略歴 鈴 平成元年 東京大学農学系博士課程修了平成 3 年 東京大学農学部助手平成 4 年 アメリカ NIH ポスドク平成 8 年 慶応大学医学部助手 講師平成 13 年 山口大学医学部助教授 ホームページ 木春巳 微生物学教室助教授本館 3F 内線 2227

Size: px
Start display at page:

Download "略歴 鈴 平成元年 東京大学農学系博士課程修了平成 3 年 東京大学農学部助手平成 4 年 アメリカ NIH ポスドク平成 8 年 慶応大学医学部助手 講師平成 13 年 山口大学医学部助教授 ホームページ 木春巳 微生物学教室助教授本館 3F 内線 2227"

Transcription

1 第 1 部 免疫系とは? Host defense against infection : Immunity Recognition of MHC and peptide

2 略歴 鈴 平成元年 東京大学農学系博士課程修了平成 3 年 東京大学農学部助手平成 4 年 アメリカ NIH ポスドク平成 8 年 慶応大学医学部助手 講師平成 13 年 山口大学医学部助教授 ホームページ 木春巳 微生物学教室助教授本館 3F 内線 2227 suzukih@yamaguchi-u.ac.jp 主要な原著論文 主要な著書 総説 Nature (1994) 371, 67 Immunity (1995) 2, 413 J. Exp. Med. (1997) Science (1999) Nature Genetics (1999) Nature Immunol. (2003) 免疫 中山書店 80 (2000) 免疫学がわかる 羊土社 p18 (2000) 新用語ライブラリー免疫 羊土社 p124 (2000) 最新医学 54, 2162 (1999) 医学のあゆみ 194, 390 (2000) 臨床免疫 37, 403 (2002)

3 continuous attack!

4 生体防御 1. 非免疫反応 a. 感染防御 リゾチーム ( 鼻汁だ液中のペプチドグリカン分解 ) ディフェンシン キャスリシジン ( 抗菌ペプチド 気道粘膜上皮 膜構造の撹乱 顆粒中 ) IFNα/β ( ウイルス2 本鎖 RNAで活性化されウイルス蛋白の合成を阻害 ) b. 異常細胞修復 除去 放射線 化学ストレス DNA 損傷細胞周期停止 修復 アポトーシス ( p53) 2. 免疫系 ( 二段構えの防御 ) a. 自然免疫好中球 補体 マクロファージ NK 樹状細胞 NKT 細胞 微生物に特異的なパターンを認識速効性 T 細胞に依存しない 日常の感染防御における主役 昆虫 ウニ 線虫にもあり (Pathogen-Associated Molecular Patterns) 先天的 b. 獲得免疫 B 細胞 ( 抗体 ) T 細胞 ( ヘルパー キラー ) 樹状細胞 抗原特異性が高い (T 細胞に依存 ) 時間がかかる 後天的に教育される非自己なら何に対しても反応できる 記憶の形成 ( ワクチン ) 魚類以上

5 免疫担当細胞のいろいろ B細胞 T 細胞 リンパ系 造血幹細胞 NK 細胞 白血球 樹状細胞 好中球好酸球好塩基球 顆粒球多形核白血球 骨髄系 マクロファージ単球 血小板 赤血球

6 Innate Immunity

7 自然免疫軍団のプレイヤーたち 日常繰り返されている病原菌の感染に対するルーチンワーク 好中球 Neutrophil 微生物を食べて殺し 炎症を誘導する マクロファージ Macrophage 何でも食べて警報を出す NK( ナチュラルキラー ) 細胞 Natural killer ウイルス感染細胞 ガン細胞を殺す マスト細胞 Mast Cells ヒスタミンの貯蔵庫 アレルギー 樹状細胞 Dendritic Cells 抗原提示 獲得免疫の入り口 補体系 Comprement 蛋白質 微生物の認識 障害 炎症誘導 & 抗体のエフェクター

8 好中球 多形核白血球顆粒球 neutrophil polymorphnuclear Leukocyte (PMN), granulocyte 最前線の殺し屋 分葉した核を持つ ( 単核 ) 全白血球の50-70% 短命 炎症部位へ遊走貪食の主役 lysosomeが発達 顆粒の中には抗菌ペプチド ( キャスリシジン ) ミエロパーオキシダーゼ ムラミダーゼ等の殺菌力を持つ酵素が充満している Fc レセプター 補体レセプター TLR2,4陽性抗体や補体によって活性化され 活性酸素 ( 殺菌 組織破壊 ) を産生 炎症の主役 好酸球 eosinophil 顆粒内にMBP(mojor basic protein) を持ち 寄生虫の排除に働く 好塩基球 basophil Fc εr ヒスタミン顆粒を持ち マスト細胞と同様 アレルギー応答に関わる

9 マクロファージ 単球 macrophage, monocyte 貪食 殺菌 掃除 & 警報発令 単核食細胞 末梢血中で単球 分化してマクロファージ肝臓 ( クッパー細胞 ) 肺胞マクロファージ貪食作用 飲作用リソソーム ( 加水分解酵素 ) 顆粒 マンノース受容体 C3b Fcレセプター スカベンジャーレセプター TLRs 活性化してIL-1 IL-6 TNF α( 炎症性サイトカイン) IFNγ( 細胞免疫活性化サイトカイン ) 各種ケモカインを産生 好中球などを誘引 活性化 活性酸素 NO産生によって殺菌アポトーシスで死んだ細胞をすぐさま除去する 単球 ( 血中 ) ビーズを貪食したマクロファージ

10 NK 細胞 Natural killer cell 異変した細胞を除去する 大型顆粒リンパ球 パーフォリンによる細胞障害 CD16, CD56, NKR-P1, IL-2Rβ 陽性 分化に Id2, IL-15 が必要 ウイルス感染細胞 ガン化した細胞 クラスIの発現を失った細胞を殺す FcRによる抗体依存性細胞障害 IFNγ TNFα産生 細胞障害 MICA ( ストレス誘導 ) クラス I MHC NKG2D(DAP10) NKR-P1 (ITAM) 殺す クラス I MHC HLA-G/E ( 胎盤 ) KIR (ITIM) 殺すシグナルを阻害 Missing self theory

11 マスト細胞 ( 肥満細胞 ) Mast cell あらゆる臓器に多数 (10 12 個 ) 存在 アレルギーの火薬庫 補体 (C3) レセプター Fc εレセプター TLR2,4 発現 IgE 抗体および補体によって活性化され 脱顆粒によってヒスタミン セロトニン等の炎症誘導物質を放出 血管透過性の亢進 炎症の誘導 TLR 刺激ではサイトカイン (TNFα) 産生即時型アレルギー応答の主役 ヒスタミン顆粒

12 樹状細胞 dendritic cell 抗原提示 - 自然免疫と獲得免疫の橋渡し役 CD11c 陽性 樹状ランゲルハンス細胞 血中 組織中にも未熟型 骨髄系 ( リンパ系 プラズマサイトイド系 ) TLRs マンノースレセプター FcR 陽性 貪食能 末梢 ( 局所 ) で抗原を取り込んで成熟 リンパ説へ移動 ナイーブT 細胞へ抗原を提示する 成熟型はクラスII MHC 共刺激分子 (CD86, CD40) を発現 細胞外から取り込んだ抗原でもクラスI 載せることができる ( クロスプレゼンテーション ) Plamsacytoid DC (TLR9でIFN α産生 ) IDC( 胸腺内 ) FDC( 胚中心 )

13 補体系 ( 別経路 古典経路 ) 抗原を排除し 炎症を引き起こす 抗原抗体複合体 ( 古典経路 ) あるいは細菌成分 ( 別経路 ) によって活性化される 細菌細胞壁マンナン + MBL( レクチン) レクチン経路 細菌 & 自然抗体 ( IgM) 複合体 C1q 細菌表面多糖構造 古典経路 別経路 C3 分解 C3a C3b アナフィラトキシン 炎症 (C3a ヒスタミン放出 C5a 走化性因子 ) C5,6,8,9 ( 膜溶解 MAC) オプソニン化 C3b-CD21 貪食 * 補体だけでなく 抗体も FcR を介してオプソニン化する

14 NKT γ γδ T αβ γ δ γ DN-αβT (CD8αα IEL) γ B1 CD5 B2

15 TLR (Toll-like receptors) パターン認識レセプター ショウジョウバエの体軸決定に関与する遺伝子として取られた マクロファージ 好中球 樹状細胞 B 細胞に発現多くの細菌に共通な成分 ( LPS, ペプチドグリカン ) に結合 NF-κBの活性化を介してサイトカイン産生を誘導 TLRs リガンド TLR2 リポ蛋白 ペプチドグリカン TLR4 LPS( リポ多糖 ) TLR5 フラジェリン( 鞭毛蛋白 ) TLR9 非メチル化 CpG DNA TLR3 ウイルス二本鎖 RNA? 2+6 マイコプラズマ由来リポ蛋白 TLR1 TLR2とヘテロダイマー形成 7,8,10 機能不明 PAMP = Pathogen Associated Molecular Pattern

16 細菌の表層 グラム陽性細菌 グラム陰性細菌 リポテイコ酸 テイコ酸 LPS ペプチドグリカン NAG NAM ペプチドグリカン テイコ酸 LPS

17 細菌のべん毛 細菌の DNA フラジェリン 非メチル化 CpG DNA

18 TLR のシグナル伝達 IRF3/7 IFNα,β 転写因子 サイトカイン産生

19 細菌の侵入に対する免疫応答 IgE マスト細胞 ( 肥満細胞 ) ヒスタミン放出 血管透過性亢進 自然抗体 IgM ( 補体主経路 ) アナフィラトキシン 補体系 溶菌 特異抗原 多糖 MBL ( 補体別経路 ) TLR 好中球 活性酸素産生 貪食 細菌 PAMP 脂質セラミド ストレス / 異常ウイルス感染 MICA ガングリオシド TLR TCR マクロファージ TLR NKR-P1 NKG2D オプソニン化 樹状細胞 plasmacytoid DC (IFNα 産生 ) γδ T 細胞, DN-T NKT 細胞 NK 細胞 IL-4, IFNγ リンパ節 IL-12, IFNγ IFNγ 炎症性サイトカイン産生 ケモカイン産生 T 細胞へ抗原提示 サイトカイン産生 細胞破壊 発熱 炎症 好中球 Μφ の動員 ( 誘引 ) 獲得免疫 Th1/2 分化 抗体産生 CTL

20 自然免疫から獲得免疫へ 末梢組織 樹状細胞 ( 未熟 ) 抗原を貪食 PAMP / TLR 樹状細胞 ( 成熟 ) class II B7-2(CD86), CD40 CCR7 ケモカインレセプター 抗原提示分子 補助因子 ケモカイン SLC CXCL9 CCL21 リンパ節 (HEV) DC, T領域 樹状細胞 ( 活性化 ) 抗原提示 ナイーブ T 細胞 Th1,2 CTL 特異的 T 細胞活性化 ヘルプ B 細胞活性化 クラススイッチ体細胞突然変異 胚中心 (GC) 抗体産生細胞

21 Acquired Immunity (Adaptive Immunity)

22 多様性の獲得 ( 遺伝子再構成 ) 抗原特異性 ( クローン選択 ) BCR = 抗体 遺伝子再構成 クローン選択 T 細胞 B 細胞だけが遺伝子再構成することができる ( ランダム ) T,B 細胞は細胞によってそれぞれレセプターの形が違う ( 多様性 ) 抗原特異的なクローンのみが応答する ( 特異性 ) T 細胞のみが自己と非自己を見分けることが出来る ( 選択 )

23 後天的教育 ( 適合分化 T 細胞の選択 ) DP 死 DP ランダムに再構成したTCR DP CD4-SP CD8-SP DP DP 死 TCR による抗原認識 T 細胞の胸腺内分化 T 細胞の正 負の選択 自己の成分 ( 自己 MHC+ 自己ペプチド ) に反応するT 細胞クローンは胸腺内で未熟なうちに除去される 負の選択 同時に 将来役に立ちそうなクローン ( 自己 MHCに弱く反応するクローン ) だけを生き残らせる ( 適合分化 ) 正の選択

