力学的性質

Similar documents
AnalysisOfMechProp

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

応力とひずみ.ppt

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

KENZOU Karman) x

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

sec13.dvi

Gmech08.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

PDF

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


i 18 2H 2 + O 2 2H 2 + ( ) 3K

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Gmech08.dvi

~nabe/lecture/index.html 2

meiji_resume_1.PDF

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Report98.dvi

OHP.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

70 : 20 : A B (20 ) (30 ) 50 1

73

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

all.dvi

A

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

n-jas09.dvi

OHP.dvi

note1.dvi

Untitled


keisoku01.dvi

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

高等学校学習指導要領

高等学校学習指導要領

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

untitled

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

II 2 II

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

Part () () Γ Part ,

i

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

i

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

MAIN.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A


δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

gr09.dvi

A 99% MS-Free Presentation

all.dvi

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

数学の基礎訓練I

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

A

Transcription:

Materials Science And Engineering, An Introduction: by William D. Callister, Jr., John Wiley & Sons, Inc. Mechanical Metallurgy, G.E.Dieter, McGraw Hill, 1987 Fundamentals of Metal Forming, Robert H. Wagoner, Jean-Loup Chenot, John Wiley & Sons, 1996 Structure of Metals, Charles Barrett and T.B.Massalski, Pergamon Press, 1980 W.D. 1999 1986 1985 1999 1997 1971 1998 2000 1

1../ ' 2 1 #$%& " 3 0,- )*,- Elastic Deformation " = E # 1.1) E : Young's modulus " = G # 1.2) G : Shear modulus G = E 2 1 " ) 1.3) ν : Poisson's ratio Material E GPa) G GPa) Aluminum alloys 72.4 27.5 0.31 Copper 110 41.4 0.33 Steel plain carbon & low-alloy) 200 75.8 0.33 Stainless steel 18Cr-8Ni) 193 65.6 0.28 Titanium 117 44.8 0.31 Tungsten 400 157 0.27 Plastic Deformation 2

x3 "$ "# 0 x u x u x1 x2 Displacement u " u 1,u 2,u 3 ) 1.4 u u Distortion "u i "x j i,j =1,2,3 ) 1.5 StrainijRotation ij " ij # ij $ %u i %x j " ij # 1 % $u i $u j 2' & $x j $x * i ) 1.6) 3

" ij # 1 & $u i % $u ) j 2 ' $x j $x i * " ij # $u i $u j = 2% ij i & j) $x j $x i 1.7) #" 11 " 12 " 13 & % " ij = % " 21 " 22 " 23 $ %" 31 " 32 " 33 ' ) "u 1 1# "u 1 "u & 2 1# "u 1 % "u &, 3 %. "x 1 2$ "x 2 "x 1 ' 2$ "x 3 "x 1 '. 1# "u = 2 "u & 1 "u 2 1 "u 2 % "u )/ # &. 11 / 12 / 13, 3. %. = 2$ "x 1 "x 2 ' "x 2 2$ "x 3 "x 2 ' / 12 / 22 / 23. 1# "u 3 "u & 1 1# "u 3 % "u. & * / 2 "u 13 / 23 / 33 -. 3. % * 2$ "x 1 "x 3 ' 2$ "x 2 "x 3 ' "x. 3 - # 1 )u 0 1 * )u. 2 1 )u 1-0 * )u.& 3 % - 0 #" 11 " 12 " 13 & % 2, )x 2 )x 1 / 2, )x 3 )x 1 / % % 1 )u " ij = % " 21 " 22 " 23 = 2 * )u. 1 1 )u - 0 0 2 * )u. 3 % - 0 2, )x $ %" 31 " 32 " 33 ' % 1 )x 2 / 2, )x 3 )x 2 / 1 )u 3 * )u. 1 1 )u 3-0 * )u %. 2 % - 0 0 $ 2, )x 1 )x 3 / 2, )x 2 )x 3 / ' 1.8) 1.9) traceinvariant " 11 " 22 " 33 = 1.10) V "V = V 1 # 11 ) 1 # 22 ) 1 # 33 ) " V 1 # 11 # 22 # 33 ) 1.11) " 11 " 22 " 33 = #V V 1.12 4

force, load traction body force etc. Stress x3 x3 33 F = F1, F2, F3) 32 F3 31 23 A F2 x2 11 13 12 21 22 x2 F1 x1 x1 X = F A 1.13) Normal Stress " 33 # F 3 A 1.14) Shear stress " 13 # F 1 A, " 23 # F 2 A 1.15) #" 11 " 12 " 13 & % " ij = % " 21 " 22 " 23 $ %" 31 " 32 " 33 ' #" ii & # % 0 0 3 " 11 ) " ii % 3 % " % = % 0 ii 0 % % 3 % % " 0 0 ii % $ 3 ' $ Hydrostatic " ii = " 11 " 22 " 33 ) " 12 " 22 ) " ii 3 " 12 " 13 " 23 " 13 " 23 " 33 ) " ii 3 Deviatoric & ' 1.16) 5

