.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

Similar documents
Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

wiles05.dvi

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

非可換Lubin-Tate理論の一般化に向けて

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Part () () Γ Part ,

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Jacobi, Stieltjes, Gauss : :

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

日本数学会・2011年度年会(早稲田大学)・総合講演


1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

meiji_resume_1.PDF

³ÎΨÏÀ


LLG-R8.Nisus.pdf

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Note.tex 2008/09/19( )

1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

量子力学 問題

prime number theorem

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

2018 : msjmeeting-2018mar-02i002 ( ) 1. 1:. X (= ), X, X., X Z, 1 π1 ab (X) 0 Chow ( CH 0 (X) := Coker div X : κ(x) ) Z x X 1 x X 0 2., x X, x

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

( )

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Z: Q: R: C: sin 6 5 ζ a, b

201711grade1ouyou.pdf

I

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

: , 2.0, 3.0, 2.0, (%) ( 2.

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

TOP URL 1

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

chap9.dvi


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz


(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

数学の基礎訓練I

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2


1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

16 B

all.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

30

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

液晶の物理1:連続体理論(弾性,粘性)

9 Feb 2008 NOGUCHI (UT) HDVT 9 Feb / 33

Untitled

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

newmain.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

17 Θ Hodge Θ Hodge Kummer Hodge Hodge


B

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

( ) (, ) ( )

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

keisoku01.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

H.Haken Synergetics 2nd (1978)

Transcription:

p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v p (p) = 1..3. K p, K K. G K = Gal(K/K), K Galois. K K L g G K, ggal(k/l) G K G K, G K..4. G K. K K /K O K O K. K, K K unr. K unr K. K unr K. K unr K, Gal(K unr /K), K k. G K Gal(K/K unr ) Gal(K/K), I K. O K unr k, k k. G K /I K = Gal(K unr /K) Gal(k/k). p F k Gal(k/k) Frob k, Gal(k/k) Frobenius. Gal(k/k) Frob k. I K p Sylow P K. P K G K. P K G K..5. G K p. E Q p, O E. 1, (). 1

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En E (V ) p. E = Q p, G K E G K p..5.3. G K O E, E,,. Rep OE G K, Rep E G K. (.1) Rep OE G K OE E Rep E G K Rep Zp G K Zp Qp Rep Qp G K. O E E, Z p Q p, O E Z p, E Q p. OE E.,. 3. e Rham p. K p, E Q p. Rep Qp G K, e Rham Rep R Q p G K Rep cris Q p G K.. [F1], [I]. 3.1... 3.1.1. O K,, O K k. k. 3.1.. A, Z A Z Z/pZ A. A p, p A A A. F A. 3.. Witt. Witt. [S]. 3..1. ( p ), A, A Witt W (A). A W (A),, : W (A) = n 0 A., f, f W A n 0 f(a). (a n) n 0 n 0 f(a) W (A) [a 0, a 1,...]. n 0 W (A) [a 0, a 1,...] A W (A) A. a pn 0 + papn 1 1 + + pa p n 1 + pn a n 3... a A, [a, 0, 0,...] W (A) A Teichmüller, [a].

p 3 3..3. W,, A p. A = F p, W (F p ) Z p.. A p W (A) Zp Q p Q p p, W (A). 3..4. p A, F A. p p. A p, W (A). [a 0, a 1,...] a 0 W (A) A W (A) A. 3..5. R, 0, A p, W (A) R, W (A) R A [a 0, a 1,...] a 0 W (A) A. 3.3. θ. O K p, F OK : O K O K. () O K F OK OK F OK OK F OK R ( Ẽ+ ). R. O K O K O K O K k O K k. k, a k, x = (x 0, x 1,...) R x 0 = a. a x k R, R k. R Witt W (R). R k, W (R) W (k). n 0. x = [r 0, r 1, r,...] W (R). i 0, r i R r i = (a i,0, a i,1, a i,,...). j 0 a i,j O K, a p i,j+1 = a i,j. i = 0,..., n, a i,n O K /p n O K ã i,n, θ n (x) = ã pn 0,n + pãpn 1 1,n + + pn 1 ã p n 1,n + pn ã n,n, θ n (x) ã i,n, x θ n (x) W (R) O K. θ n, θ n+1 O K /p n+1 O K O K /p n O K. O K p O Cp = lim O n K, C p = O Cp Zp Q p. (θ n ) n 0 θ : W (R) O Cp. θ. θ 1 W (R),. 3.4. B R e Rham. 3.4.1. θ K K W (k) W (R) C p θ K. B + R B + R = lim n (K W (k) W (R))/(Ker θ K ) n. B + R, θ B+ R K W (k)w (R)/(Ker θ K ) C p, B + R C p. B + R B R. B R G K K,.