24 自己と非自己の識別 ( 免疫寛容 ) 1. clonal deletion( 負の選択 ) 胸腺内での自己反応性 T 細胞クローンの除去 負の選択 2. clonal anergy( 不応答 ) 末梢にしか存在しない抗原 負の選択では除けない 補助刺激 ( シグナル2) がない状態でTCRシグナル ( シグナル1) が入ると T 細胞はしばらくの間 不応答状態となる シグナル2がなければ寛容になる シグナル2を与えるのが自然免疫刺激 3. supression( 調節性 T 細胞 ) CD25 陽性 CD4-T細胞 抑制性のサイトカインを放出して免疫応答を負に調節する 抗原特異性 作用機序ともに詳細は不明

25 γ β γ α β

26 まとめ ( ダイジェスト ) 病原菌 マンノースペプチドグリカン LPS べん毛細菌 DNA リポタンパク二本鎖 RNA TLR レクチン補体系自然抗体 自然免疫 danger signal 貪食炎症 ( 発熱 発赤 膨張 ) 殺菌白血球浸潤 (PAMP) その他の非自己成分 DC が捕食抗原提示 共刺激分子の発現サイトカインケモカイン 獲得免疫 特異抗体特異キラー細胞 メモリー B T 細胞

27 第 2 部

28 シグナル伝達とは? リガンド ( 指令 ) 受容体 シグナル伝達に関わる因子 素早くスイッチのオン オフをしなければならない 1. 酵素活性の制御 ( 修飾 ) 2. 他のタンパク質 ( 化合物 ) との会合 3. 細胞内での場所の移動 4. セカンドメッセンジャーの生成 5. リプレッサーの分解 除去 6. 貯蔵物質の開放 細胞内 指令が来たときだけ信号を伝える 信号を増幅する ( カスケード ) アウトプット ( 結果 ) 特異的な遺伝子の転写開始形態変化 ( アクチン再構成 ) 接着分子活性化アポトーシス 酵素 キナーゼチロシンキナーゼ ( リン酸化酵素 ) セリンスレオニンキナーゼチロシンスレオニンキナーゼ脂質キナーゼ フォスファターゼ ( 脱リン酸化酵素 ) GEF ( グアニン変換因子 ) Gタンパク ( GTPアーゼ ) プロテアーゼユビキチンリガーゼ アダプター分子チロシン残基 SH2, SH3 転写因子

29 B 細胞受容体 (Ig) raft 細胞膜 Lyn チロシンキナーゼ ( リン酸化 ) Igα/ β Btk Syk Fyb LAB BLNK Nck アダプター ( 結合の場 ) 1 PLCγ 2 Grb2/SOS 3 GEF リパーゼ Vav DG PKCθ CARMA1 Bcl-10 IKKs Rho Rac G protein Ras MAPKK MAPK MAPKKK PI3K Akt Gsk3 脂質キナーゼ ikb Ca 2+ IP3 小胞体膜 Ca2+ Calmodulin Cn NF-ATp NF-AT NFkB NF-ATp Gsk3 NF-AT Gsk3 MAPK NFkB Jun, Elk 転写因子 転写 核膜 promotor

30 P PTEN P PIP 2 (PtdIns-4,5-2P) P P SH2 P P P PIP 3 (PtdIns-3,4,5-3P) PI3 キナーゼ PH ドメイン 1 脂質キナーゼ ( 蛋白質ではない 基質を活性化することはできない ) 2 基質である PIP 2 は細胞膜に埋まっている 3 生成物である PIP 3 は PH ドメイン蛋白と結合 PH ドメインを持つ蛋白を膜へと引き寄せることができる 4 生成した PIP 3 は PTEN によりすぐさま脱リン酸化を受けて PIP 2 に戻る セカンドメッセンジャーとして働く

31 P P P Ras Rac G-protein SH2 PTEN PI3K wortmannin Vav prex SWAP70 P P P Btk P Akt PIP 3 (PtdIns-3,4,5-3P) PDK1 BCAP LAT CD19 CD28 IRS-1 TLR2 cdc42 Rac PLCγ IKK κ NF- B mtor GSK3 p70 S6K PKC δζ, 細胞骨格の再編成 生存 ( 抗アポトーシス ) 共刺激シグナル免疫シナプス形成 増殖 インスリンシグナル 寿命?

32 PI3K の分類と機能 class structure products function SH2-depentdent IA KO PIP PIP 2 PIP 3 Glucose metabolism B cell development, activation Mast cell development anti-apoptotic morphological change IB PIP PIP 2 PIP 3 G-protein dependent Neutrophil chemotaxis T cell development II PIP PIP 2 Chemokine receptor Inslin signaling III PIP Intracellular vesicle transport

33 ノックアウトマウスの作製 Genomic Structure of the Mouse p85α Gene X E ATG for p85 α P P X E WH H NN N H H exon 1A (p85α) Targeting Vector exon 1B (p50α) 6.0 kb exon 1C (p55α) Targeted Gene X,B ATG for neo X E X,B X pmc1-dta exon 1A exon 1B 1.6 kb E exon 1C 1 kb W: Wild-type H : p85α +/- N : p85α -/- Nature Genetics 21: 230, 1999

34 IP: p85 PAN p55γ p85β B cells p85 α p50 α p85 β p55 γ PtdIns(3)P T cells p85 α p50 α p85 β p55 γ blot: p85 PAN (testis) +/+ -/- +/+ -/- +/+ -/- +/+ +/+ -/- -/- testis +/+ (adipocytes) Genotype p85α +/+ p85α -/- -/- adipocites ノックアウトマウスの B 細胞では PI3K 活性は殆ど消失しているが T 細胞ではかなり残っている (100) (100) 5 59% Cells B T B T

35

36 ノックアウトでは B 細胞の増殖 抗体産生も抑えられている A LPS anti-igm +/+ -/ anti-cd40 +/+ -/ c o n c e n t r a t i o n (µg/ml) PDBu +Iono Conc. (µg/ml) B Anti-DNP production (A 405 ) TI-II (DNP-Ficoll) TD (DNP-KLH) +/+ 7days -/- 7days +/+ 0day -/- 0day Proliferation (dpm x10-4 ) S e r u m d i l u t i o n

37 PI3K ノックアウトマウスの B 細胞に関する表現型 1. 末梢の成熟 B 細胞数の低下 ( 1/3 1/2) 2. 腹腔 B1 細胞数の低下 3. in vitro での抗 IgM抗体 LPSによる増殖の阻害 4.T 非依存性 ( TI) 抗原に対する抗体産生の阻害 Science 283: 390, 1999

38 PI3K は B 細胞の分化 活性化に重要らしい! 疑問 PI3Kはシグナル伝達のどこで どのように働いているのか?

39

40 Btk と PI3K BCR Defective BCR signaling in Xid (Btk-PH mutation) Inhibition of Btk activation by PI3K inhibitor (poor results) Membrane recuritment of Btk-GFP was blocked by PI3K inhibitor Lyn Syk BCAP PIP 2 PI3K PIP3 Grb2 LAB Igβ Btk BLNK Vav PLCγ 2 recuruit PIP 3 py Lyn (Syk) Active Btk Ca 2+ influx Inactive Btk PI3K (PIP 3 ) Btk の膜移行 Btk の活性化

41 PI3K -/- と Btk -/- の表現型はよく似ている

42 Btk の活性化が PI3K に依存しているなら PI3K ノックアウト B 細胞では Btk の活性化が起こらないはず BCR PI3K Akt Btk NF-kB PLC γ 2 bcl-xl Ca Ca 2+

43 Btk のリン酸化は PI3K に依存しない 細胞溶解液 anti-µ WN py BTK WT PI3K -/ 遠心分離 その他のタンパク IP: BTK Btk WT 抗 Btk抗体ビーズ SDS-PAGE ウエスタンブロット WN : 50nM LY : 25uM

44 Btk の活性化も PI3K には依存していない post-nulclear cell lysate 6 IP with anti-btk Ab + 100uM ATP, 5 min + Enolase / Btk itself Enolase-P (fold increase) 4 2 Blot with py 0 non anti-µ anti-µ +Ly

45 Btk の膜へのリクルートにも PI3K は必須ではない

46 PLCγ/Ca 2+ 経路も PI3Kが無くても活性化される A B mice B6 PI3K -/- anti-µ blot: IP: PLCγ2 p-tyr PLCγ2 Fluorescence ratio s cenc e Ra tio WT PI3K -/- Btk -/- 0uM 25uM 50uM +wortmannin Time (min)

47 結論 : PI3K が無くても Btk の活性化は正常! PI3K ノックアウトでは B 細胞シグナル伝達のどこに異常があるのか? BCR PI3K Btkの活性化はPI3K に依存しない Akt の活性化は? Akt Btk NF-kB PLCγ2 Ca 2+ bcl-xl

48 BCR-dependent Akt/NF-kB/bcl-xL activation is inhibited in PI3K -/- B cells A anti-µ Ly WT PI3K -/- Btk -/ p-akt (S473 ) p-akt (T308) Akt C Anti-µ WT PI3K -/- Btk -/ Bcl-x L Cyclin D2 Erk2 D no stim anti-µ B WT mice anti-µ - p85α+/- WT Btk-/- p85α-/ PI3K WT+Ly PI3K -/- NF-κB Btk -/ WT (+Ly) PI

49 Akt の活性化 それに伴う NF-kB の活性化 および Bcl-xL の誘導は PI3K が必要 BCR PI3K Rescued by forced expression of Bcl-xL? Akt Btk NF-kB PLCγ2 Ca 2+ Bcl-xL PI3K ノックアウトに Bcl-xL を強制発現させてアポトーシスを防いだら ノックアウトの異常が回復するか?

50 Overexpression of bcl-xl restore B cell defects in PI3K mice B220 Spleen LN WT (81± 18x10 6 ) PI3K -/- (72± 9x10 6 ) bcl-xl (122± 8x10 6 ) Cell Number (x10 7 ) B cell IgM lo B cell PI3K -/- x bcl-xl (98± 12x10 6 ) 0 WT Bcl-xL PI3K -/- x PI3K -/- Bcl-xL I g M C D 1 9

51 Restration of B cell function in PI3K deficient mice by Bck-xL expression Anti-µ Cyclin D2 Erk Anti-µ concentration Dilution (100x2 n ) WT (-) PI3K -/- (-) PI3K -/- x Bcl-x L (-) WT (+) PI3K -/- (+) PI3K -/- x Bcl-x L (+)

52 B細胞シグナル伝達におけるPI3Kの機能 : 要約 1. BCR 刺激による Btk の活性化は PI3K に依存しない 2. Akt, NF-kB の活性化 Bcl-xL の誘導は PI3K に依存する 3. PI3K は Ca 2+ 流入の経路には重要でないが Akt を介した生存シグナルの伝達に必須である BCR BCAP PIP 2 PI3K PIP3 LAB, Igα Akt Grb2 Btk BLNK PLCγ 2 NF-kB Bcl-xL Ca 2+ influx Nature Immunol 4: 280, 2003

53

54 Phenotype of PI3K (p85α) Kockout mice 1. Development of B2 and B1 cells 2. BCR/TLR dependent proliferation of B cells TI-II Ab production 3. Production of IFNγ & NO in M and DC 4. Development of mast cell and c-kit signalling 5. GM-CSF signalling in Neutrophil 6. GP-VI signalling in platelet 7. Bowl enlargement φ

55

56

57 Copyright protected Harumi Suzuki

Host defense against infection : Immunity Recognition of MHC and peptide continuous attack! α/β ( 免疫担当細胞のいろいろ B細胞 T 細胞 リンパ系 造血幹細胞 NK 細胞 白血球 樹状細胞 好中球好酸球好塩基球 顆粒球多形核白血球 骨髄系 マクロファージ単球 血小板 赤血球 Innate Immunity