Hooke's law " ij = C ijkl e kl 1.17) Cijkl Elastic Constant Elastic Stiffness e ij = C "1 ijkl # kl 1.18) Cijkl -1 Elastic Compliance C ijkl = C jikl = C ijlk = C klij 1.19) Lame's constant " 11 = #2µ) e 11 # e 22 e 33 ) " 22 = #2µ ) e 22 # e 33 e 11 ) " 33 = #2µ) e 33 # e 11 e 22 ) 1.20) " 12 = 2 µ e 12 " 23 = 2 µ e 23 " 31 = 2 µ e 31 Bulk Modulus 11 E " # 11 e 11 " # $e 22 e 11 # $e 33 e 11 1.21) 112233H K " # 11# 22 # 33 3 e 11 e 22 e 33 ) " # H e ii 1.22) E = µ 3"2µ ) "µ " = # 2 #µ ) E = 2µ 1 ") 1.23) K = 3"2µ 3 = E 3 1#2$ ) 6

"F k F #$"x E S = 1 2 k x2 = 1 2 F x 1.24) 0 E 0 = 1 2 C ijkl e ji e kl = 1 2 " kl e kl 1.25) el E el = 1 2 " C ijkl e ji e kl dv = 1 2 V " # kl e kl dv V 1.26) 7

dii=d11 d22 d33 ) d ij dw = " ij d# ij = " $ ij d# ij P d# ij 1.27) Tresca von Mises '2 Taylor Quinney von Mises J " 2 = # $ " x $ " y # $ " y $ " z # $ " z $ " x $ xy " $ # xx $ # yy " $ # yy $ # zz " $ # zz $ # xx = 1% 6 $ xx "$ yy &' J " 2 = # xx $# yy ) 2 # yy $# zz ) 2 # zz $# xx 2 $ 2 yz $ 2 ) zx 1.28) ) 2 $ yy "$ zz ) 2 $ zz "$ xx ) 2 )* 1.29) ) 2 6 # 2 xy # 2 yz # 2 ) zx J " 2 = 2Y 2 =const. ) 2 " yy #" zz ) 2 " zz #" xx ) 2 6 " xy ) = 2 Y 2 = 6 $ 2 " xx #" 2 yy " 2 " 2 yz zx 1 $ 3 2 #" ' 2 % ij #" & ij = Y ) 8

s " P A 0 e " L #L 0 L 0 " # P A " # ln L = 2ln D 0 L 0 D " = s 1 e) " = ln 1 e) " = d" dt = 1 dl L dt # v L p " # A 0 $A f A 0 9

s B M N"#$%&' x ) yu yl E P e eu el s ef B x 0.2 e = 0.2% 10 e

F F A L A da L dl d " d" ) A da) # " A " A d# # da $ 0 " da A = dl L = d# d" d# $ " " = K # n " = Y K # n ) n " = K B # 11

s #$ x " e 12

slip plane slip direction #" " a b µ τ x b b $ " = " m sin 2# x ' & ) % b 2.1) τ τm 0 x b x/a # " = µ % x& $ a ' 2.2) $ " = " m sin 2# x ' & ) * 2# " m x % b b 2.3) 13

" m = µb 2#a 2.4) a b τm µ / 10 µ / 10 5 Dislocation glide motion a) b) x d) c) b 14

"#$%&')*,-... /012&3456-)7#89:;<= />1?&@45AAB5CD,EF)G7H Burgers vector FCCBCC crystal system slip plane slip direction Burgers vector FCC {111} <110> a/2 <110> {110}, {112}, BCC {123},... <111> a/2 <111> 3.2. FCC {111}{111} <110> F A n d " As F F n d 15

