61.1 Cu + CH 4-64.8 + Cu CH 3 In kcal/mol! H CH 3 + Cu -102.2 H The dotted lines in the region of Cu +, Cu + (CH 4 ), and TS1 indicate the use of the spin-unrestricted method. Values in parentheses are energies in the open-shell singlet.!

Reactivity to methane of bare transition-metal oxide ions M + State BDE (kcal/mol) Atomic spin density ΔE (kcal/mol) M Ο Sc + + 1 Σ + 156.1 0.00 0.00 73.5 Ti + 2 Δ 155.1 1.14 0.14 72.4 V + 3 Σ 137.2 2.33 0.33 54.5 Cr + 4 Σ 81.3 3.65 0.65 1.3 Mn + 5 Σ + 56.4 4.75 0.75 26.2 Fe + 6 Σ + 75.2 3.86 1.14 12.6 4 Δ 69.4 3.62 0.63 Co + 5 Δ 73.3 2.68 1.32 25.6 3 Π 49.9 2.61 0.61 Ni + 4 Σ 69.3 1.53 1.47 26.5 2 Σ 57.9 0.23 1.23 Cu + 3 Π 37.6 0.47 1.47 50.0 1 Σ + 0.00 0.00 Y. Shiota and K. Yoshizawa, J. Am. Chem. Soc. 122, 12317 (2000).

Reaction efficiencies φ (%) and product branching ratios (%) for the reactions of methane with M + M + φ MH + + CH 3 MCH 2 + + H 2 M + + CH 3 H Mn + 40 100 < 1 Fe + 20 57 2 41 Co + 0.5 100 Ni + 20 100 D. Schröder and H. Schwarz, Angew. Chem. Int. Ed. Engl. 34, 1973 (1995).