More information

RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果

RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果 RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果 Poly I:C により一部の樹状細胞にネクローシス様の細胞死が誘導されること さらにこの細胞死がシグナル伝達経路の活性化により制御されていることが分かりました

More information

H26分子遺伝-19(免疫系のシグナル).ppt

H26分子遺伝-19(免疫系のシグナル).ppt 第 19 回 免疫系のシグナル伝達 1. 抗原受容体を介したシグナル伝達 2. T 細胞の活性化と CD28 シグナル 3. B 細胞の活性化シグナル 4. 免疫抑制剤の作用機序 附属生命医学研究所 生体情報部門 (1015 号室 ) 松田達志 ( 内線 2431) http://www3.kmu.ac.jp/bioinfo/ 2014 年 11 月 12 日 免疫系 ( 異物排除のためのシステム

More information

図 B 細胞受容体を介した NF-κB 活性化モデル

図 B 細胞受容体を介した NF-κB 活性化モデル 60 秒でわかるプレスリリース 2007 年 12 月 17 日 独立行政法人理化学研究所 免疫の要 NF-κB の活性化シグナルを増幅する機構を発見 - リン酸化酵素 IKK が正のフィーッドバックを担当 - 身体に病原菌などの異物 ( 抗原 ) が侵入すると 誰にでも備わっている免疫システムが働いて 異物を認識し 排除するために さまざまな反応を起こします その一つに 免疫細胞である B 細胞が

More information

免疫再試25模範

免疫再試25模範 学籍番号名前 * 穴埋め問題を除き 解答には図を用いてよい 問題 1 免疫は非自己を認識し これを排除するが 自己の細胞に対しては原則反応しない T 細胞の 末梢性寛容 の仕組みを簡単に説明せよ (10 点 ) 講義では 大きく三つに分け 1( 微生物感染などがない場合 また抗原提示細胞以外で自己抗原が提示されていても )CD80/86 などの副刺激分子の発現が生じないため この自己抗原を認識した

More information

1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する ⅱ) 侵入因子間の差異を認識する ( 特異的反応 ) ⅲ) 侵入因子を記憶し 再侵入に対してより強い反応を起こ

1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する ⅱ) 侵入因子間の差異を認識する ( 特異的反応 ) ⅲ) 侵入因子を記憶し 再侵入に対してより強い反応を起こ 病理学総論 免疫病理 (1/3) 免疫病理学 1. 免疫学概論 2. アレルギー反応 3. 自己免疫疾患 4. 移植組織に対する免疫反応 5. 免疫不全疾患 6. がん免疫療法 担当 分子病理学 / 病理部桑本聡史 1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する

More information

H26分子遺伝-17(自然免疫の仕組みI).ppt

H26分子遺伝-17(自然免疫の仕組みI).ppt 第 17 回 自然免疫の仕組み I 2014 年 11 月 5 日 免疫系 ( 異物排除のためのシステム ) 1. 補体系 2. 貪食 3. 樹状細胞と獲得免疫 附属生命医学研究所 生体情報部門 (1015 号室 ) 松田達志 ( 内線 2431) http://www3.kmu.ac.jp/bioinfo/ 自然免疫 顆粒球 マスト細胞 マクロファージ 樹状細胞 NK 細胞 ゲノムにコードされた情報に基づく異物認識

More information

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効 60 秒でわかるプレスリリース 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - がんやウイルスなど身体を蝕む病原体から身を守る物質として インターフェロン が注目されています このインターフェロンのことは ご存知の方も多いと思いますが 私たちが生まれながらに持っている免疫をつかさどる物質です 免疫細胞の情報の交換やウイルス感染に強い防御を示す役割を担っています

More information

(Microsoft Word - \226\306\211u\212w\211\337\213\216\226\ doc)

(Microsoft Word - \226\306\211u\212w\211\337\213\216\226\ doc) 平成 17 年度免疫学追追試 以下の問いの中から 2 問を選び 解答せよ 問 1 B 細胞は 一度抗原に接触し分裂増殖すると その抗原に対する結合力が高く なることが知られている その機構を説明しなさい 問 2 生体内で T 細胞は自己抗原と反応しない その機構を説明しなさい 問 3 遅延型過敏反応によって引き起こされる疾患を 1 つ挙げ その発症機序を説明 しなさい 問 4 インフルエンザウイルスに感染したヒトが

More information

研究成果の概要 今回発表した研究では 独自に開発した B 細胞初代培養法 ( 誘導性胚中心様 B (igb) 細胞培養法 ; 野嶋ら, Nat. Commun. 2011) を用いて 膜型 IgE と他のクラスの抗原受容体を培養した B 細胞に発現させ それらの機能を比較しました その結果 他のクラ

研究成果の概要 今回発表した研究では 独自に開発した B 細胞初代培養法 ( 誘導性胚中心様 B (igb) 細胞培養法 ; 野嶋ら, Nat. Commun. 2011) を用いて 膜型 IgE と他のクラスの抗原受容体を培養した B 細胞に発現させ それらの機能を比較しました その結果 他のクラ TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN Phone: +81-3-5228-8107 2016 年 7 月 報道関係各位 どうして健康な人がアレルギーを発症するのか? IgE 型 B 細胞による免疫記憶がアレルギーを引き起こす 東京理科大学 東京理科大学生命医科学研究所分子生物学研究部門教授北村大介および助教羽生田圭らの研究グループは

More information

医学部医学科 2 年免疫学講義 10/27/2016 第 9 章 -1: 体液性免疫応答 久留米大学医学部免疫学准教授 溝口恵美子

医学部医学科 2 年免疫学講義 10/27/2016 第 9 章 -1: 体液性免疫応答 久留米大学医学部免疫学准教授 溝口恵美子 医学部医学科 2 年免疫学講義 10/27/2016 第 9 章 -1: 体液性免疫応答 久留米大学医学部免疫学准教授 溝口恵美子 体液性免疫 B 細胞が分化した形質細胞によって産生される抗体による免疫反応で主に次の 3 つの作用からなる 1) 中和作用 : neutralization: 抗体による細菌接着の阻害 2) オプソニン化 : 細菌が抗体 補体によって貪食されやすくなる 3) 古典経路による補体系の活性化

More information

Microsoft PowerPoint - 市民講座 小内 ホームページ用.pptx

Microsoft PowerPoint - 市民講座 小内 ホームページ用.pptx 東京医科歯科大学難治疾患研究所市民講座第 5 回知っておきたいゲノムと免疫システムの話 私たちの体を守る免疫システム その良い面と悪い面 小内伸幸 東京医科歯科大学難治疾患研究所生体防御学分野 免疫って何? 免疫は何をしているのでしょうか? 健康なときには免疫が何をしているのかなんて気にしませんよね? では もし免疫がなかったらどうなるんでしょうか? 免疫不全症 というむずかしい名前の病気があります

More information

卵管の自然免疫による感染防御機能 Toll 様受容体 (TLR) は微生物成分を認識して サイトカインを発現させて自然免疫応答を誘導し また適応免疫応答にも寄与すると考えられています ニワトリでは TLR-1(type1 と 2) -2(type1 と 2) -3~ の 10

卵管の自然免疫による感染防御機能 Toll 様受容体 (TLR) は微生物成分を認識して サイトカインを発現させて自然免疫応答を誘導し また適応免疫応答にも寄与すると考えられています ニワトリでは TLR-1(type1 と 2) -2(type1 と 2) -3~ の 10 健康な家畜から安全な生産物を 安全な家畜生産物を生産するためには家畜を衛生的に飼育し健康を保つことが必要です そのためには 病原体が侵入してきても感染 発症しないような強靭な免疫機能を有していることが大事です このような家畜を生産するためには動物の免疫機能の詳細なメカニズムを理解することが重要となります 我々の研究室では ニワトリが生産する卵およびウシ ヤギが生産する乳を安全に生産するために 家禽

More information

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産

の感染が阻止されるという いわゆる 二度なし現象 の原理であり 予防接種 ( ワクチン ) を行う根拠でもあります 特定の抗原を認識する記憶 B 細胞は体内を循環していますがその数は非常に少なく その中で抗原に遭遇した僅かな記憶 B 細胞が著しく増殖し 効率良く形質細胞に分化することが 大量の抗体産 TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN Phone: +81-3-5228-8107 報道関係各位 2018 年 8 月 6 日 免疫細胞が記憶した病原体を効果的に排除する機構の解明 ~ 記憶 B 細胞の二次抗体産生応答は IL-9 シグナルによって促進される ~ 東京理科大学 研究の要旨東京理科大学生命医科学研究所

More information

リンパ組織における抗原特異的なナイーブ T 細胞の捕捉と活性化 捕捉 活性化 ナイーブT 細胞末梢循環中移動所属リンパ節でAgを提示した樹状細胞に出会う TCR を介して活性化される 5 日以内 エフェクター T 細胞 Ag 認識後 5 日以内に増加 リンパ節を出て局所へ移動

リンパ組織における抗原特異的なナイーブ T 細胞の捕捉と活性化 捕捉 活性化 ナイーブT 細胞末梢循環中移動所属リンパ節でAgを提示した樹状細胞に出会う TCR を介して活性化される 5 日以内 エフェクター T 細胞 Ag 認識後 5 日以内に増加 リンパ節を出て局所へ移動 医学部医学科 2 年免疫学講義 10/26/201 第 8 章 -1: T 細胞免疫応答 ( 前編 ) 久留米大学医学部免疫学准教授 溝口恵美子 リンパ組織における抗原特異的なナイーブ T 細胞の捕捉と活性化 捕捉 活性化 ナイーブT 細胞末梢循環中移動所属リンパ節でAgを提示した樹状細胞に出会う TCR を介して活性化される 5 日以内 エフェクター T 細胞 Ag 認識後 5 日以内に増加 リンパ節を出て局所へ移動

More information

<4D F736F F D2096C689758A C A58D528CB492F18EA68DD796452E646F63>

<4D F736F F D2096C689758A C A58D528CB492F18EA68DD796452E646F63> 免疫学 1 第 6 回 / 全 18 回日時 : 10/23( 火 ) 2 講目授業課題 : 自然免疫と適応免疫の関連 2 学習内容 : 抗原提示細胞, 免疫シナプス担当教員 : 鈴木健史主な項目 : 抗原提示細胞 ( 樹状細胞, マクロファージ,B 細胞 ) と抗原提示抗原提示経路 ( 外因性抗原, 内因性抗原 ), クロスプレゼンテーション, 免疫シナプス目的 : 各種抗原提示細胞の特徴と, 抗原提示経路を学ぶ.