A F " = F A 2.5) F cosas = A/cos resolved shear stress " = Fcos# A S = F A cos$ cos# = %cos$ cos# 2.6) 2.6coscos Schmid factor == 450.5 primary slip systemsecondary slip system tbedge dislocation screw dislocationmixed dislocation b t b // t 16

$% &' "# b &' t &' "# &' $% )*,-'."#/01$%/023456789:;<= a) b) c) τ a)b) a) b b) -b or c) Dislocation Density ρ m/m 3 = m -2 ρ=10 9 10 11 m -2 ρ=10 14 10 16 m -2 17

a) w b) c) d h x b h x d x w a) x b) " 32 = b h # x d 2.7) " = w hdw = 1 hd 2.8) " 32 = #b x 2.9) 2.9 stress upper yield point lower yield point A B 0.2) twinning a) b) c) d) 2.9) 0.2% strain strain " 32 = d" dt = b x d# dt # b dx dt 2.10) 18

" 32 = d" dt = #bv 2.11) v ρ JohnstonGilman τ v " # m 2.12) LiF 25Fe-Si 40 1030 510 ρ 2.11 2.12 τ i) ii) b) yield drop; discontinuous yielding bcc fcc hcp bcc fcchcp bcc fcc, hcp ρ v ρ v bcc fcc bcc fcc 19

x3 core Volterra dislocationr, θ, x3x1 x3 b r, θ, x3 x3 u3 u 3 = "b 2# 2.13) tanθ = x2 / x1 x1, x2, x3 u 3 = b $ x 2" tan#1 2 ' & ) % x 1 2.14) 1.6 e S ij = $ & & & & & &" b % 2# 0 0 " b x ' 2 2# x 2 2 ) 1 x 2 ) b x 0 0 1 ) 2# x 2 2 1 x ) 2 ) x 2 x 1 2 x 2 2 b 2# x 1 x 1 2 x 2 2 1.20 % 0 0 # µb x ' 2 2$ x 2 2 * ' 1 x 2 * " S ' µb x ij = 0 0 1 * ' 2$ x 2 2 1 x * ' 2 # µb * x 2 µb x 1 ' 2$ x 2 2 1 x 2 2$ x 2 0 2 * & 1 x 2 ) 20 0 ) 2.15) 2.16)

Volterra dislocation model u1 θ = π b & " b 2# e E ij = ' & µb # 2$ 1#% " E ij = ' { } ) 2 ) x 2 2 1 x 2 ) 2 x 2 2$ 3µ ) x 2 2 1 µ x 2 $2µ ) x 2 2 1 x 2 b x 1 x 2 2 1 " x 2 2# 1"% ) ) ) x 2 2 1 x 2 ) 2 0 { ) x 2 2 1 "µ x 2 } $2µ ) 2 0 b x 1 x 2 2 1 " x ) 2 2# 1"% ) b x 2 2 $µ 2# ) x 2 2 1 x 2 0 0 0 * ) x 2 2 1 x 2 ) 2 ) x 2 2 1 x 2 ) 2 x 2 3x 1 2 x 2 2 µb x 1 x 2 2 1 #x 2 2$ 1#% ) ) x 2 2 1 x 2 ) 2 0 ) x 2 2 1 x 2 ) 2 0 µb x 1 x 2 2 1 #x 2 2$ 1#% ) µb x 2 x 2 2 1 #x 2 2$ 1#% ) 0 0 # µ %b $ 1#% ) ) x 2 x 2 2 1 x 2 * 2.17) 2.18) 21

1.26 S S e ij E S = 1 % V#$ " ij dx 2 ' &' $ 2% R S S S S $ r0 ) = 1 $ 0 " # x 2 3 e # x 3 " x 3 # e x 3 # r dr d# dx 3 2.19) r r0 R r0 r0 5 b R # E S µ b 2 & 2" R = )* ) 0 ) r0 % $ 8 " 2 r 2 r dr d, dx 3 ' 2.20) dx3 r θ E S 0 = µb2 4" ln # R & % $ r 0 ' 2.21 ln R / r0 ) 2.21) 4 π E 0 S = "µb 2 a1/21 2.22) E 0 E = µb 2 4" 1#$ % ' ) ln R & r 0 * ) 2.23) 1/3 2.22 22

TL dislocation TL TL 2.22 Δl ΔE "E = # µ b 2 "l 2.24) T L = de dl = lim $ "E ' & ) = * µ b 2 "l#0% "l 2.25) 23