4 3.4.. G K p V, B R Qp V, B R. (B R V ) G K D R (V ). B R K D R (V ) K. B G K R = K, im K D R (V ) im Qp V. im K D = im Qp V V e Rham. G K E V, V e Rham, D R (V ) im E V K Qp E. 3.4.3. D R (V ) Fil D R (V ), i Z Fil i D R (V ) = ((Ker θ K ) i B + R Q p V ) G K. V e Rham, V Hoge-Tate, gr i D R (V ) = Fil i D R (V )/Fil i+1 D R (V ) {0} i., i im K gr i D R (V ), V Hoge-Tate. t, Tate Q p (1) = Hom(Q p /Z p, K ) Zp Q p Hoge-Tate { 1}. Hoge-Tate, Q p (1) Hoge-Tate {1} Hoge-Tate. 3.5. B cris. 3.5.1. G K W (k) A cris, A cris = lim n H 0 cris(spec(o K )/(Spec(W (k)/p n W (k))), O cris ). B + cris = A cris Zp Q p. 3.5.. B R W (R), PD, A cris : γ (W (k), pw (k)) PD, A cris G K W (k), (W (K), Ker θ) (W (k), pw (k), γ) PD p., A cris B + cris B R., c 0, c 1, c,... Z p, p 0, x Ker θ, A cris n 0 c n xn n!. 3.5.3. K 1 p (ζ p n) n 0, n 0 ζ p n K 1 p n, n 0 ζ p p = ζ n+1 p n,. ε = (ζ p 0 mo po K, ζ p mo po K, ζ p mo po K,...) R. [ε] 1 Ker θ W (R). A cris t t = log([ε]) = n 1 n 1 ([ε] 1)n ( 1) n. B + cris 1/t B R B cris. B cris G K K 0 = W (k) Zp Q p. p F R : R R W (R) W (R), B R ϕ : B cris B cris. 3.5.4. G K E V, B cris Qp V G K G K (B cris Qp V ) G K D cris (V ). B cris G K K 0, D cris (V ) K 0 Qp E. D cris (V ) im E V K 0 Qp E, V. 4. Fontaine (Colmez-Fontaine ) p, K E p., Rep cris E G K, ϕ, Fontaine [F], Colmez-Fontaine [CF].