More information

研究の中間報告

研究の中間報告 動物と免疫 ー病気を防ぐ生体機構 久米新一 京都大学大学院農学研究科 免疫 自然免疫( 食細胞 ) と獲得免疫 ( 液性免疫と細胞性免疫 ) による病原体の除去 リンパ球(T 細胞とB 細胞 ) には1 種類だけの抗原レセプター ( 受容体 ) がある 液性免疫は抗体が血液 体液などで細菌などを排除し 細胞性免疫は細菌に感染した細胞などをT 細胞が直接攻撃する 免疫器官ー 1 一次リンパ器官: リンパ球がつくられる器官

More information

H26分子遺伝-20(サイトカイン).ppt

H26分子遺伝-20(サイトカイン).ppt 第 20 回 サイトカイン 1. サイトカインとは 2014 年 11 月 12 日 附属生命医学研究所 生体情報部門 (1015 号室 ) 松田達志 ( 内線 2431) http://www3.kmu.ac.jp/bioinfo/ クラスI IL-2~7, IL-9, IL-11, IL-12, IL-13, IL-15, Epo, GM-CSF etc. クラスII IFN-α, IFN-β,

More information

Microsoft Word - 最終:【広報課】Dectin-2発表資料0519.doc

Microsoft Word - 最終:【広報課】Dectin-2発表資料0519.doc 平成 22 年 5 月 21 日 東京大学医科学研究所 真菌に対する感染防御のしくみを解明 ( 新規治療法の開発や機能性食品の開発に有用 ) JST 課題解決型基礎研究の一環として 東京大学医科学研究所の岩倉洋一郎教授らは 真菌に対する感染防御機構を明らかにしました カンジダなどの真菌は常在菌として健康な人の皮膚や粘膜などに存在し 健康に害を及ぼすことはありません 一方で 免疫力が低下した人に対しては命を脅かす重篤な病態を引き起こすことがあります

More information

<4D F736F F D F4390B38CE3816A90528DB88C8B89CA2E646F63>

<4D F736F F D F4390B38CE3816A90528DB88C8B89CA2E646F63> 学位論文の内容の要旨 論文提出者氏名 論文審査担当者 論文題目 主査 荒川真一 御給美沙 副査木下淳博横山三紀 Thrombospondin-1 Production is Enhanced by Porphyromonas gingivalis Lipopolysaccharide in THP-1 Cells ( 論文の内容の要旨 ) < 要旨 > 歯周炎はグラム陰性嫌気性細菌によって引き起こされる慢性炎症性疾患であり

More information

H25Immunol_1_point

H25Immunol_1_point * 穴埋め問題を除き 解答には図を用いてよい 問題 1 免疫は非自己を認識し これを排除するが 自己の細胞に対しては原則反応しない T 細胞の 中枢性寛容 の仕組みを簡単に説明せよ (10 点 ) 中枢性寛容は 胸腺において自己反応性の T 細胞を除去する仕組み ( 現象 ) です 遺伝子の再構成により T 細胞受容体を形成したとき, その T 細胞受容体が自己の MHC を認識できないときは将来役に立たないので除去され

More information

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事 60 秒でわかるプレスリリース 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - 私たちの生命維持を行うのに重要な役割を担う微量金属元素の一つとして知られていた 亜鉛 この亜鉛が欠乏すると 味覚障害や成長障害 免疫不全 神経系の異常などをきたします 理研免疫アレルギー科学総合研究センターサイトカイン制御研究グループと大阪大学の研究グループは

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 25 (2011) 114. 抗体産生における核内 IκB 分子,IκBNS の役割とその作用機序の解明 藤間真紀 Key words:nf-κb,b 細胞, 抗体産生 * 新潟大学大学院自然科学研究科生命食糧科学専攻基礎生命科学教育研究群 緒言転写因子 NF-κB (Nuclear factor κb) は活性化 B 細胞において, 免疫グロブリン κ 軽鎖遺伝子のエンハンサー領域に結合するタンパク質として見出されたが,

More information

メディカルスタッフのための白血病診療ハンドブック

メディカルスタッフのための白血病診療ハンドブック Chapter. 1 Chapter 1 末梢血液の中には, 血液細胞である赤血球, 白血球, 血小板が存在し, これらの成熟細胞はあらゆる血液細胞へ分化する能力である多分化能をもつ造血幹細胞から造られる. また, それぞれの血液細胞には寿命があり, 赤血球の寿命は約 120 日, 白血球の中で最も多い好中球の寿命は数日, 血小板の寿命は約 7 日である. このように寿命のある血液細胞が生体の生涯を通して造られ続けられるために,

More information

報道発表資料 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - ポイント アレルギー発症の細胞を可視化する緑色蛍光マウスの開発により解明 分化 発生等で重要なノッチ分子への情報伝達

報道発表資料 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - ポイント アレルギー発症の細胞を可視化する緑色蛍光マウスの開発により解明 分化 発生等で重要なノッチ分子への情報伝達 60 秒でわかるプレスリリース 2006 年 6 月 21 日 独立行政法人理化学研究所 アレルギー反応を制御する新たなメカニズムを発見 - 謎の免疫細胞 記憶型 T 細胞 がアレルギー反応に必須 - カビが猛威を振るう梅雨の季節 この時期に限って喘息がでるんですよ というあなたは カビ アレルギー アレルギーを引き起こす原因物質は ハウスダストや食べ物 アクセサリなどとさまざまで この季節だけではない

More information

年219 番 生体防御のしくみとその破綻 (Immunity in Host Defense and Disease) 責任者: 黒田悦史主任教授 免疫学 黒田悦史主任教授 安田好文講師 2中平雅清講師 松下一史講師 目的 (1) 病原体や異物の侵入から宿主を守る 免疫系を中心とした生体防御機構を理

年219 番 生体防御のしくみとその破綻 (Immunity in Host Defense and Disease) 責任者: 黒田悦史主任教授 免疫学 黒田悦史主任教授 安田好文講師 2中平雅清講師 松下一史講師 目的 (1) 病原体や異物の侵入から宿主を守る 免疫系を中心とした生体防御機構を理 年219 番 生体防御のしくみとその破綻 (Immunity in Host Defense and Disease) 責任者: 黒田悦史主任教授 免疫学 黒田悦史主任教授 安田好文講師 2 松下一史講師 目的 (1) 病原体や異物の侵入から宿主を守る 免疫系を中心とした生体防御機構を理解する (2) 免疫系の成立と発現機構を分子レベルで理解するとともに その機能異常に起因する自己免疫疾患 アレルギー

More information

の活性化が背景となるヒト悪性腫瘍の治療薬開発につながる 図4 研究である 研究内容 私たちは図3に示すようなyeast two hybrid 法を用いて AKT分子に結合する細胞内分子のスクリーニングを行った この結果 これまで機能の分からなかったプロトオンコジン TCL1がAKTと結合し多量体を形

の活性化が背景となるヒト悪性腫瘍の治療薬開発につながる 図4 研究である 研究内容 私たちは図3に示すようなyeast two hybrid 法を用いて AKT分子に結合する細胞内分子のスクリーニングを行った この結果 これまで機能の分からなかったプロトオンコジン TCL1がAKTと結合し多量体を形 AKT活性を抑制するペプチ ド阻害剤の開発 野口 昌幸 北海道大学遺伝子病制御研究所 教授 広村 信 北海道大学遺伝子病制御研究所 ポスドク 岡田 太 北海道大学遺伝子病制御研究所 助手 柳舘 拓也 株式会社ラボ 研究員 ナーゼAKTに結合するタンパク分子を検索し これまで機能の 分からなかったプロトオンコジンTCL1がAKTと結合し AKT の活性化を促す AKT活性補助因子 であることを見い出し

More information

ウシの免疫機能と乳腺免疫 球は.8 ~ 24.3% T 細胞は 33.5 ~ 42.7% B 細胞は 28.5 ~ 36.2% 単球は 6.9 ~ 8.9% で推移し 有意な変動は認められなかった T 細胞サブセットの割合は γδ T 細胞が最も高く 43.4 ~ 48.3% で CD4 + T 細

ウシの免疫機能と乳腺免疫 球は.8 ~ 24.3% T 細胞は 33.5 ~ 42.7% B 細胞は 28.5 ~ 36.2% 単球は 6.9 ~ 8.9% で推移し 有意な変動は認められなかった T 細胞サブセットの割合は γδ T 細胞が最も高く 43.4 ~ 48.3% で CD4 + T 細 Immune function nd mmmry glnd immunity in cows 総 説 ウシの免疫機能と乳腺免疫 山口高弘東北大学大学院農学研究科 ( 981-8555 仙台市青葉区堤通雨宮町 1-1) 末梢血中の白血球や T 細胞サブセットの存在比率やバランスは 免疫応答を把握する上で重要な指標となるが ウシの末梢血における白血球 ( 顆粒球 T 細胞 B 細胞 単球 ) および T

More information

く 細胞傷害活性の無い CD4 + ヘルパー T 細胞が必須と判明した 吉田らは 1988 年 C57BL/6 マウスが腹腔内に移植した BALB/c マウス由来の Meth A 腫瘍細胞 (CTL 耐性細胞株 ) を拒絶すること 1991 年 同種異系移植によって誘導されるマクロファージ (AIM

く 細胞傷害活性の無い CD4 + ヘルパー T 細胞が必須と判明した 吉田らは 1988 年 C57BL/6 マウスが腹腔内に移植した BALB/c マウス由来の Meth A 腫瘍細胞 (CTL 耐性細胞株 ) を拒絶すること 1991 年 同種異系移植によって誘導されるマクロファージ (AIM ( 様式甲 5) 氏 名 山名秀典 ( ふりがな ) ( やまなひでのり ) 学 位 の 種 類 博士 ( 医学 ) 学位授与番号 甲 第 号 学位審査年月日 平成 26 年 7 月 30 日 学位授与の要件 学位規則第 4 条第 1 項該当 Down-regulated expression of 学位論文題名 monocyte/macrophage major histocompatibility

More information

2. Tハイブリドーマによる抗原認識二重特異性を有する (BALB/c X C57BL/6)F 1 T 細胞ハイブリドーマを作製した このT 細胞ハイブリドーマは I-A d に拘束された抗原 KLH と自己の I-A b 単独を二重に認識した 外来抗原に反応するT 細胞が自己のMHCによって絶えず

2. Tハイブリドーマによる抗原認識二重特異性を有する (BALB/c X C57BL/6)F 1 T 細胞ハイブリドーマを作製した このT 細胞ハイブリドーマは I-A d に拘束された抗原 KLH と自己の I-A b 単独を二重に認識した 外来抗原に反応するT 細胞が自己のMHCによって絶えず 健康文化 最終講義 免疫応答とトリプトファン代謝 長瀬文彦 今春 名古屋大学を定年退職しました 在職中の主な研究を紹介します 1. ニワトリの免疫応答機構 1974 年 名古屋大学医学部細菌学教室の中島泉先生のもとでニワトリの免疫機構の研究を始めた 当時 マウスを中心とする研究において哺乳類のタンパク抗原に対する抗体産生応答や免疫記憶と免疫寛容 ( トレランス ) の誘導は T 細胞とB 細胞の相互作用によって誘導されることが知られていた

More information

報道発表資料 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - ポイント 免疫反応を正常に終息させる必須の分子は核内タンパク質 PDLIM2 炎症反応にかかわる転写因子を分解に導く新制御メカニ

報道発表資料 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - ポイント 免疫反応を正常に終息させる必須の分子は核内タンパク質 PDLIM2 炎症反応にかかわる転写因子を分解に導く新制御メカニ 60 秒でわかるプレスリリース 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - 転んだり 細菌に感染したりすると 私たちは 発熱 疼痛 腫れなどの症状に見まわれます これらの炎症反応は 外敵に対する生体の防御機構の 1 つで 実は私たちの身を守ってくれているのです 異物が侵入すると 抗体を作り

More information

読んで見てわかる免疫腫瘍

読んで見てわかる免疫腫瘍 第 Ⅰ 部 免疫学の基本的な知識 本来, 生物あるいは生命には精神学的かつ細胞生物学的に 生の本能 が与えられ, この本能はさらに個体保存本能と種族保存本能に概念的に分けられる. 精神学的には, 著名な Sigmund Freud( 独国,1856-1939) は前者を自我本能, 後者を性本能と呼び, 精神分析に二元論を展開している. 生物学的には, 個体保存本能の一部は免疫が担い, 種族保存本能は不幸にもがんの増殖に関連し細胞の不死化を誘導している.

