() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

Similar documents
1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

08-Note2-web

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

I 1

pdf

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

i

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k


( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


DE-resume

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


Note.tex 2008/09/19( )

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

K E N Z OU


dynamics-solution2.dvi

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

.. p.2/5

( ) ( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

振動と波動


d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

Gmech08.dvi

I ( ) 2019

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =


2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

Gmech08.dvi

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

meiji_resume_1.PDF

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

TOP URL 1

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

85 4

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

sec13.dvi

i

KENZOU

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

untitled


5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II 1 II 2012 II Gauss-Bonnet II

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

TCSE4~5

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

December 28, 2018

201711grade1ouyou.pdf

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Transcription:

5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z = cos( y) z y = cos( y) (4) z = y sin y z y = sin y (5) z = 4y 4y z y = 4y (6) z = y + y z y = y( + y ) z = ( + + y + y ) + + y z = + y (7) z = + y z y = ( + ) ( + + y + y ) + + y [. ] z = (,, ) y ( ) z = 3 y [.3 ] z = 4 y (,, ) y + y (8) ( ) + y + z = 4. [.4 ] z z m U(z) U(z) = mgz z z F (z) ( ) F (z) = (0, 0, mg) [.5 ] M Φ(, y, z) = G M r r = + y + z () (, y, z) G(, y, z) () G(, y, z) (3) ( ) () G(, y, z) = G M r 3 (, y, z) () G(, y, z) = GM r (3) (, y, z) r [.6 ] q (0, 0) ϕ(, y) = kq log + y k r = + y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y = ( y ) 3 () f y = f y = + y ( + y ) [.8 ] z = f(, y) z y = z y () z = y ( y) () z = e sin y (3) z = sin y (4) z = e y (5) z = log + y (6) z = tan y ( ) () z = y (3 y) z y = z y = 6y( y) z yy = ( 6y) () z = e sin y z y = z y = e cos y z yy = e sin y (3) z = 4y sin y z y = z y = cos y 4y sin y z yy = 4 sin y (4) z = y e y z y = z y = (y )e y z yy = e y (5) z = + y ( + y ) z y = z y = y ( + y ) z yy = y ( + y ) (6) z y 3 = ( + y ) z y = z y = y ( + y ) z 3 y yy = ( + y ) [.9 ] f(, y) = + y f + f y ( ) + y [.0 ] f(, y, z) = + y + z f + f y + f z ( ) + y + z.4 [. ] z = f(, y) () z = y () z = e sin y (3) z = log + y ( ) () dz = d ydy y () dz = d + ydy e (sin yd + cos ydy) (3) dz = + y [. ] yd + dy f(, y) = y ( )

.5 [.3 ] z z u z v u v y y () z = y + y, = u cos v, y = u sin v () z = ey, = u v, y = uv (3) z = tan y, = u + v, y = uv sin v cos v ( ) () z u = sin v + cos v z v = u(cos3 v sin 3 v) (cos v + sin v) () z u = (uv v )e (u v)uv z v = (u uv)e (u v)uv (3) z u = v(u + v ) u 4 u v + v 4 z v = u(u + v ) u 4 u v + v 4 [.4 ] z z z y y u v u v () z = uv, u = + y, v = 3 + y () z = sin u v, u = y, v = + y (3) z = e sin u+cos v, u = y, v = + y ( ) () z = 6 + 5y z y = 5 + 4y () z = { z y = ( + y ) cos y y sin y z y = z{ cos y sin( + y)} { ( + y )y cos y + 3 sin y } / ( + y ) } /( + y ) (3) z = z{y cos y sin( + y)} [.5 ] z dz t y y dt () z = y, = e t, y = e t () z = e sin y, = t, y = t ( ) () e t + e t () e t (t sin(t ) + cos(t )) [.6 ] dy d () 3 3ay + y 3 = 0 () a + y + by = (3) log( + y ) = tan y ( ) () ay a y + y () a + by (4) e y = y sin + y (3) y (4) e y y cos e y + sin [.7 ] z = f(, y), = e u cos v, y = e u sin v () u =, v = y () y u = y, y v = (3) () () z uu + z vv = ( + y )(z + z yy ) z, z y, z, z y, z y, z yy f(, y) ( ).6 [.8 ] () () 3 3