p 5 4.1. A, M 1, M A, α : A A A, f : M 1 M α, f, m M 1 a A f(ax) = α(a)f(x). 4.. p F k : k k W (k) W (k) K 0 K 0 σ. K 0 E ϕ, 3 (D, ϕ, Fil D K ) : D K 0 Qp E, ϕ : D D σ i E, Fil D K = (Fil i D K ) i Z D K = D K0 K, K Qp E, D K. ϕ, Fil D K, 3 (D, ϕ, Fil D K ) D. ϕ D = (D, ϕ, Fil D K ), t N (D), t H (D) Q : D K 0 Qp E e 1,..., e, K 0 Qp E P (ϕ(e 0 ),..., ϕ(e )) = (e 1,..., e )P. et(p ) K 0 Qp E, K 0 Qp E/E N K0 Qp E/E(et(P )). N K0 Q p E/E (et(p )) e 1,..., e, v p (N K0 Q p E/E (et(p ))) e 1,..., e. t N (D) = v K0 (N K0 Q p E/E et(p )). t H (D) = 1 [K:K 0] i Z i im E(Fil i D K /Fil i+1 D K ). 4.3. K 0 ϕ (D, ϕ, Fil, D K ), t N (D) = t H (D), ϕ D K 0 Qp E D, t N (D ) t H (D ). 4.4.. t N (D), t H (D) ( t N (D), t H (D) E Q p ). D Fontaine [F3], [BM, Proposition 3.1.1.5] Fontaine [F3]. 4.5. B cris Qp V Q p ϕ i V, σ D cris (V ) D cris (V ). ϕ : D cris (V ) D cris (V ). V, V e Rham, B cris Qp V B R Qp V, K K0 D cris (V ) = D R (V ). D R (V ) Fil D R (V ), D cris (V ) K 0 E ϕ. K 0 E ϕ. 4.6. Colmez-Fontaine. G K E V K 0 E ϕ, Rep cris E G K K 0 E ϕ. Fontaine [F], Fontaine-Colmez [CF]. ([C], [F4], [K], [Berg3], [FF]). 5. (ϕ, Γ) 5.1.. A Qp Z p 1 Laurent Z p ((π)) = Z p [[π]][1/π] p. Ẽ R. Ẽ p. n>> c nπ n A Qp, n>> c n([ε] 1) n W (Ẽ). n>> c nπ n n>> c n([ε] 1) n A Qp W (Ẽ). A Q p p. B Qp = A Qp [1/p] Frac W (Ẽ), Frac W (Ẽ) B Q p B, A. K n 1 ζ p n K K(µ p ). K(µ p ) K Galois. H K = Gal(K/K(µ p )), Γ K = Gal(K(µ p )/K). p FẼ : Ẽ Ẽ W (Ẽ) W (Ẽ) Frac W (Ẽ) Frac W (Ẽ) ϕ. Frac W (Ẽ) B A ϕ G K.

6 A K = A H K, B K = B H K.. A K, B K ϕ, G K G K /H K Γ K 5.. (ϕ, Γ). k E E, A K,OE = A K Zp O E, B K,E = B Qp E, E K,kE = A K,OE OE k E. A A K,OE, B K,E, E K,kE. A (ϕ, Γ), A D, ϕ ϕ D : D D, γ Γ K ϕ γ γ D : D D, : ϕ D A D A,ϕ A D, A = B K,E, D A K,OE D ϕ D, ϕ D A K,OE D AK,OE,ϕ A K,OE D, γ = 1 1 D = i D, γ 1, γ Γ K (γ 1 γ ) D = (γ 1 ) D (γ ) D, 5.3. Fontaine [F1]. T Rep OE (G K ) D(T ) = (A Zp T ) H K, D(T ) A K,OE (ϕ, Γ). T D(T ), Rep OE (G K ) A K,OE (ϕ, Γ)., Rep E (G K ) B K,E (ϕ, Γ), Rep ke (G K ) E K,kE (ϕ, Γ). Part. 6. Q (). F G F = Gal(F /F ). Langlans G F p. Fermat, Wiles Taylor-Wiles Galois, Taylor-Wiles. Kisin., p K, E, E O E, k E, G K k E, E,., K = Q p,. p. 7. 7.1. Q p Q p, O Qp, m Qp O Qp. O Qp /m Qp F p. v p : Q p Q, v p (p) = 1. 7.. Gal(Q p /Q p ). k, a p O Qp, u O Q p, V k,ap,u Gal(Q p /Q p ) Q p, : V Hoge-Tate {0, k 1}, D cris (V ) ϕ 1 a p T + up k 1 T. 4.6, v p (a p ) > 0 V k,ap,u. v p (a p ) = 0 V k,ap,u, V k,ap,u, V k,ap,u, 4.6. (.1), OE E, V k,ap,u O Qp T k,ap,u O Qp im Qp V, G Qp. G Qp F p T k,ap,u F OQ p p V k,ap,u. V k,ap,u 3 (k 1, a p, u)