More information

60 秒でわかるプレスリリース 2008 年 2 月 19 日 独立行政法人理化学研究所 抗ウイルス反応を増強する重要分子 PDC-TREM を発見 - 形質細胞様樹状細胞が Ⅰ 型インターフェロンの産生を増幅する仕組みが明らかに - インフルエンザの猛威が続いています このインフルエンザの元凶であるインフルエンザウイルスは 獲得した免疫力やウイルスに対するワクチンを見透かすよう変異し続けるため 人類はいまだ発病の恐怖から免れることができません

More information

研究の中間報告

研究の中間報告 免疫 久米新一 京都大学大学院農学研究科 生体防御と免疫 生体防御: 動物体内に外部から細菌 微生物などの異物が侵入すると 動物はその乱れを感知し 侵入してきた異物を排除し 正常な状態にもどすが この働きを生体防御と呼ぶ 免疫: 生体防御が発達し 記憶をもつようになったものを免疫と呼び 自然免疫と獲得免疫にわけられる 免疫も生体の恒常性を一定に保つホメオスタシスの働きの一つである 免疫 自然免疫(

More information

免疫学過去問まとめ

免疫学過去問まとめ 免疫学過去問まとめ ( 大野 安達 ) 免疫組織と担当細胞に関する問題 造血幹細胞が最も豊富に存在する臓器は ( 骨髄 ) である B 細胞の分化成熟に関与する臓器は鳥では ( ファブリキウス嚢 ) だが ヒトでは ( パイエル板 ) である? ( 脾臓 ) は末梢性の免疫臓器に位置づけられる 胎児の ( 肝臓 ) では造血が起きる 抗原受容体は B 細胞では (sig) T 細胞では (TCR)

More information

<4D F736F F D BE391E58B4C8ED2834E C8CA48B8690AC89CA F88E490E690B62E646F63>

<4D F736F F D BE391E58B4C8ED2834E C8CA48B8690AC89CA F88E490E690B62E646F63> 平成 20 年 3 月 27 日 科学技術振興機構 (JST) Tel:03-5214-8404( 広報課 ) 九州大学 Tel:092-642-2106( 広報室 ) 白血球の一種 好中球 が感染源に向けて動く際の基本原理を解明 ( 炎症性疾患の治療応用に期待 ) JST 基礎研究事業の一環として 九州大学生体防御医学研究所の福井宣規教授らは 白血球の一種 好中球注 1) が細菌などの感染源に向かって動く際

More information

70,71 図 2.32, 図 2.33, 図 2.34 C3b,Bb C3bBb 70,71 図 2.32, 図 2.33, 図 2.34 C3b2,Bb C3b2Bb 72 7 行目 C3 転換酵素 (C4b2b) C3 転換酵素 (C4b2a) 91 図 2.50 キャプション 12 行目 リ

70,71 図 2.32, 図 2.33, 図 2.34 C3b,Bb C3bBb 70,71 図 2.32, 図 2.33, 図 2.34 C3b2,Bb C3b2Bb 72 7 行目 C3 転換酵素 (C4b2b) C3 転換酵素 (C4b2a) 91 図 2.50 キャプション 12 行目 リ 正誤表 免疫生物学( 原書第 7 版第 1 刷 ) 下記の箇所に誤りがございました 謹んでお詫びし訂正いたします 頁該当箇所誤正 5 下から 12 13 行目その成熟型である単球 monocyte は, 血液中を循環し 単球 monocyte の成熟型である. 単球は, 血液中を循環し 14 図 1.11 最下段図図内 エフェクター細胞クローンからの活性化特異的リンパ球 の増殖と分化 エフェクター細胞クローン形成のための活性化特異的リ

More information

32 章皮膚の構造と機能 a b 暗帯 (dark zone) 胚中心 (germinal center) 明帯 (light zone) c 辺縁帯 (marginal zone) マントル帯 子として Th0 から誘導され,IL-23 刺激により生存維持される. 上皮細胞や線維芽細胞を介して好中

32 章皮膚の構造と機能 a b 暗帯 (dark zone) 胚中心 (germinal center) 明帯 (light zone) c 辺縁帯 (marginal zone) マントル帯 子として Th0 から誘導され,IL-23 刺激により生存維持される. 上皮細胞や線維芽細胞を介して好中 F. 皮膚の免疫機構 / b. 免疫担当細胞 3 ついで複雑な経路で次々と補体が反応し, 最終的には病原体や感染細胞を穿孔させるに至る. この古典経路 (classical pathway) のほかに, 細菌などが抗体非依存性に C3,B 因子,D 因子を活性化することにより反応が開始する第二経路 (alternative pathway) と, 微生物表面の糖鎖に血清中のマンノース結合レクチンなどが結合して活性化されるレクチン経路

More information

るが AML 細胞における Notch シグナルの正確な役割はまだわかっていない mtor シグナル伝達系も白血病細胞の増殖に関与しており Palomero らのグループが Notch と mtor のクロストークについて報告している その報告によると 活性型 Notch が HES1 の発現を誘導

るが AML 細胞における Notch シグナルの正確な役割はまだわかっていない mtor シグナル伝達系も白血病細胞の増殖に関与しており Palomero らのグループが Notch と mtor のクロストークについて報告している その報告によると 活性型 Notch が HES1 の発現を誘導 学位論文の内容の要旨 論文提出者氏名 奥橋佑基 論文審査担当者 主査三浦修副査水谷修紀 清水重臣 論文題目 NOTCH knockdown affects the proliferation and mtor signaling of leukemia cells ( 論文内容の要旨 ) < 要旨 > 目的 : sirna を用いた NOTCH1 と NOTCH2 の遺伝子発現の抑制の 白血病細胞の細胞増殖と下流のシグナル伝達系に対する効果を解析した

More information

( 様式甲 5) 学位論文内容の要旨 論文提出者氏名 論文審査担当者 主査 教授 森脇真一 井上善博 副査副査 教授教授 東 治 人 上 田 晃 一 副査 教授 朝日通雄 主論文題名 Transgene number-dependent, gene expression rate-independe

( 様式甲 5) 学位論文内容の要旨 論文提出者氏名 論文審査担当者 主査 教授 森脇真一 井上善博 副査副査 教授教授 東 治 人 上 田 晃 一 副査 教授 朝日通雄 主論文題名 Transgene number-dependent, gene expression rate-independe ( 様式甲 5) 学位論文内容の要旨 論文提出者氏名 論文審査担当者 主査 森脇真一 井上善博 副査副査 東 治 人 上 田 晃 一 副査 朝日通雄 主論文題名 Transgene number-dependent, gene expression rate-independent rejection of D d -, K d -, or D d K d -transgened mouse skin

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 23(2009) 84. ITAM 受容体の免疫生理学的機能の解明 原博満 Key words:itam, 自己免疫疾患, 感染防御, CARD9,CARD11 佐賀大学医学部分子生命科学講座生体機能制御学分野 緒言 Immunoreceptor tyrosine-based activation motifs (ITAMs) は, 獲得免疫を司るリンパ球抗原レセプター

More information

従来のペプチド免疫療法の問題点 樹状細胞 CTL CTL CTL CTL CTL CTL CTL CTL 腫瘍組織 腫瘍細胞を殺す 細胞傷害性 T 細胞 (CTL) の大半は 腫瘍の存在に気づかず 血管内を通り過ぎている! 腫瘍抗原の提示を考えると それは当然! 2

従来のペプチド免疫療法の問題点 樹状細胞 CTL CTL CTL CTL CTL CTL CTL CTL 腫瘍組織 腫瘍細胞を殺す 細胞傷害性 T 細胞 (CTL) の大半は 腫瘍の存在に気づかず 血管内を通り過ぎている! 腫瘍抗原の提示を考えると それは当然! 2 1 In vivo 抗腫瘍活性の高い Th/CTL 誘導法の開発 高知大学 医 免疫教授宇高恵子 従来のペプチド免疫療法の問題点 樹状細胞 CTL CTL CTL CTL CTL CTL CTL CTL 腫瘍組織 腫瘍細胞を殺す 細胞傷害性 T 細胞 (CTL) の大半は 腫瘍の存在に気づかず 血管内を通り過ぎている! 腫瘍抗原の提示を考えると それは当然! 2 3 がん細胞ウイルス感染細胞 内因性抗原の提示経路

More information

免疫本試29本試験模範解答_YM

免疫本試29本試験模範解答_YM 学籍番号 名前 * 穴埋め問題を除き 解答には図を用いてよい 問題 1 (10 点 ) 下記は 病原体感染から免疫活性化 病原体排除までの流れを説明したものである 誤りがあるものを 10 選択せよ (1) 生体内に侵入した感染病原体は 初めにマクロファージや樹状細胞などの獲得免疫細胞に感知される (2) マクロファージや樹状細胞は 病原体を貪食したり 抗菌物質を放出したりすることにより病原体の排除を行う

More information

05b

05b 第 5 章免疫学 5.1 免疫とは 5.1.1 免疫学の始まり 免疫 (Immune) とは 免れる を意味するラテン語 Immunis からきた英語 18 世紀終わり イギリスの医師 Edward Jenner が天然痘に対するワクチン (Vaccine) を作ったのが免疫学の始まり ヨーロッパで天然痘による被害が起こった 牛にも天然痘とよく似た病気 牛痘がある 牛痘に感染した乳搾り婦が天然痘にかからないことを

More information

図形の表現 5 チャートの作成 1, 作成チャート 右図は 平成 23 年 10 月 8 日付け朝日新聞 3 面より 下図は実際作成した図です 2, 樹状細胞について本年のノーベル医学生理学賞は 樹状細胞 を発見した功績に対して 米ロックフェラー大のラルフ スタインマン教授が選ばれた この樹状細胞は

図形の表現 5 チャートの作成 1, 作成チャート 右図は 平成 23 年 10 月 8 日付け朝日新聞 3 面より 下図は実際作成した図です 2, 樹状細胞について本年のノーベル医学生理学賞は 樹状細胞 を発見した功績に対して 米ロックフェラー大のラルフ スタインマン教授が選ばれた この樹状細胞は 機関誌 No.38 放送大学山口学習センターサークル Oct. 16, 11. 文責 井手明雄 1, 第四十三回パソコン同好会 (1) 開催日 : 9 月 25 日 ( 日 )15:00~17:00 (2) 場所 : 放送大学山口学習センター小講義室 ( 山口大学 大学会館内 ) (3) 内容 : 1 ワードによる図形表現 -5- 模式図の作成 ピロリ菌が胃の中に住み着き 胃潰瘍や胃癌を引き起こす仕組みの模式図をワードで描いた

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 平成 23 年 3 月 28 日現在 機関番号 :3714 研究種目 : 若手研究 研究期間 :28~21 課題番号 :279342 研究課題名 ( 和文 )Toll-like receptor 1 のリガンド探索および機能解析研究課題名 ( 英文 )Functional analysis of Toll-like receptor 1 研究代表者清水隆

More information

報道関係者各位 平成 26 年 1 月 20 日 国立大学法人筑波大学 動脈硬化の進行を促進するたんぱく質を発見 研究成果のポイント 1. 日本人の死因の第 2 位と第 4 位である心疾患 脳血管疾患のほとんどの原因は動脈硬化である 2. 酸化されたコレステロールを取り込んだマクロファージが大量に血

報道関係者各位 平成 26 年 1 月 20 日 国立大学法人筑波大学 動脈硬化の進行を促進するたんぱく質を発見 研究成果のポイント 1. 日本人の死因の第 2 位と第 4 位である心疾患 脳血管疾患のほとんどの原因は動脈硬化である 2. 酸化されたコレステロールを取り込んだマクロファージが大量に血 報道関係者各位 平成 26 年 1 月 20 日 国立大学法人筑波大学 動脈硬化の進行を促進するたんぱく質を発見 研究成果のポイント 1. 日本人の死因の第 2 位と第 4 位である心疾患 脳血管疾患のほとんどの原因は動脈硬化である 2. 酸化されたコレステロールを取り込んだマクロファージが大量に血管に溜まっていくことが動脈硬化の原因となる 3. マクロファージ内に存在するたんぱく質 MafB は

More information

図 Mincle シグナルのマクロファージでの働き

図 Mincle シグナルのマクロファージでの働き 60 秒でわかるプレスリリース 2008 年 9 月 8 日 独立行政法人理化学研究所 組織のダメージを感知して炎症を引き起こす受容体を発見 - マクロファージが担う生体危機管理システムのメカニズムを解明 - 風邪のウイルスやさまざまな病原菌による感染 あるいは火傷や打撲など 私たちの身体は ダメージを受けるとそれに対応するように免疫システムが働き 防御します 通常 細胞は役目を終えたり 寿命になると