( ) () e ρ = (cos ϕ, sin ϕ, 0), e ϕ = ( sin ϕ, cos ϕ, 0), e z = (0, 0, ), () e r = (cos ϕ sin θ, sin ϕ sin θ, cos θ), e θ = (cos ϕ cos θ, sin ϕ cos θ, sin θ), e ϕ = ( sin ϕ, cos ϕ, 0) [.9 ] f(, y) ( ) ( ) f + ( ) f = y ( ) f + r r [.0 ] (3 ) () f = sin θ cos ϕ f r () f y (3) f z = sin θ sin ϕ f r ( ) f θ cos θ cos ϕ f + r θ sin ϕ f r sin θ ϕ cos θ sin ϕ f + r θ + cos ϕ f r sin θ ϕ f = cos θ r sin θ f r θ (4) ()-(3) f = f + f y + f z = f r + f r r + f r θ + cot θ f r θ + f r sin θ ϕ ( ) [. ] f = f + f y = f r + r () + y () + y + y ( ) () + y () + y r 3 (3) 0 (3) + y + y f r + f r θ [. ] 3 f = f + f y + f z = f r + f r r + f r θ + cot θ f r θ + f r sin θ ϕ () + y + z () + y + z (3) + y + z + y + z + y + z ( ) () + y + z) ( + y + z) () ( r r 3 (3) r 4.7 [.3 ] A B [A, B] = AB BA [, ] p = i h p y = i h y p z = i h ( h ) z () [, p ] = [y, p y ] = [z, p z ] = i h () [, y] = [y, z] = [z, ] = [p, p y ] = [p y, p z ] = [p z, p ] = 0 4

(3) [, p y ] = [, p z ] = [y, p z ] = [y, p ] = [z, p ] = [z, p y ] = 0 ( ) [.4 ] L = yp z zp y L y = zp p z L z = p y yp [A+B, C] = [A, C] + [B, C] [AB, C] = A[B, C] + [A, C]B.3 () [L, L y ] [L y, L z ] [L z, L ] () L = (L ) + (L y ) + (L z ) [L, L ] = [L, L y ] = [L, L z ] = 0 ( ) () i hl z i hl i hl y () [.5 ].4 L L y L z 3 ( () L = i h sin ϕ ) cot θ cos ϕ θ ϕ ( () L y = i h cos ϕ ) cot θ sin ϕ θ ϕ (3) L z = i h ϕ (.0 ) ( ) ( [.6 ].5 L + L y + L z = h θ + cot θ θ + ) sin θ ϕ ( ).8 [.7 ] (0, 0) y 3 () f(, y) = + y () f(, y) = (3) f(, y) = cos y + + y (4) f(, y) = sin cos y (5) f(, y) = e sin y (6) f(, y) = log( + y) ( ) () ++y +(+y)+ (+y)+ () (+y)+(+y) (+y) 3 + (3) + (4) 6 (3 + 3y ) + (5) y + y + 6 (3 y y 3 ) + (6) y ( y) + 3 ( y)3 [.8 ] () f(, y) = sin( y) ( π, 0) y 4 () f(, y) = log( + y) (, ) y 3 5

