PDF

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ,

Part () () Γ Part ,

Note.tex 2008/09/19( )

液晶の物理1:連続体理論(弾性,粘性)

吸収分光.PDF

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

I

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Z: Q: R: C:

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

数学の基礎訓練I

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

keisoku01.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

30

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


meiji_resume_1.PDF

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

The Physics of Atmospheres CAPTER :

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

: , 2.0, 3.0, 2.0, (%) ( 2.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

構造と連続体の力学基礎

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

pdf

i

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

sec13.dvi

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Z: Q: R: C: 3. Green Cauchy

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

i 18 2H 2 + O 2 2H 2 + ( ) 3K

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1


LLG-R8.Nisus.pdf

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

KENZOU

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

基礎数学I


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.



A

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

untitled

TOP URL 1

I ( ) 2019

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

29

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


i

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

QMII_10.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

I 1

Mott散乱によるParity対称性の破れを検証

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

untitled

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Microsoft Word - 章末問題

II 2 II

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Transcription:

1 1

1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5

1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV atom 1 1,3 c ( ) O A C h (chiral vector) O B T A B OBB A OB AB.4nm 1nm 1µm ( ) a1 a ( n m) C h na + ma, = (1.1) 1 = n m d θ n m t d t = 3a c c n + nm + m π (1.) θ = tan 1 3m n + m θ 6 π (1.3) 3

a (.14nm) c c n=m( = /6) (n,n) m=( =) (n,) ( 1, ) (armchair) (zigzag) n m (chiral) 1,5 T T (1.1) {( m + n) a ( n + m) a } 1 T d R = (1.4) dr (m+n) (n+m) T ( )l T 3l = (1.5) d R l = Ch = 3 ac c n + m + nm (1.6) (n,m) sp 3 1 1,6 (1.1) q C h k = πq (1.7) k (1.4) T 4

E k, k x y 5 ( ) k 1,7 K ( b ) 3 1 b (1.7) k K (1.7) (1.1) k= ( b ) 3 n m = 3q 1 b (1.8) n 3 ( 1,8) ( ) ( ) 1/3 /3 5 1 6 ( 1,9) 1 F + V = E + (1.9) 5 6 7 7 6 5 F = p + h + s (1.1)

V ( 7s + 6h + 5 p) = (1.11) 3 E ( 7s + 6h + 5 p) = (1.1) (1.1),(1.11),(1.1) (1.9) s p + = h s + + p 1 + ( 7s + 6h + 5p) ( 7s + 6h + 5 p) 3 = 6 + (1.13) 5 7 1 6 = 5 1 5 7 ( 1,1) 5 7-1.36 / cm 3 (1kV) 5V

1.1 1. 1.3 7

1.4 1.5 8

1.6 1.7 1.8 (, ) 9

1.9 1.1 1

1-1,11 mm 1991 ( ) (Fe Co) ( / ) / Fe Ni Co Ni 1.11 Co (Ru Rh Pd Os Ir Pt ) (a ) (15A ) 4 1.1 / 1 1.3nm 11

11 (SiC) 17 Si Si(A AB B) 1

13

1-3 1 1 14

- - (.1).1 z z= z= x E x iwt = A e sin kz (.1) x z= z= E = sin k = nπ ncπ k =, ω = (.) n n k= / (.) / n 15 x (.) sinkz n ( z ) z= z= ( ) f z (.) (.1) z= z= E ( ) <z< f z f ( ) z = n= A n πnz sin + B n π nz cos (.3) z= z ( z) f ( z ) f + = (.4) sinkz coskz z= (.3) k=n / (.)