More information

VENTANA PD-L1 SP142 Rabbit Monoclonal Antibody OptiView PD-L1 SP142

VENTANA PD-L1 SP142 Rabbit Monoclonal Antibody OptiView PD-L1 SP142 VENTANA PD-L1 SP142 Rabbit Monoclonal Antibody OptiView PD-L1 SP142 2 OptiView PD-L1 SP142 OptiView PD-L1 SP142 OptiView PD-L1 SP142 PD-L1 OptiView PD-L1 SP142 PD-L1 OptiView PD-L1 SP142 PD-L1 OptiView

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 細菌の代謝と増殖 感染症学 微生物学概論 A. 微生物学の基本 d. 細菌の代謝 e. 細菌の増殖 6 細菌の主要な代謝経路を産物を列挙する 7 呼吸と発酵の違いを説明する 8 細菌の増殖曲線を説明する B. 感染症学 a. 微生物と宿主の関係 b. 宿主の防御因子 1 微生物と宿主の関係を列挙する 2 共生 偏共生 寄生の違いを説明する 3 感染と発症の違いを説明する 4 微生物の感染に対する宿主の防御因子を説明する

More information

第一章自然免疫活性化物質による T 細胞機能の修飾に関する検討自然免疫は 感染の初期段階において重要な防御機構である 自然免疫を担当する細胞は パターン認識受容体 (Pattern Recognition Receptors:PRRs) を介して PAMPs の特異的な構造を検知する 機能性食品は

第一章自然免疫活性化物質による T 細胞機能の修飾に関する検討自然免疫は 感染の初期段階において重要な防御機構である 自然免疫を担当する細胞は パターン認識受容体 (Pattern Recognition Receptors:PRRs) を介して PAMPs の特異的な構造を検知する 機能性食品は さとう わたる 氏名 ( 本籍 ) 佐藤亘 ( 静岡県 ) 学位の種類 博士 ( 薬学 ) 学位記番号 学位授与の日付 学位授与の要件 博第 270 号 平成 28 年 3 月 18 日 学位規則第 4 条第 1 項該当 学位論文題目 自然免疫活性化物質による T 細胞ならびに NK 細胞機能の調節作用に関する研究 論文審査委員 ( 主査 ) 教授大野尚仁 教授新槇幸彦 教授平野俊彦 論文内容の要旨

More information

免疫リンパ球療法とは はじめに あなたは免疫細胞 ( 以下免疫と言います ) の役割を知っていますか 免疫という言葉はよく耳にしますね では 身体で免疫は何をしているのでしょう? 免疫の大きな役割は 外から身体に侵入してくる病原菌や異物からあなたの身体を守る ことです あなたの身体には自分を守る 病

免疫リンパ球療法とは はじめに あなたは免疫細胞 ( 以下免疫と言います ) の役割を知っていますか 免疫という言葉はよく耳にしますね では 身体で免疫は何をしているのでしょう? 免疫の大きな役割は 外から身体に侵入してくる病原菌や異物からあなたの身体を守る ことです あなたの身体には自分を守る 病 免疫リンパ球療法とは はじめに あなたは免疫細胞 ( 以下免疫と言います ) の役割を知っていますか 免疫という言葉はよく耳にしますね では 身体で免疫は何をしているのでしょう? 免疫の大きな役割は 外から身体に侵入してくる病原菌や異物からあなたの身体を守る ことです あなたの身体には自分を守る 病気と闘う力 ( 免疫力 ) があります もし生まれつき免疫が欠けていると 様々な微生物や菌が存在する

More information

のと期待されます 本研究成果は 2011 年 4 月 5 日 ( 英国時間 ) に英国オンライン科学雑誌 Nature Communications で公開されます また 本研究成果は JST 戦略的創造研究推進事業チーム型研究 (CREST) の研究領域 アレルギー疾患 自己免疫疾患などの発症機構

のと期待されます 本研究成果は 2011 年 4 月 5 日 ( 英国時間 ) に英国オンライン科学雑誌 Nature Communications で公開されます また 本研究成果は JST 戦略的創造研究推進事業チーム型研究 (CREST) の研究領域 アレルギー疾患 自己免疫疾患などの発症機構 プレスリリース 2011 年 4 月 5 日 慶應義塾大学医学部 炎症を抑える新しいたんぱく質を発見 - 花粉症などのアレルギー疾患や 炎症性疾患の新たな治療法開発に期待 - 慶應義塾大学医学部の吉村昭彦教授らの研究グループは リンパ球における新たな免疫調節機構を解明 抑制性 T 細胞を人工的につくり出し 炎症性のT 細胞を抑える機能を持った新しいたんぱく質を発見しました 試験管内でこのたんぱく質を発現させたT

More information

第5章 体液

第5章 体液 血液 生体防御系 pp104-119 2017 血液 -1 体液は体重の60% で 細胞内液 ( 体重の40%) と細胞外液 ( 体重の20%) とに分けられる 細胞外液は間質液 ( 組織間液 ) 血漿 消化液などから成る 血液は体重の8%(1/12~1/13) 60kg で 4.5~5L 血液 間質液 リンパ 血液の構成 赤血球 血球 白血球 血餅 ( 細胞成分 ) 血小板 血液 フィブリノーゲン等の凝固因子

More information

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞 資料 - 生電 6-3 免疫細胞及び神経膠細胞を対象としたマイクロ波照射影響に関する実験評価 京都大学首都大学東京 宮越順二 成田英二郎 櫻井智徳多氣昌生 鈴木敏久 日 : 平成 23 年 7 月 22 日 ( 金 ) 場所 : 総務省第 1 特別会議室 研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する

More information

感覚細胞 網膜 retina の模式図 光 脳へ 神経節細胞 介在神経 光受容体細胞 人の網膜 薄明では 109個 網膜周辺部に分布 形だけ 6 錐体細胞 色の識別 3x10 個 色は認識 Cone cell 感度は低い 網膜中心部に分布 できない 桿体細胞 明暗のみ Rod cell 感度は高い

感覚細胞 網膜 retina の模式図 光 脳へ 神経節細胞 介在神経 光受容体細胞 人の網膜 薄明では 109個 網膜周辺部に分布 形だけ 6 錐体細胞 色の識別 3x10 個 色は認識 Cone cell 感度は低い 網膜中心部に分布 できない 桿体細胞 明暗のみ Rod cell 感度は高い 10 章分化細胞の機能と構造 2 感覚細胞 網膜 retina の模式図 光 脳へ 神経節細胞 介在神経 光受容体細胞 人の網膜 薄明では 109個 網膜周辺部に分布 形だけ 6 錐体細胞 色の識別 3x10 個 色は認識 Cone cell 感度は低い 網膜中心部に分布 できない 桿体細胞 明暗のみ Rod cell 感度は高い 色素上皮細胞 光受容細胞 錐体細胞外節 赤緑青 細胞膜と円盤が一つながり興奮するには百光子

More information

<4D F736F F F696E74202D2093AE95A88DD C88A77824F F B C68DD D B8CDD8AB B83685D>

<4D F736F F F696E74202D2093AE95A88DD C88A77824F F B C68DD D B8CDD8AB B83685D> 第 6 回シグナル伝達と細胞増殖 様々なシグナル伝達経路の復習 第 5 & 21 章 ホメオスタシス ( 恒常性 :Homeostasis) 外部環境 : 温度 圧力 浸透圧等の変化 細菌や毒物との接触 内部環境 生物が受ける外部環境の変動 ストレス 相互作用 短期作用長期作用 神経系 緊急対応的作用 ホメオスタシス 生体防御作用 相互作用 ストレス ( 自律 ) 神経系がまず反応内分泌系が短期的

More information

第14〜15回 T細胞を介する免疫系.pptx

第14〜15回 T細胞を介する免疫系.pptx MBL CD8 CD4 8.1 8.2 5.20 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.18 B7 CD28 CD28 B7 CD28 8.13 2.22 NK Toll(TLR) LBP! LPS dsrna ssrna TLR1/2/6! TLR4 TLR5 TLR3 TLR7/9 CD14! JNK/p38! MyD88! IRAK! TRAF! NFκB! TNF-α

More information

今後の展開現在でも 自己免疫疾患の発症機構については不明な点が多くあります 今回の発見により 今後自己免疫疾患の発症機構の理解が大きく前進すると共に 今まで見過ごされてきたイントロン残存の重要性が 生体反応の様々な局面で明らかにされることが期待されます 図 1 Jmjd6 欠損型の胸腺をヌードマウス

今後の展開現在でも 自己免疫疾患の発症機構については不明な点が多くあります 今回の発見により 今後自己免疫疾患の発症機構の理解が大きく前進すると共に 今まで見過ごされてきたイントロン残存の重要性が 生体反応の様々な局面で明らかにされることが期待されます 図 1 Jmjd6 欠損型の胸腺をヌードマウス PRESS RELEASE(2015/11/05) 九州大学広報室 819-0395 福岡市西区元岡 744 TEL:092-802-2130 FAX:092-802-2139 MAIL:koho@jimu.kyushu-u.ac.jp URL:http://www.kyushu-u.ac.jp 免疫細胞が自分自身を攻撃しないために必要な新たな仕組みを発見 - 自己免疫疾患の発症機構の解明に期待 -

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 細胞の情報伝達 (1) 何を学習するか細胞が環境からシグナル ( 刺激 ) を受けて 細胞の状態が変化するときに 細胞内でどのような現象が起きているか を知る分子の大変複雑な連続反応であるので 反応の最初の段階を中心に見ていく ( 共通の現象が多いから ; 疾患の治療の標的となる分子が多い ) これを知るために (2) リガンドの拡散様式 ( 図 16-3) リガンドを発現する細胞とこれを受け取る細胞との

More information

糖鎖の新しい機能を発見:補体系をコントロールして健康な脳神経を維持する

糖鎖の新しい機能を発見:補体系をコントロールして健康な脳神経を維持する 糖鎖の新しい機能を発見 : 補体系をコントロールして健康な脳神経を維持する ポイント 神経細胞上の糖脂質の糖鎖構造が正常パターンになっていないと 細胞膜の構造や機能が障害されて 外界からのシグナルに対する反応や攻撃に対する防御反応が異常になることが示された 細胞膜のタンパク質や脂質に結合している糖鎖の役割として 補体の活性のコントロールという新規の重要な機能が明らかになった 糖脂質の糖鎖が欠損すると

More information

<4D F736F F D F4390B388C4817A C A838A815B8358>

<4D F736F F D F4390B388C4817A C A838A815B8358> PRESS RELEASE 平成 28 年 9 月 1 日愛媛大学 世界初アレルギー炎症の新規抑制メカニズムを発見 ~ アレルギー疾患の新規治療法の開発に期待 ~ 愛媛大学大学院医学系研究科の山下政克 ( やましたまさかつ ) 教授らの研究グループは 世界で初めて免疫を正常に保つ作用のある転写抑制因子注 1) Bach2( バック2) が アレルギー炎症の発症を抑えるメカニズムを解明しました これまで

More information

<4D F736F F D208DC58F498F4390B D4C95F189DB8A6D A A838A815B C8EAE814095CA8E86325F616B5F54492E646F63>

<4D F736F F D208DC58F498F4390B D4C95F189DB8A6D A A838A815B C8EAE814095CA8E86325F616B5F54492E646F63> インフルエンザウイルス感染によって起こる炎症反応のメカニズムを解明 1. 発表者 : 一戸猛志東京大学医科学研究所附属感染症国際研究センター感染制御系ウイルス学分野准教授 2. 発表のポイント : ウイルス感染によって起こる炎症反応の分子メカニズムを明らかにした注 炎症反応にはミトコンドリア外膜の mitofusin 2(Mfn2) 1 タンパク質が必要であった ウイルス感染後の過剰な炎症反応を抑えるような治療薬の開発