( ) () ( π ) + ( π )y y + 4 ( π )4 6 ( π )3 y + 4 ( π ) y 6 ( π )y3 + 4 y4 + () log + {( ) + (y )} 8 {( ) ( )(y ) + (y ) } + 4 {( )3 3( ) (y ) 3( )(y ) + (y ) 3 } + [.9 ] m M Mm G U(, y, z) = G + y + z R 0 N (0, 0, R 0 ) () U(, y, z) N y z () N N U(0, 0, R 0 ) U(, y, z) h h = z R 0 () U E (h) U E (h) h () + (3) g h m h mgh () U E (h) g G R 0 M ( ) () G Mm R 0 + G Mm R0 (z R 0 ) + () (3) G M R0.9 [.30 ] z = f(, y) () z = y () z = 3 + y y (3) z = + y + y 4 y (4) z = y 3y (5) z = e ( +y ) (6) z = sin sin y ( π π, π y π ) ( ) () () (0, 0) 0 (3) (, 0) -4 (4) (5) (0, 0) (6) (± π, ± π ) (± π, π ) - [.3 ] z = f(, y) ( ) () z = + y ( + y = ) () z = + 4y + 4y ( + y = ) (3) z = + y (y = ) (4) z = y (y = ) ( ( ) () 5, ( ) 5 ( 5,, ) () ( 5 5 (, (3) (, ) (, ) (4) ), ( ), ( ) 5, ( ), 5 5 5 5 5 ) 5 ) [.3 ] 6

( (, y) + y = y, y > 0 ) ( ) [.33 ] O a 3 ABC AOB= θ BOC= ϕ (0 < θ ϕ) B () 3 3 θ ϕ a () 3 3 3 O a A ( ) () a(sin θ + sin ϕ + sin(θ + ϕ)) () C [.34 ].33 a 3 () 3 θ ϕ a () 3 3 ( ) () a (sin θ + sin ϕ sin (θ + ϕ)) () [.35 ] + y = 4 (, y) (, 4) ( ) ( 4 5, 8 ) 6 5 5 5 [.36 ] n /n n n n A θ n θ B () A B l a θ θ l(θ, θ ) () A B L a, n, n A θ θ L(θ, θ ) n a (3) () l(θ, θ ) b L(θ, θ ) sin θ = n sin θ n n B b a ( ) () a(tan θ + tan θ ), ()n a + n a cos θ, (3) cos θ 7

. [. ] y y = () y = ae a () y(0) = 0 ( ) () () y = e [. ] y 3y + y = 0 () y = ae + be a b () y(0) = 0, y (0) = ( ) () () y = e + e [.3 ] f(, t) = v f(, t) v t () f(, t) f(, t) = g(x) g(x) X k ωt X k ω v = ω/k f(, t) = k d g(x) dx () () t f(, t) = ω d g(x) dx (3) g(k ωt) () () g(k ωt) (4) h(k + ωt) (5) f(, t) = g(k ωt) t t = 0 f(, 0) = g(k) φ() φ() = g(k) t = t f(, t) f(, t) = φ( ω t) k (6) ω/k > 0 φ( ω t) φ() k (7) g(k) = φ() g(k ω t) = φ( ω t) t = 0 t = t k g(k) t g(k ω t) (8) f(, t) = h(k + ωt) (5) (7) ( ) () (4) (5) f(, t) = g(k ω t) = g(k( ω k t)) = φ( ω k t) (6) φ( ω k t) φ() ω t (7) k ω/k = v (8) ( ) v g(k ωt) h(k + ωt) v = ω/k g(k ωt) + h(k + ωt) 8

( [.4 ] + y + z v ) f(, y, z, t) = v f(, y, z, t) t () 4 f(, y, z, t) f(, y, z, t) = g(x) r = (, y, z) k = (k, k y, k z ) g(x) X k r ωt X k k y k z ω ω > 0 v = ω/ k + ky + kz f(, y, z, t) = d g(x) k dx y z () () t f(, y, z, t) = ω d g(x) dx (3) g(k r ωt) () () g(k r ωt) (4) h(k r + ωt) ( ) ( ) v 3 f(, y, z, t) e k r ωt ( ) [.5 ].4 + y + z f(, y, z, t) = v f(, y, z, t) t () r = + y + z sin(kr ωt) r [.0](4) k ω v = ω/k () t = 0 () r (3) r () ( ) () ( ). [.6 ] y = + () () y(0) = 0, y (0) = 0 ( ) () y = tan log( + ) + C + C () y = tan log( + ) [.7 ] m v(t) f(t) () 9