sine cosine (.4) z= z= E E E = z z ( z = ) = E( z = ), ( z = ) = ( z ) (.5) x,y,z 3 τ τ a x,y,z 3 xˆ, yˆ, zˆ k ϖ ϖ k = k x xˆ + k yˆ + k y z zˆ A ϖ ρ ( i ω t ik r ) 16 c a (.6) exp (.7) r ρ A r ϖ = xxˆ + yyˆ + zzˆ x,y,z + k ϖ - k ϖ k ϖ n, n, n x= y= z= (.) k x π π π = nx, k y = ny, k z nz (.8) x y z

k = k + k + k x y z ( n + n n ) k = π x y + z (.9) n, n, n kc ω = ( n + n + n ) c ω = π x y z (.1) x, n, n, n x,y,z x y z R = n x + n y + n z ω = πc y z (.11) n, n, n 1/8 x y z 8 3 3 4π ω ω 3 = (.1) 3 πc 3π c +d ω π c 3 dω (.13) 3 +d ( ω ) dω dω π ω m = (.14) c = / +d 8πν c ( ν ) dν dν m 3 = (.15) 17

.1. n, n, n R x y z 18

- WU W WU W WU W ω = (.16) η (spontaneous emission) 1 A W( ) p ( U ) = A B W ( ω) (.17) U + U (induced emission stimulated emission) p ( U ) = B W ( ω ) (.18) U 1 B U = B U (.19) gu g (.19) g B = g B (.) U U U 1 (.16) (.17) A U B A B U 19

A B N P abs ( ω ) N = ηωbw (.1) N P emi { A BW( ω )} N U = η ω + (.) N U ηω = N kbt exp (.3) ( ) ( ) W ω W ( ) = ( ω ) ω W W ( ) th A th P abs = P emi (.) (.1) N U th ω = (.4) B N N U (.3) W th ( ) A 1 = ω kbt B e ω η (.5) 1 1 n ( U ) = ( n + )A P 1 (.6) ( U ) na P = (.7) m( ) +d dω

( ω) m( ω) nηω W = (.8) (.6) (.7) A P ( U ) = + m ω ηω P ( U ) ( ) ( ω ) W ( ω ) A (.9) A = W ( ω ) (.3) m ηω (.17) (.18) A B = (.31) m ω η ( ) ω (.14) A B 3 ηω = m( ω) η ω = 3 (.3) π c (.5) W th ( ω ) ηω π c 1 3 = 3 ηω k T e B 1 (.33).3 1 d m( ) dω A = m ( ω) Bηω ηω (.17) (.18) W( ) ηω ( k B T ) exp ηω A= (.4) (.5) = A B 3 3 16π ν π A µ, 3 U Bν = µ 3ε hc 3ε h = U (.34) W th 1

B W( ) W th (.1) (.) B ( ω) = Bg( ω) (.35) B ( ω ) dω B B = (.36) g( ) B( ) NU N P ( N N ) ηωb( ω) c P = (.37) U z d P dz ( z) ( N N ) B( ω ) P( z) U ηω = (.38) c (amplitude absorption constant) ( ) d dz P ( z) α ( w) P( z) = (.39)

(.38) (.39) α ηω = U (.4) c ( ω ) ( N N ) B( ω ) (.35) (.34) A h = πη ν = ω π (.3) B = π ε η µ α ( ω) ( N N ) µ g( ω) 3 3 U πω = U U (.41) 6ε ηc (orentzian) Gaussian g ( ω) 1 = π ω g ( ω ω ) ( ) (.4) + ω ω ω = ± ω g ω g ω =1 π ω ( ) ( ) ω (half width at half maximum HWHM) ω ln 1 ω ω g G ( ω ) = exp ln (.43) ω ω ω ω ω = ln 1.47 g G ( ω ) = = (.44) π ω ω g ( ω ) π ln = 1. 476 g ( ω) g ( ω ).4 ω G (.19) ( ) NU N ( ω) = ( N N ) σ ( ω) α (.45) U (.45) (.41) (.4)