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 酵素 : タンパク質の触媒 タンパク質 Protein 酵素 Enzyme 触媒 Catalyst 触媒 Cataylst: 特定の化学反応の反応速度を速める物質 自身は反応の前後で変化しない 酵素 Enzyme: タンパク質の触媒 触媒作用を持つタンパク質 第 3 回 : タンパク質はアミノ酸からなるポリペプチドである 第 4 回 : タンパク質は様々な立体構造を持つ 第 5 回 : タンパク質の立体構造と酵素活性の関係

More information

新しい概念に基づく第 3 世代のがん免疫治療 inkt がん治療 inkt Cancer Therapy 監修 : 谷口克先生株式会社アンビシオン inktがん治療 これまでのがん治療の最大の問題であるがんの進行 再発 転移 この問題を克服することを 目指し 新しい概念に基づく第3世代のがん免疫治療である inktがん治療 が開発されました inktがん治療 は 患者末梢血細胞を加工して作った オーダーメイドがんワクチン

More information

5. T 細胞 TCR( 抗原受容体 ) を発現 抗原断片と MHC の複合体を認識 機能的に以下の 3 つに分類できる ヘルパー T 細胞免疫の応答の調節 免疫機構の制御 (Th1 細胞,Th2 細胞,Th17 細胞など ) 細胞傷害性 ( キラー )T 細胞標的細胞を傷害制御性 T 細胞 T 細

5. T 細胞 TCR( 抗原受容体 ) を発現 抗原断片と MHC の複合体を認識 機能的に以下の 3 つに分類できる ヘルパー T 細胞免疫の応答の調節 免疫機構の制御 (Th1 細胞,Th2 細胞,Th17 細胞など ) 細胞傷害性 ( キラー )T 細胞標的細胞を傷害制御性 T 細胞 T 細 問 1. 免疫に関する細胞と臓器の種類 役割について説明しなさい < 免疫に関わる細胞 > 免疫 = 自然免疫 : 好酸球 好中球 肥満細胞 マクロファージ 樹状細胞 NK 細胞獲得免疫 :B 細胞 T 細胞 樹状細胞主に血液系の細胞 全て白血球 骨髄球系前駆細胞から分化 好酸球 好中球 好塩基球 マクロファージ 樹状細胞 リンパ球系前駆細胞から分化 樹状細胞 B 細胞 T 細胞 NK 細胞 1.

More information

病原体に対する障壁 ( 第一の防衛 ) 小腸のパネート細胞に産生される抗菌ペプチド 杯細胞によって産生されたムチンによって保護されたゾーン 物理的障壁 : 化学的障壁 : 微生物学的障壁 : 上皮細胞 粘液 涙鼻腔の線毛 液体 気体の流れ 低 ph ( 例外 ピロリ菌 ) 酵素 ( リソチーム ペプ

病原体に対する障壁 ( 第一の防衛 ) 小腸のパネート細胞に産生される抗菌ペプチド 杯細胞によって産生されたムチンによって保護されたゾーン 物理的障壁 : 化学的障壁 : 微生物学的障壁 : 上皮細胞 粘液 涙鼻腔の線毛 液体 気体の流れ 低 ph ( 例外 ピロリ菌 ) 酵素 ( リソチーム ペプ 医学部医学科 2 年免疫学講義 10/5/2017 第 2 章 -1: 宿主防御と感染に関する自然免疫 久留米大学医学部免疫学准教授 溝口恵美子 病原体に対する障壁 ( 第一の防衛 ) 小腸のパネート細胞に産生される抗菌ペプチド 杯細胞によって産生されたムチンによって保護されたゾーン 物理的障壁 : 化学的障壁 : 微生物学的障壁 : 上皮細胞 粘液 涙鼻腔の線毛 液体 気体の流れ 低 ph ( 例外

More information

Microsoft PowerPoint - 2_(廣瀬宗孝).ppt

Microsoft PowerPoint - 2_(廣瀬宗孝).ppt TrkA を標的とした疼痛と腫瘍増殖 に効果のあるペプチド 福井大学医学部 器官制御医学講座麻酔 蘇生学領域 准教授 廣瀬宗孝 1 研究背景 癌による痛みはWHOの指針に沿って治療すれば 8 割の患者さんで痛みが取れ 残りの内 1 割は痛みの専門医の治療を受ければ痛みが取れる しかし最後の1 割は QOLを良好に保ったまま痛み治療を行うことは困難であるのが現状である TrkAは神経成長因子 (NGF)

More information

研究の詳細な説明 1. 背景細菌 ウイルス ワクチンなどの抗原が人の体内に入るとリンパ組織の中で胚中心が形成されます メモリー B 細胞は胚中心に存在する胚中心 B 細胞から誘導されてくること知られています しかし その誘導の仕組みについてはよくわかっておらず その仕組みの解明は重要な課題として残っ

研究の詳細な説明 1. 背景細菌 ウイルス ワクチンなどの抗原が人の体内に入るとリンパ組織の中で胚中心が形成されます メモリー B 細胞は胚中心に存在する胚中心 B 細胞から誘導されてくること知られています しかし その誘導の仕組みについてはよくわかっておらず その仕組みの解明は重要な課題として残っ メモリー B 細胞の分化誘導メカニズムを解明 抗原を記憶する免疫細胞を効率的に誘導し 新たなワクチン開発へ キーワード : 免疫 メモリー B 細胞 胚中心 親和性成熟 転写因子 Bach2 研究成果のポイント 抗原を記憶する免疫細胞 : メモリー B 細胞注 1 がどのように分化誘導されていくのかは不明だった リンパ節における胚中心注 2 B 細胞からメモリー B 細胞への分化誘導は初期の胚中心で起こりやすく

More information

<4D F736F F D B695A8817A E93785F8D918E8E82CC82E282DC E646F63>

<4D F736F F D B695A8817A E93785F8D918E8E82CC82E282DC E646F63> 第 103 回薬剤師国家試験 Medisere 国試のやま科目 : 生物 1 項目 機能形態学 やま内容 中枢神経系 問題 以下の図は大脳の左半球側面から見た図である 図中の波線で描かれた太い脳溝を基準にして A~D の 4 つの部位に分けられる 大脳に関する記述のうち 適切なのはどれか 2 つ選べ A C D B 1 脳梗塞により A 部位に大きな障害を受けていると構音障害が生じる可能性が高い 2

More information

ブック2

ブック2 80 埼玉医科大学雑誌 第 30 巻 第 1 号 平成 15 年 1 月 シンポジウム 細胞内寄生菌感染症と免疫応答 光山 正雄 京都大学大学院医学研究科 感染 免疫学教授 座長 松下 祥 埼玉医科大学免疫学教授 次のご講演は光山正雄先生です 先生は現在京都大学大学院医 学研究科におられます 昭和 48 年 九州大学医学部をご卒業後 51 年九州大学医学部細菌学講座へ出向 53 年同助手 56 年に米国

More information

妊娠認識および胎盤形成時のウシ子宮におけるI型IFNシグナル調節機構に関する研究 [全文の要約]

妊娠認識および胎盤形成時のウシ子宮におけるI型IFNシグナル調節機構に関する研究 [全文の要約] Title 妊娠認識および胎盤形成時のウシ子宮における I 型 IFN シグナル調節機構に関する研究 [ 全文の要約 ] Author(s) 白水, 貴大 Issue Date 2017-03-23 Doc URL http://hdl.handle.net/2115/65952 Type theses (doctoral - abstract of entire text) Note この博士論文全文の閲覧方法については

More information

研究の詳細な説明 1. 背景病原微生物は 様々なタンパク質を作ることにより宿主の生体防御システムに対抗しています その分子メカニズムの一つとして病原微生物のタンパク質分解酵素が宿主の抗体を切断 分解することが知られております 抗体が切断 分解されると宿主は病原微生物を排除することが出来なくなります

研究の詳細な説明 1. 背景病原微生物は 様々なタンパク質を作ることにより宿主の生体防御システムに対抗しています その分子メカニズムの一つとして病原微生物のタンパク質分解酵素が宿主の抗体を切断 分解することが知られております 抗体が切断 分解されると宿主は病原微生物を排除することが出来なくなります 病原微生物を退治する新たな生体防御システムを発見 感染症の予防 治療法開発へ貢献する成果 キーワード : 病原性微生物 抗体 免疫逃避 免疫活性化 感染防御 研究成果のポイント 病原微生物の中には 免疫細胞が作る抗体の機能を無効化し 免疫から逃れるものの存在が知られていた 今回 病原微生物に壊された抗体を認識し 病原微生物を退治する新たな生体防御システムを発見 本研究成果によりマイコプラズマやインフルエンザなど

More information

( 続紙 1 ) 京都大学 博士 ( 薬学 ) 氏名 大西正俊 論文題目 出血性脳障害におけるミクログリアおよびMAPキナーゼ経路の役割に関する研究 ( 論文内容の要旨 ) 脳内出血は 高血圧などの原因により脳血管が破綻し 脳実質へ出血した病態をいう 漏出する血液中の種々の因子の中でも 血液凝固に関

( 続紙 1 ) 京都大学 博士 ( 薬学 ) 氏名 大西正俊 論文題目 出血性脳障害におけるミクログリアおよびMAPキナーゼ経路の役割に関する研究 ( 論文内容の要旨 ) 脳内出血は 高血圧などの原因により脳血管が破綻し 脳実質へ出血した病態をいう 漏出する血液中の種々の因子の中でも 血液凝固に関 Title 出血性脳障害におけるミクログリアおよびMAPキナーゼ経路の役割に関する研究 ( Abstract_ 要旨 ) Author(s) 大西, 正俊 Citation Kyoto University ( 京都大学 ) Issue Date 2010-03-23 URL http://hdl.handle.net/2433/120523 Right Type Thesis or Dissertation

More information

2017 年度茨城キリスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ア ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ

2017 年度茨城キリスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ア ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ 207 年度茨城リスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ ( ) の 2 つの血管系がある 肝臓はこれらの血管系から入ってくる 酸素や栄養素等を用いて, 次のような様々な化学反応を行う

More information

( 図 ) IP3 と IRBIT( アービット ) が IP3 受容体に競合して結合する様子

( 図 ) IP3 と IRBIT( アービット ) が IP3 受容体に競合して結合する様子 60 秒でわかるプレスリリース 2006 年 6 月 23 日 独立行政法人理化学研究所 独立行政法人科学技術振興機構 細胞内のカルシウムチャネルに情報伝達を邪魔する 偽結合体 を発見 - IP3 受容体に IP3 と競合して結合するタンパク質 アービット の機能を解明 - 細胞分裂 細胞死 受精 発生など 私たちの生の営みそのものに関わる情報伝達は 細胞内のカルシウムイオンの放出によって行われています

More information

八村敏志 TCR が発現しない. 抗原の経口投与 DO11.1 TCR トランスジェニックマウスに経口免疫寛容を誘導するために 粗精製 OVA を mg/ml の濃度で溶解した水溶液を作製し 7 日間自由摂取させた また Foxp3 の発現を検討する実験では RAG / OVA3 3 マウスおよび

八村敏志 TCR が発現しない. 抗原の経口投与 DO11.1 TCR トランスジェニックマウスに経口免疫寛容を誘導するために 粗精製 OVA を mg/ml の濃度で溶解した水溶液を作製し 7 日間自由摂取させた また Foxp3 の発現を検討する実験では RAG / OVA3 3 マウスおよび ハチムラサトシ 八村敏志東京大学大学院農学生命科学研究科食の安全研究センター准教授 緒言食物に対して過剰あるいは異常な免疫応答が原因で起こる食物アレルギーは 患者の大部分が乳幼児であり 乳幼児が特定の食物を摂取できないことから 栄養学的 精神的な問題 さらには保育 教育機関の給食において 切実な問題となっている しかしながら その発症機序はまだ不明な点が多く また多くの患者が加齢とともに寛解するものの