() t t v v () t t mv mv = t t f(t)dt (3) f(t) f(t) = f t = t t mv mv = f t ( ) a(t) = (a (t), a y (t), a z (t)) a(t)dt ( a (t)dt, a y (t)dt, a z (t)dt) ( ) [.8 ] t v A (t) m A t v B (t) m B ( ) () m A m B f m A m B () m A t t v A (= v A (t )) v A (= v A (t )) m B t t v B (= v B (t )) v B (= v B (t )) () t t t m A v A + m B v B = m A v A + m B v B ( ) [.9 ] U((t), y(t), z(t)) m v(t) = (v (t), v y (t), v z (t)) () ( ) d () dt mv = mv v v v v v v = v v = v + vy + vz (3) du dt = v U (4) () v mv + U(, y, z) = C C ( ) () m v = U, () (4).3 [.0 ] y = () y = y () ( + )y = (3) y = y y (4) (y )y = y (5) y cos 3 + sin cos y = 0 (6) y + = + y ( ) () y = Ce / () y = log(+ )+C (3) y = C+ (4) y = Ce y (5) tan y+sec = C (6) + y = + + C 0

[. ] N(t) α () N(t) () () (3) t = 0 N 0 t (4) T (3) N 0 T t ( ) () dn dt = αn () N = ( Ce αt (3) N = N 0 e αt (4) N = N ) t/t 0.4 [. ] () y + y = log () y y = (3) y y = 3 (4) y 3y = e (5) y + y = sin (6) y sin y cos = tan ( ) () y = log 4 + C () y = + Ce / (3) y = 4 3 + C (4) y = e /4 + Ce 3 (5) y = ( cos + sin + C)/ (6) y = sin (tan + C).5 ( ) [.3 ] t = 0 V 0 sin ωt t I(t) () t = 0 I(0) () I(t) (3) () () I(t) (4) (3) ( ) () I(0) = 0 () V 0 sin ωt RI(t) LI(t) = 0 V 0 (3) I(t) = R + ω L (R sin ωt ωl cos ωt) + ωlv 0 R + ω L e R L t (4).6 [.4 ] a a 0 () y + 3y 4y = 0 () y y + y = 0 (3) y 0y + 5y = 0 (4) y + a y = 0 (5) y a y = 0 (6) y ay = 0 ( ) () y = C e 4 + C e () y = e (C cos + C sin ) (3) y = (C + C )e 5 (4) y = C cos a + C sin a (5) y = C e a + C e a (6) y = C + C e a

[.5 ] m k A t = 0 0 () (t) () t = 0 (3) () ( ) () mẍ(t) = k(t) () (0) = A, ẋ(0) = 0 (3) (t) = k A cos m t 0 A m [.6 ].5 aẋ(t) () (t) () t = 0 (3) () a mk (4) (3) a = mk τ (5) (3) ( ) () mẍ(t) = aẋ(t) k(t) () (0) = A, ẋ(0) = 0 (3) (a) a > ( mk (t) = A a a 4mk (b) a = mk a ( k m = m (t) = A + (c) 0 < a < mk (t) = Ae a m t {cos ) e a+ a 4mk m t +A ) k m t e k m t ( + a a 4mk } 4mk a a 4mk a t + m sin t 4mk a m ) e a (4) (a), (b), (c) (b) τ τ = m/k (5) a 4mk m t.7 [.7 ] () y + y y = 0 cos () y 6y + 5y = (3) y + y + y = e (4) y + y = sin (5) y + y = e (cos sin ) ( ) () y = C e + C e 3 cos + sin () y = e ( 3/ C cos + C ) sin + 5 (5 4) (3) y = (C + C )e + e /9 (4) y = C cos + C sin cos (5) y = C + C e + 0 e (3 cos sin ) [.8 ] m q k t = 0 E 0 sin ωt 0