Peach-Koehler τ L x S = L x ) b S F F = τ S W W = F b = " S b = " L x b 3.1) τ b L ) x W L τ b L x f = " b 3.2) b=b1, b2, b3) t=t1, t2. t3) f=f1, f2, f3) f = G " t 3.3) G " # $b Peach-Koehler 3.3 x3 t=0,0,1) b=b,0,0) b=0,0,b) G G = " 11 b, " 12 b, " 13 b ) G = " 13 b, " 23 b, " 33 b ) 3.3 f = " 21 b, #" 11 b, 0) 3.4) f = " 23 b, #" 13 b, 0) 3.5) 24

b b 11 21 21 f2 f1 x3 11 x2 x1 b b 23 23 f2 13 13 f1 τ a)c) b/2 b)a), c) a) x = 0 b) x = b/2 c) x = b b) a,c)b) b/2 Peierls potential 25

Peierls stress Peierls potential 0 b/2 b a b b/a b/a BCC, FCC, HCP b/a b/a b b) dislocation obstacle slip plane 26

L L F x F m b L b L 0 x τ L τ b L F F τ b L τ m τ m b L τ m b L long-range obstacleshort-lange obstacle 27

a) long-range obstacle m b L a b L x b) short-range obstacle m b L * b L x "#$%&'%)*,-./0 a) τa τm b) τ* τ* τm t " = " a " * 3.6) τa athermal stressτ* effective stressτ* 28

work-hardening strain-hardening,- ' 0 / #$%& ". 1 )* 29

stress I II III strain FCC Ieasy glide region IIlinear hardening region IIIparabolic hardening region dynamic recovery " = # µ b $ 0.5 3.7) Bailey-Hirsch II grain boundary d " y = " 0 k d # 1 2 3.8) Hall-Petch 30

relationship d -1/2 <> Frank-Read n grain boundary 0 x1 x2 x3 xn-1 L dislocation source slip plane f0 f 0 = " n # b 3.9) back stress n n " = " c 3.10) L L = n µ b 1 " #) $ % 3.11) 1-) d L L " d 2 3.12) 3.103.12 n L 31

& " = 2 " c µ b ) ' * 1# $ ) % 1 2 # 1 d 2 3.13) -1/2 primary slip system "# $% single crystal polycrystal constraint effect 1.2.1. " 11 " 22 " 33 = 0 3.14) von Mises' condition FCC BCC HCP HCP FCC BCC 32

Tresca Taylor multiple slip y y " y = # y M 3.15) Taylor factor texture FCC M = 3.06 BCC M = 2.0 33

L0 L "#$%&')*,-. c /#$0&')*,-. c L c c c = 0 Fm a " a b L = F m 3.16) Fm TL " a b L = 2 T L cos # c 2 3.17) a c Fm L L c c L L0 LL0 34

"#$% L0 L &"#$% " c = 0, F m 2 T L =1 3.18) 3.17 L = L0 " m # " OR = 2 T L b L 0 = µ b L 0 3.19) 2.250.5 Orowan stress dislocation Orowan loop L0 particle 2r Orowan loop Orowan mechanism 35

3.19 L0 " L 0 = $ 2% ' # f & 1 2 r " OR = µ b # 0.7 µ b f L 0 r 3.20) Fm/2TL) 1 r f 1/2 solution hardening F m s = µ b r " 3.21) " = r s # r m r m 3.22) rs rm F m m " µ b2 # 20 3.23) " = d lnµ ) dc 3.24) c 36

"#$%&' )#$*,-. r " b 2 3.25) 3.21 " 3.23 Fm " /20 3.21, 3.23 F m 2 T L <<1 a) Friedel limit b) Labusch limit ~L 2 "c L L0 ab a) # % " m = $ % & 2 F m ) 3 2 b 3 ' %* c, - / % µ. ) 1 2 0 2 µ 1 3 2 c 3.26) 1/2 a) Friedel limit3.26 b) 37

1 1 # " m = F m 4 c 2 w & 3 # F 4 % $ 8 b 7 = m c 2 w & 3 % T L ' $ 4 µ b 9 ' 3.27) w 5b Labusch limit 2/3 precipitation hardening) r f L 1 " L = T % L 2 " $ ' L 0 = µ b2 % $ ' # F m & # 2 F m & 1 2 L 0 3.28) Fm # L = r b & % $ " f ' 1 2 3.29) 2 a = µ " 3 # f r& % $ b ' 1 2 3.30) r f 1/2 3.193.20 38