σ ηω ( ω) = µ g( ω) = B( ω) 3ε πω ηc U c (.46) NU N (.3) N U ηω kbt ( e ) N N = 1 (.47) ηω T N ηω k B N N U (.48) k T B ( ) ηω T k B N N N (.49) U ω x F dx dt dx F + γ + ω x = (.5) xt m ( ) t iω m -e E ω e (.5) d x + dt dx γ + ω dt e x = E m iωt ( ω) e (.51) x x iω t ( ω ) e = x (.5) (.51) ( ω) e E x ( ω ) = (.53) m ω iγω ω 4

x ( ω) e = mω E ω ω ( ω) iγ (.54) N N ( ) t iω P ω e P ( ) = ex( ω )( ) ω (.55) N N U χ ω = χ ω iχ ω ( ω ) ε χ ( ω ) E( ω ) P (complex susceptibility) ( ) ( ) ( ) = (.56) (.54) (.55) U χ ( ω) = ( N N ) ε U mω e ω 1 ω iγ (.57) ( ) ( ) ( ) ( ) ( ) χ ω χ ω χ ω = χ ω iχ ω χ χ ( ω ) ( ω ) = = ( N N ) U e ω ω ε mω γ ( N N ) ( ω ω ) + U e γ ε mω γ ( ω ω ) + (.58) (.59).5 ( ) χ ω ( ω) = ε { 1 χ( ω) } ε + (.6) µ = µ η η ( ω) ε η = η κ = = 1+ χ ε ( ω) i (.61) ( ) z exp iωt ikz η iκ 5

k ω ( η iκ ) c = (.6) ( iωt ikz ) = exp z exp iωt iη z κω c exp (.63) e αz ω α = κ (.64) c χ ( ω) κ χ ω c 1 (.59) α ( N N ) U e γ 4ε mc γ ( ω ω ) + (.65) e m ω 3 η (.41) g( ) (.4) 6 µ U χ χ µ U ω ω N N U (.66) 3ε η ( ω ω ) + γ ( ω) = ( ) ( ω ) = ( ) µ U γ 3ε γ N N U (.67) ( ω ω ) + f (.66) (.67) e f m ω µ 3η U = (.68) mω f µ 3e η U = (.69) f (oscillator Strength) NU N (.67) χ N N χ U

.3.4 g ω g ω ( ) G ( ).5 ( ) 7

-3 N U N N N U N N U (inverted population) N NU (pumping) -4 3 (three-level laser) 3 1,,3 W 1, W, W3 N 1, N, N3.6 W1 W W 3 N1 N N 3 1 1 1 3 (relaxation) (radiative process) (non-radiativve Process) (relaxation rate) (relaxation constant) (fluorescence lifetime) 8

W W U γ U WU W γ N U U WU W γ = = U N γ U, NU N exp (.7) kbt γ γ U U WU W = exp kbt (.71) NU N 3 (rate equation) dn dt dn dt dn dt 1 ( Γ + γ 1 + γ 13 ) N1 + γ 1N + γ 31N3 = (.7) ( γ 1 + γ 3 ) N γ 3 3 γ N 1N1 + 3 = (.73) ( Γ + γ 13) N1γ 3N ( γ 31 + γ 3 ) N3 = (.74) N 1 + N + N 3 = const = N 3 (.7) (.74) k B T (.71) γ 1 γ 1, γ 13 γ 31, γ 3 γ 3 γ, γ 13 γ 3 (.7) (.74) 1 γ 1 ( γ 31 + γ 3 ) ( γ + γ ) + ( γ + γ ) N N 1 γ 1 31 3 1 3 = (.75) N = γ 1 Γ ( γ + γ ) + ( γ + γ ) 31 γ 3 3 1 3 Γ N (.76) 9

γ Γ > + 31 1 1 γ 3 γ (.77) N1 N (.77) γ γ 3 γ 31 1 3 N = N N 1 (.75) (.76) N = γ 1 γ 3Γ γ 1( γ 31 + γ 3 ) ( γ + γ ) + ( γ + γ ) 31 3 1 3 Γ N (.78).7 lim N Γ = γ γ 1 3 N + γ 3 = N γ 1+ γ 1 3 (.79) γ γ 1 3 NU N (.65) χ ( NU N ) χ e α z z ( ) - G z e α = e Gz z (gain) G (gain constant) G/ (amplification constant) N = N N 1 1 G ηω N B ω c ( ) = (.8) 3

G Nσ ( ω) = (.81) g 1, g g N g 1 N1 N g N = 1 ηω exp g k T 1 B (.8) g g 1 N N 1 N - N1 1 N 1, N N = N N 1 g N 1 N = (.83) g N g 1 g g 1 B B g = = (.84) B1 g1b1 1 (.8) B (.84) (.83) (.84) B (.8) (.83) (.35) (.34) B ν 3ε η U B = π µ 31