p 7, V k,ap,u T k,ap,u., V k,ap,u, V k,a p,u. 7.3. S u,l. 7.3.1. p. a F p, µ a : Gal(Q p /Q p ) F p, Gal(Qunr p /Q p ), Gal(Q unr p /Q p ) Frobenius a,, ω : Gal(Q p /Q p ) F p F p p, 7.3.. S u,l. k. k 1 k 1 = i(p 1) + l ( i, l 1 l p 1 ). V k,a p,u G Q p F p., u O Q p F p u, V k,a p,u µ uω l. G Qp F p µ u ω l S u,l. k u O, a Q p O Qp V k,a p,u p O Qp S u,l,. P Qp G Qp p, G Qp F p G Qp, G Qp /P Qp. G Qp /P Qp S u,l,. 7.3.3. ε. S u,l,. Q p Q p Q p, G Qp = Gal(Q p /Q p ), ε : G Qp Q p, p Q p G Qp Lubin-Tate. ε : G Qp F p F p ε p. 7.3.4. p. u F, l Z. : α F p, Z, R u,l (; α) := µ α ω µ uα 1ω l, u u F p R u,l (; A), I u,l () S u,l. :, I u,l() := µ u ωl In Q p Q p ε l. R u,l (; A) = R u,l ( + p 1; A), R u,l (; A) = R u,l (l ; ua 1 ), R u,l (; A) = R u,l ( ; A ) A = A mo p 1, AA = u + l mo p 1, S u,l,, A R u,l (; A). I u,l () = I u,l ( + p + 1), I u,l () = I u,l (l ), I u,l () = I u,l ( ) mo p + 1 + l mo p + 1, l I u,l (), l, l mo p + 1 I u,l (). S u,l,, I u,l (). 7.3.5. p, S u,l, F p F p. (1) l R( l p +1;A) R( l p +;A) R( 1;A) R(0;A) R(1;A) R(;A) I( l p l p ) I( +1) I( 1) I(0) I(1) R( l 3 ;A) R( l 1 ;A) I( l 3 l 1 ) I( )

8 () l ( A S u,l Zariski 1 ) R( l p+1 ;A) R( l p+3 ;A) R( 1;A) R(0;A) R(1;A) R(;A) I( l p+1 ) I( 1) I(0) I(1) R( l 1;A) R( l ;A) I( l 1) u, l, R u,l (; A), I u,l () R(; A), I()., Tate p p 1 Frac W (F p ) Tate, x [u]p l x 1 involution. l p+1 l 1 R u,l(; A) R u,l ( + 1; A) I u,l (),,, a p V k,a p,u. 8. 8.1. k. k 1 k 1 = i(p 1) + l ( i, l 1 l p 1 ). p + l i + ( i (p 1)/ ). a p O Qp, u O Q p. V k,ap,u m Qp V k,a p,u. 8... A k, C k, { (i ) 1 ( l ) A k, =, i, > i, C k, = ( i 1 i ( 1) l p p 1/( i ( 1) ( (i 1 (i )( l ) ), if < l 1, ), = l 1, )( l ) 1 ), l. 0, i 1 < l ( ( )( )) i 1 i, l 0 i <, = i l (i 1) ( i )( ) i l, 1 < l < i 1 l = l 1, ( i 1 i )( i l ),, ( ) { i, = ( 0 i, i ),, ( (i )( ) ) 1 { 1 l, 0 i 1 <, = ) 1,,. ( i 1 )( l b = b k,ap,u = A k, a p + pl C k, u a p ( ). b E { }. 8.3. (). p + l i +. u m Qp u F p. v = v p (a p ), = v. b, 1 bt + ip l T Q p, p α. (1) b =, V k,a p,u = I u,l (i). () b v p (α) Z, α = α 0 p v p(α), V k,a p,u = R u,l (v p (α), α 0 ). (3) b v p (α) Z, V k,a p,u = I u,l ( v p (α) ).