() (t) t = 0 () ω k/m () (3) ω = k/m () E0sin t m, q 0 (4) (3) () ( ) () mẍ(t) = k(t) + qe 0 sin ωt (0) = 0, ẋ(0) = 0 ( () (t) = qe ) 0 m k k mω ω k sin t + sin ωt (3) (t) = qe 0 m ω m sin ωt qe 0 t cos ωt ωm (4) [.9 ].8 aẋ(t) () (t) () () 0 < a < mk (3) () (t) = A sin ωt + B cos ωt A B (4) ω (> 0) (3) ω ω > 0 ( ) () mẍ(t) = aẋ(t) k(t) + qe 0 sin ωt () qe 0 { (3) (t) = (k mω (k mω ) + a ω ) sin ωt aω cos ωt } qe 0 = (k mω ) + a ω sin(ωt ϕ) (ϕ = aω tan k mω ) mk a (4) ω = m, mk > a 3

3 3. [ 3. ] () yddy : 0, 0 y () sin( + y)ddy : 0 π/, 0 y π/ (3) ye ( +y ) ddy : 0, 0 y (4) ddy : 0, 0 y + + y + y ( ) () /4 () (3) /4 (4) (log ) [ 3. ] f(, y)ddy y y () : 0, 0 y, + y () :, 0 y, y (3) : 0, 0 y, y (4) : 0, 0 y, ( ) + (y ) (5) : y, y ( ) () () (4) (5) 0 / 0 0 0 0 f(, y)dyd = y 0 0 0 f(, y)ddy f(, y)dyd = f(, y)ddy (3) f(, y)dyd = 0 y 0 0 y y f(, y)dyd = f(, y)ddy 0 0 y f(, y)dyd = 0 0 y f(, y)ddy 0 y f(, y)ddy [ 3.3 ] () yddy : 0, y () ddy : 0 π, 0 y sin (3) ddy : 0, 0 y, + y (4) ddy : 0 y + y (5) + y ddy : 0 y ( ) () /3 () π (3) /3 (4) 4( )/3 (5) log + π/ 4

3. [ 3.4 ] () + y ddy : a + y b, a > 0, b > 0 () log( + + y )ddy : + y (3) (4) (5) ddydz : a + y b + z, a > 0, b > 0, c > 0 c X = a, Y = y b, Z = z c (X, Y, Z) zddydz : + y + z, z 0 y + + y + z ddydz : + y + z, 0, 0 y, 0 z ( ) () π log b 4πabc a () π( log ) (3) 3 (4) π/4 (5) 9 (3π/4 ) [ 3.5 ] : + y R R σ z 0 σ () 4πϵ 0 ( + y + z0 σ y () 4πϵ 0 ( + y + z0 σ z 0 (3) 4πϵ 0 ( + y + z0 ( ) () 0 () 0 (3) σz0 )3/ ddy )3/ ddy )3/ ddy ( ϵ 0 z 0 R +z0 ) σ ϵ 0 [ 3.6 ] + y + z R z 0 z 0 > R ρ () ddydz 4πϵ 0 ( + y + (z z 0 ) ) 3/ ρ y () ddydz 4πϵ 0 ( + y + (z z 0 ) ) 3/ ρ z 0 z (3) ddydz 4πϵ 0 ( + y + (z z 0 ) ) 3/ (3) (i) cos θ = t θ (ii) z 0 z ( + y + (z z 0 ) ) 3/ = u ( + y + (z u) ) / u=z0 ( ) () 0 () 0 (3) ρ 4πR 3 4πϵ 0 3 z0 5