G g πω = N N1 µ 1 g( ω ) g (.85) 1 3 ε c η G g1 πω = N N1 µ 1 g( ω) g (.86) 3ε cη,1 1 P Q ( ) Q c ωw P = (.87) 1 dw κ = = W dt ω (.88) Q c (l= ) U P ωu = Q c (.89) N 3

P (.37) G P G Nηω B( ω)u = (.9) P P N G th 1 Q c = N th ( ) ηb ω (.91) R1 R /c ( 1 R )U R 1 c P ( 1 R1 R ) U = (.9) (.89) Q Q c = c ω ( 1 R R ) 1 (.93) (.9) (.93) ( R R ) c 1 1 ηωb( ω ) N th = (.94) z= +z E t( ωt kz) ( z t) = E e, (.95) k K G k k ε = ε { 1+ χ( ω )} G ω = k + i = 1 + χ c ( ω) ( ω ) k (.96) χ 33

k G ω 1 = 1 + χ ω c ( ) k (.97) ω = χ c ( ω ) G (.98) χ G (.95) (.96) z ( 1 ) ( t k ) ( t) E e G e i, E = (.99) Z, r 1, r (.99) z r -z z= r1 +z ( t k ) ( t) r r E e G e i ω, = E 1 (.1) (.95) z i t E e ω ik r r e G e 1 (.11) 1 = r1r r r R R e iθ 1 = 1 (.11) G R R e 1 (.1) 1 = n k = nπ +θ (.13) (.1) (.98) ω c 1 ( ) = ln R1 R χ ω (.14) ( ) R 1 R 1 ln R1R = R1R 1 Q (.93) (.14) 34

1 χ ( ω ) = (.15) Q c (.13) (.97) ω c { + χ ( ω )} = nπ + θ (.16) (.66) (.67) ( ω) = χ ( ω) ω ω (.17) χ γ (.15) χ ( ω) ω ω = γq c (.18) (.16) (.18) ω c ω ω + = π γ n Qc + θ (.19) ω (.16) χ = c ω = nπ π + c (.11) (.19) (.11) ω (.88) Q c c ω ω κ c ω + ω = γ (.111) ω κω + γω c = κ + γ (.11) ( 35

) Q Q ω γ (.11) Qω + Qcω c ω = (.113) Q + Q c Q Q Q Q c > 1 (frequency pulling) 1 (.11) c / = Q.6.7 36

3-1 3,1 (Nd) 53 m 1Hz Q Q Q 1 ( ) 53nm 357 337mJ 5. 5 Torr 5 1 6 1 37

3.1 38

3- ( ) 7751 3. 1mm ( ) 113381. 3 1mm ( ) 113518 1. 6 3mm 5. mm 1 1.mm 3. Fe 3 1 Fe Fe 7 Fe Fe A A B TEM 39

3-3 SEM( ) TEM( ) SEM TEM TEM TEM ( ) SEM TEM 4

4 4-1 SEM 4,1 4,( ) 4,3( ) Cu.3 m 5nm 4,1 41

4, 4,3 4

4- Fe C TEM TEM 4.4 a B 5 c 1 4,4c 3 A 3.391 B.71 C 1.179 ( ) ( ) ( ) 43

44

45

4-3 C TEM TEM 4,5 1 A H A B C ( ) 46

47

4-4 Fe TEM TEM 4,6 1 (a) 5 (b) 4,6a ( ) 48

49

4,6c 3nm.g cm 3 3 1.5g cm 4.7 6% 3 ( ) 4.7 5

51

4-5 C % 3 4-6 5

5 ( 1983) ( 1998.11.13) Carbon Nanotubes and Related Structures edited by Peter J.F.Harris (Cambridge University Press 1999 The Science and Technology of Carbon Nanotubes edited by K.Tanaka, T.Yamabe and K.Fukui Elsevier (Elsevier Science 1999) 53

6 TEM SEM TEM 54