p 9 9.1.. 9. 9... V k,a p,u. l + p i +, 8.3 : v = 0. D cris (V k,ap,u) V k,a p,u. v = 0 V k,ap,u, k Q p G Q, p, V k,a p,u Deligne [D]. k p 1, Fontaine-Laffaille [FL] V k,a. p,u k p, GL (Q p ) p Langlans ( p Langlans ) Berger-Breuil [BB], Wach Berger-Li-Zhu [BLZ] V k,a p,u. k = p + 1, GL (Q p ) p Langlans Wach Berger-Li-Zhu [BLZ] V k,a p,u. 0 < v < 1 [Berg3], Breuil. Buzzar-Gee [BG1], [BG], [BG1], [BG]. k v ( v (k 1)/(p 1) ) Wach, Berger-Li-Zhu [BLZ] V k,a p,u. [BLZ] Vienney [V]. 0 < v < 1, GL (Q p ) p Langlans Buzzar- Gee [BG1], [BG] V k,a p,u. 9.3. (). 8.3, 3 : l < i. v, v (l 1)/ 9.4.. Wach, Wach., (k, u) a p O Qp ( rigi ).,, V k,a p,u. p : (1) l i, reuction : v=0 0<v<1 v=1 1<v< v= <v<3 v=3 v=i v=i 1 v=i i <v<i 1 i 1<v<i v>i () i l < i l, reuction ( S u,l Zariski ): v=0 0<v<1 v=1 1<v< v= v= l 3 l 3 v= l 1 l 1 <v< l 1 v= l+1 v=i 3 <v< l+1 v=i i 3<v<i v>i

10 (3) i l < i l, reuction : v=0 v=1 v= l v= l 1 0<v<1 l <v< l l l 1 1<v< v= l 1 l 1 <v< l v= l l <v< l +1 v= l +1 v=i v>i (4) i < l l, v l 1 Wach, Wach reuction : v=0 0<v<1 v=1 v= l 3 l 3 v= l 1 l 1 <v< l+1 v= v=l 3 v=l v=l l 1 l+1 <v< l 3<v<l l <v<l v=l+1 l<v<l+1 v=i 1 v>i 1 (5) i < l l, v l 1 Wach, Wach reuction, (4) () (3) ( ). Part 3..,. Wach Berger [Berg1],,,. 10. Wach Wach. Wach, K Q p, Rep OE G K T T OE E Hoge-Tate 0 Rep OE G K. K = Q p Wach. Wach,. 10.1. W. Z p (1) = Hom(Q p /Z p, Q p ). Spf O E X, χ : Z p (1) Γ(X, O X ), s Z p (1) χ(s) 1 W (X). X W (X) Spf O E W. W Spf O E. Z p (1), Spec O E G m,oe, Spec k E G m,oe W. W En(W ). a Z p, χ W (X) χ a W (χ) En(W ), Z p En(W ),. W Spf O E W Spf O E W 1 W : W W. M = En(W ) \ {1}. 10.. W. W O(W ) = Γ(W, O W ), W = Spec O(W ). m : W W Spec O E W W m. W Spec O E W Spec O E W, Spec O E W 1 W. m M, m : W W W [m] = 1 W W,m W. W [m]\1 W W W [m].

p 11 10.3. [ W /M]., [ W /M], : N O(W ). m M, O(W ) f m : m M M, f im = i N f m1m = f m1 m 1(f m ), N [ W /M]. 10.4. Wach. O E Wach, [ W /M], : N 1 W M. m M, O(W ) f m : m N N W [m]. O E Wach, [ W /M] Wach OE. 10.5. Wach Hoge. Z p = En(W ) p Zp M p M. p O(W ) ϕ. Wach N, f p : p N N ϕ N. W [p] W O(W ) I p. i 0 N Fil i N. Fil i N = {y N ϕ N (1 y) I i pn} 10.6. W. W Spf O E W Spec O E W. D 0 W, D 0 η 0. W W Spec OE Spec k E D p, D p η p.. D 0 η 0 D p η p O(W ), A Qp Zp O E O E [[[ɛ] 1]]. A Qp Zp O E η p W. 10.7. Berger. Wach [W], Colmez [C1], Berger [Berg1] : Rep O G Qp, T OE E Hoge-Tate Rep O G Qp T Rep cris,+ O G Qp, N : Rep cris,+ = O G Qp Wach OE, : N(T ) η p T (ϕ, Γ) D(T ), N(T ) η 0 N(T ) ϕ, Q p E ϕ D cris (T OE E). 11. Berger, η 0 D cris (V k,ap,u) Wach N k,ap,u, N k,ap,u η p V k,a p,u. N k,ap,u., N k,ap,u. 11.1. M tors x. M M, M M tors. M tors p 1. O(W ) M tors R., [ W /M] [Spec R/(M/M tors)]. R x, R = O E [[x]] ϕ(x) = x(p + x) p 1. W Spec R, x = 0 1 W Spec R, W [p] x = p Spec R.

1 11.. ϕ. N k,ap,u, N k,ap,u D 0 D cris (T k,ap,u). D cris (T k,ap,u) D cris (V k,ap,u) ϕ O E, N k,ap,u Hoge D cris (T k,ap,u), O E. i 0, ϕ(fil i D cris (T k,ap,u) p i D cris (T k,ap,u). k p 1, Fontaine-Laffallie [FL] i 0, Fil i D cris (T k,ap,u) = Fil i D cris (V k,ap,u) D cris (T k,ap,u). (11.1) Fil i D cris (T k,ap,u) Fil i D cris (V k,ap,u) D cris (T k,ap,u), (k, a p, u), (11.1) N k,ap,u, [BLZ] N k,ap,u. Wach V k,a p,u, (11.1).,, Wach, O E ϕ k 1 := ϕ p k 1 : Filk 1 D cris (T k,ap,u) D cris (T k,ap,u),. (), (k, a p, u), ϕ k 1 O E N k,ap,u. ϕ k 1 O E, N k,ap,u ϕ., ϕ., Fil k 1 N k,ap,u M tors y, e = ϕ(y)/(p + x) k 1 N M tors k,a p,u R. e 1, e N M tors k,a p,u R e 1, y = δe 1 + ze. [BLZ], ([BLZ] ), R (δ, z) Wach N k,ap,u. M = Z p γ, r R : (x1): δ x(p + x) R, (x): (p + x) k 1 ϕ(z)r R ϕ(δ), (x3): E[[x]] (γ(δ)/δ) ϕ/(1+ϕ) R + x i+1 E[[x]], (x4): E[[x]] ( z ) ( γ 1 + x ) ϕ 1+ϕ z δ p δ. R + x i+1 E[[x]], (x5): δ 0 δ R x, E[[x]] uz δ + r ϕ(δ) a ( p 1 + x ) k 1 1+ϕ (δ/δ0 ) ϕ/(1+ϕ). δ 0 p R + x i+1 E[[x]]. 11.3.. 11.3.1. 5 (δ, z, r). 5 (x1), (x), (x5), (x1), (x), (x5). (x5) (x5) : δ 0 δ R x, E[[x]] uz δ a ( p 1 + x ) k 1 δ 0 p R + x i+1 E[[x]].

p 13. (x1), (x), (x5) (δ, z, r),, (x1) (x5) (δ, z, r).,. 11.3.. Paé. K 0. s K m, (s) m = s(s+1) (s+m 1). s K 1, 1, f (s, 1, ) 1 = f (s,1,) = 1 j=0 j=0 (j 1 ) ( 1 ) (j 1 ) 1 ( 1 ) 1 ( s ) j t j, j! (s 1 ) j t j. j!. Paé (1 t) s := ( s) n n 0 n! t n. Beukers- Tijeman [BT], f 1 (1 t) s f t 1+ +1 K[[t]]. v p (a p ), z = u 1 a p f (k 1,,i ) 1 ( x/p), δ = p f (k 1,,i ) ( x/p), (δ, z) (x1), (x5). δ R. (x) r, f (k 1,,i ) 1, f (k 1,,i ) p. : 11.3.3. Resultant. f (s,1,) 1 f (s,1,) resultant 1 ( ) 1 1 + j (s + 1 j) ± 1 j!. 11.3.4. 1, 1,. j=1 f 1 f (s, 1, 1) f f (s, 1, 1) 1 = ( 1) 1 1 ( 1 + 1 1. ) 1 (s 1 ) 1 + t 1+ ( 1 + )! ( ) 1 f 1 f (s, 1 1, ) f f (s, 1 1, ) 1 + 1 = ( 1) 1 1 (s 1 + 1) 1 + t 1+ ( 1 + )! References [Berg1] Berger, L. Limites e représentations cristallines. Compositio Math. 140 (004), 1473 1498. [Berg] Berger, L. Équations ifferentielles p-aiques et (ϕ, N)-moules filtrés. Astérisque 319 (008), 13 38. [Berg3] Berger, L. Représentations moulaires e GL (Q p ) et représentations galoisiennes e imension. Astérisque 330 (010), 63 79. [Berg4] Berger, L. Local constancy for the reuction mo p of -imensional crystalline representations. Bull. Lonon Math. Soc. 44 (01), 451 459. [BB] Berger, L., Breuil, C. Sur la réuction es représentations cristallines e imension en poi moyens. unpublishe note, which is containe in [Berg3]. [BLZ] Berger, L., Li, H., Zhu, H. J. Construction of some families of -imensional crystalline representations. Math. Ann. 39() (004), 365 377. [Bert] Berthelot, P. Cohomologie cristalline es schémas e caractéristique p > 0. Lect. Notes Math. 407, Springer-Verlag (1974). [BT] Beukers, F., Tijeman, R. On the multiplicities of binary complex recurrences. Compos. Math. 51, no. (1984), 193 13. [BM] Breuil, C., Mézar, A. Multiplicités moulaires et repréntations e GL (Z p ) et e Gal(Q p /Q p ) en l = p. Duke Math. J. 115, No. (00), 05 98.

14 [BG1] Buzzar, K., Gee, T. Explicit reuction moulo p of certain two-imensional crystalline representations. Int. Math. Res. Not. IMRN (009), no 1, 303 317. [BG] Buzzar, K., Gee, T. Explicit reuction moulo p of certain -imensional crystalline representations, II. preprint (01). [C1] Colmez, P. Représentations cristallines et représentations e hauteur finie. J. reine angew. Math. 514 (1999), 119 143. [C] Colmez, P. Espaces e Banach e imension finie. J. Inst. Math. Jussieu 1 (00), 331 439. [CF] Colmez, P., Fontaine, J.-M. Constructions es représentations p-aiques semi-stables. Invent. Math. 140 (000) 1 43. [D] Deligne, P. Letter to J.-P. Serre (1974). [FF] Fargue, L., Fontaine, J.-M. Courbes et fibrés vectoriels en théorie e Hoge p-aique. preprint (011). [F1] Fontaine, J.-M. Représentations p-aiques es corps locaux I. The Grothenieck Festschrift, Vol. II, 49 309. Progr. Math. 87, Birkhäuser Boston, Boston, MA 1990. [F] Fontaine, J.-M. Le corps es périoes p-aiques. In Périoes p-aiques, Astérisque 3 (1994), 59 111. [F3] Fontaine, J.-M. Representation p-aiques semi-stables. In Périoes p-aiques, Astérisque 3 (1994), 113 184. [F4] Fontaine, J.-M. Presque C p -representations. Documenta Math. Extra Volmue (003), 85 385. [FL] Fontaine, J.-M., Laffaille, G. Construction e représentations p-aiques. Ann. Sci. École Norm. Sup. (4) 15 (198), 547 608. [I] Illusie, L. Cohomologie e De Rham er cohomologie étale p-aique. Sém. Bourbaki 1989 1990, exp. 76 (1990), 35 374. [K] Kisin, M. Crystalline representations an F -crystals. In Algebraic geometry an number theory, Progr. Math. 53 (006), 459 496. [S] Serre, J.-P. Corps Locaux, 3 e é. Hermann (1968). [V] Vienney, M. Construction e (ϕ, Γ)-moules en caractéristique p. Thesis (01). [W] Wach, N. Représentations p-aiques potentiellement cristallines. Bull. Soc. Math. France 14 (1996), 375 400.