More information

<4D F736F F D20312E834C B548DD CC82CD82BD82E782AB82F092B290DF82B782E98EF CC95AA8E7182F094AD8CA92E646F63>

<4D F736F F D20312E834C B548DD CC82CD82BD82E782AB82F092B290DF82B782E98EF CC95AA8E7182F094AD8CA92E646F63> 解禁時間 ( テレビ ラジオ WEB): 平成 20 年 9 月 9 日 ( 火 ) 午前 6 時 ( 新聞 ) : 平成 20 年 9 月 9 日 ( 火 ) 付朝刊 平成 20 年 9 月 2 日 報道機関各位 仙台市青葉区星陵町 4-1 東北大学加齢医学研究所研究推進委員会電話 022-717-8442 ( 庶務係 ) 東京都千代田区四番町 5 番地 3 科学技術振興機構 (JST) 電話 03-5214-8404(

More information

ランゲルハンス細胞の過去まず LC の過去についてお話しします LC は 1868 年に 当時ドイツのベルリン大学の医学生であった Paul Langerhans により発見されました しかしながら 当初は 細胞の形状から神経のように見えたため 神経細胞と勘違いされていました その後 約 100 年

ランゲルハンス細胞の過去まず LC の過去についてお話しします LC は 1868 年に 当時ドイツのベルリン大学の医学生であった Paul Langerhans により発見されました しかしながら 当初は 細胞の形状から神経のように見えたため 神経細胞と勘違いされていました その後 約 100 年 2015 年 10 月 1 日放送 第 64 回日本アレルギー学会 1 教育講演 11 ランゲルハンス細胞 過去 現在 未来 京都大学大学院皮膚科教授椛島健治 はじめに生体は 細菌 ウイルス 真菌といった病原体などの外来異物や刺激に曝露されていますが 主に免疫システムを介して巧妙に防御しています ところが そもそも有害ではない花粉や埃などの外来抗原に対してさえも皮膚が曝露された場合に 過剰な免疫応答を起こすことは

More information

報道関係者各位

報道関係者各位 報道関係者各位 2018 年 10 月 6 日 東京薬科大学理化学研究所兵庫医科大学熊本大学 炎症の回復期に出現し 組織修復を促す新しい免疫細胞を発見 炎症性疾患や組織傷害の新たな治療標的として期待 ポイント 炎症や組織傷害の回復期に骨髄で産生される 新たな単球細胞を発見した この単球細胞は組織傷害部位に集積し 炎症抑制や組織修復を担う この細胞を欠損したマウスでは 腸炎からの回復が有意に遅延する

More information

ヒト胎盤における

ヒト胎盤における 論文の内容の要旨 論文題目 : ヒト胎盤における MHC 様免疫誘導分子 CD1d の発現様式に関する研究指導教員 : 武谷雄二教授東京大学大学院医学系研究科平成 17 年 4 月進学医学博士課程生殖発達加齢医学専攻柗本順子 産科領域において 習慣流産 子宮内胎児発育不全 妊娠高血圧症候群などが大きな問題となっている それらの原因として 胎盤を構成している trohpblast のうち EVT (

More information

度に比しあまりにも小さい2 階建てのその建物に驚いた これは分子生物学のパイオニアであり ノーベル医学生理学賞受賞者でもあったスタンフォード大学の教授である Arthur Kornberg と Paul Berg そして Charley Yanofsky らが 分子生物学を応用科学に役立てたいと考え

度に比しあまりにも小さい2 階建てのその建物に驚いた これは分子生物学のパイオニアであり ノーベル医学生理学賞受賞者でもあったスタンフォード大学の教授である Arthur Kornberg と Paul Berg そして Charley Yanofsky らが 分子生物学を応用科学に役立てたいと考え 第 8 回 自己寛容から学ぶ免疫学の基本原理 2005 年 9 月 6 日 ひと目でわかる分子免疫学 連載第 8 回 ( 最終回 ) 自己寛容から学ぶ免疫学の基本原理 渋谷彰 SHIBUYA Akira 筑波大学大学院人間総合科学研究科 基礎医学系免疫学先端学際領域研究 (TARA) センター Key Words 中枢性自己寛容末梢性自己寛容クローン消失レセプター編集クローナルアナジー制御性 T 細胞

More information

Microsoft Word CXCL12-CXCR axis.docx

Microsoft Word CXCL12-CXCR axis.docx 肝細胞癌の発癌における CXCL12-CXCR4 軸の役割 Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis Am J Transl Res. 2014; 6: 340 352 1. はじめに肝細胞癌の発癌には次のような経路が関与する 1) 成長因子 : EGF( 上皮成長因子 ) IGF( インスリン様成長因子

More information

前立腺癌は男性特有の癌で 米国においては癌死亡者数の第 2 位 ( 約 20%) を占めてい ます 日本でも前立腺癌の罹患率 死亡者数は急激に上昇しており 現在は重篤な男性悪性腫瘍疾患の1つとなって図 1 います 図 1 初期段階の前立腺癌は男性ホルモン ( アンドロゲン ) に反応し増殖します そ

前立腺癌は男性特有の癌で 米国においては癌死亡者数の第 2 位 ( 約 20%) を占めてい ます 日本でも前立腺癌の罹患率 死亡者数は急激に上昇しており 現在は重篤な男性悪性腫瘍疾患の1つとなって図 1 います 図 1 初期段階の前立腺癌は男性ホルモン ( アンドロゲン ) に反応し増殖します そ 再発した前立腺癌の増殖を制御する新たな分子メカニズムの発見乳癌治療薬が効果的 発表者筑波大学先端領域学際研究センター教授柳澤純 (junny@agbi.tsukuba.ac.jp TEL: 029-853-7320) ポイント 女性ホルモンが制御する新たな前立腺癌の増殖 細胞死メカニズムを発見 女性ホルモン及び女性ホルモン抑制剤は ERβ 及び KLF5 を通じ FOXO1 の発現量を変化することで前立腺癌の増殖

More information

ごく少量のアレルゲンによるアレルギー性気道炎症の発症機序を解明

ごく少量のアレルゲンによるアレルギー性気道炎症の発症機序を解明 順天堂大学 医療 健康 No. 1 ごく少量のアレルゲンによるアレルギー性気道炎症の発症機序を解明 ~ 皮膚感作と吸入抗原の酵素活性が気道炎症の原因となる ~ 概要順天堂大学大学院医学研究科 アトピー疾患研究センターの高井敏朗准教授らの研究グループは アレルギーを引き起こすダニや花粉の抗原に含有されるプロテアーゼ活性 ( タンパク質分解酵素活性 ) が抗原感作 *1 成立後の気道炎症の発症に重要な役割を果たすことを明らかにしました

More information

目次 1. 抗体治療とは? 2. 免疫とは? 3. 免疫の働きとは? 4. 抗体が主役の免疫とは? 5. 抗体とは? 6. 抗体の構造とは? 7. 抗体の種類とは? 8. 抗体の働きとは? 9. 抗体医薬品とは? 10. 抗体医薬品の特徴とは? 10. モノクローナル抗体とは? 11. モノクローナ

目次 1. 抗体治療とは? 2. 免疫とは? 3. 免疫の働きとは? 4. 抗体が主役の免疫とは? 5. 抗体とは? 6. 抗体の構造とは? 7. 抗体の種類とは? 8. 抗体の働きとは? 9. 抗体医薬品とは? 10. 抗体医薬品の特徴とは? 10. モノクローナル抗体とは? 11. モノクローナ 私たちの身体には免疫というすばらしい防御システムがあります 抗体医薬はこのシステムを利用しています 倍尾学先生 ( ばいおまなぶ ) バイオ大学教授 未来ちゃん ( みらい ) 好奇心旺盛な小学 3 年生の女の子 理科とお料理が得意 ゲノム君 1 号 倍尾先生が開発したロボット 案内役を務めます 監修 : 東北大学大学院工学研究科バイオ工学専攻名誉教授 客員教授熊谷泉先生 目次 1. 抗体治療とは?

More information

様式)

様式) 研究報告書 研究課題名 : 細胞膜脂質による分裂軸方向の制御とがん化に伴う変化 ( 研究領域 : 代謝と機能制御 ) 研究者氏名 : 豊島文子 ( 研究期間 : 2005 年 10 月 1 日 ~ 2009 年 3 月 31 日 ) 研究報告書 1. 研究課題名細胞膜脂質による分裂軸方向の制御とがん化に伴う変化 2. 氏名豊島文子 3. 研究のねらい生物が卵からその固有の形を作っていく過程では 個々の細胞が一定の軸方向に沿って分裂する現象が重要な役割を果たす

More information

2 1 章 免疫とは 免疫系概説 厳密にと非の区別を行う獲得免疫について述べることにする 獲得免疫系にとって非を と区別する目印となる物質のことを antigen という 免疫系はそのようなの出現に対 してそれを排除するような行動を開始するのである その仕事をする免疫系の中心となっている細胞 がリン

2 1 章 免疫とは 免疫系概説 厳密にと非の区別を行う獲得免疫について述べることにする 獲得免疫系にとって非を と区別する目印となる物質のことを antigen という 免疫系はそのようなの出現に対 してそれを排除するような行動を開始するのである その仕事をする免疫系の中心となっている細胞 がリン 免疫とは 免疫系概説 免疫系の生体における役割 われわれを取り巻く環境には無数に近い微生物が存在し そのあるものは生体の中に侵入し 生体 内で増殖する それは生体に重大な危害を及ぼすことになる 異物も粘膜を通して あるいは刺傷に よって生体内に入ってくることがあるが それは毒性を有していて生体を損なう場合がある そうで なくとも 生体内での異物の存在は生体の営みにとってさまざまの支障を与えることになろう

More information

肝クッパ 細胞を簡便 大量に 回収できる新規培養方法 農研機構動物衛生研究所病態研究領域上席研究員山中典子 2016 National Agriculture and Food Research Organization. 農研機構 は国立研究開発法人農業 食品産業技術総合研究機構のコミュニケーショ

肝クッパ 細胞を簡便 大量に 回収できる新規培養方法 農研機構動物衛生研究所病態研究領域上席研究員山中典子 2016 National Agriculture and Food Research Organization. 農研機構 は国立研究開発法人農業 食品産業技術総合研究機構のコミュニケーショ 肝クッパ 細胞を簡便 大量に 回収できる新規培養方法 農研機構動物衛生研究所病態研究領域上席研究員山中典子 2016 National Agriculture and Food Research Organization. 農研機構 は国立研究開発法人農業 食品産業技術総合研究機構のコミュニケーションネームです 本技術開発の背景 (1) 肝臓マクロファージ ( クッパー細胞 ) 肝非実質細胞内皮細胞

More information

汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について ポイント 厚生労働省の難治性疾患克服事業における臨床調査研究対象疾患 指定難病の 1 つである汎発性膿疱性乾癬のうち 尋常性乾癬を併発しないものはインターロイキン 36 1 受容体拮抗因子欠損症 (

汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について ポイント 厚生労働省の難治性疾患克服事業における臨床調査研究対象疾患 指定難病の 1 つである汎発性膿疱性乾癬のうち 尋常性乾癬を併発しないものはインターロイキン 36 1 受容体拮抗因子欠損症 ( 平成 29 年 3 月 1 日 汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について 名古屋大学大学院医学系研究科 ( 研究科長 髙橋雅英 ) 皮膚科学の秋山真志 ( あきやままさし ) 教授 柴田章貴 ( しばたあきたか ) 客員研究者 ( 岐阜県立多治見病院皮膚科医長 ) 藤田保健衛生大学病院皮膚科の杉浦一充 ( すぎうらかずみつ 前名古屋大学大学院医学系研究科准教授

More information

るマウスを解析したところ XCR1 陽性樹状細胞欠失マウスと同様に 腸管 T 細胞の減少が認められました さらに XCL1 の発現が 脾臓やリンパ節の T 細胞に比較して 腸管組織の T 細胞において高いこと そして 腸管内で T 細胞と XCR1 陽性樹状細胞が密に相互作用していることも明らかにな

るマウスを解析したところ XCR1 陽性樹状細胞欠失マウスと同様に 腸管 T 細胞の減少が認められました さらに XCL1 の発現が 脾臓やリンパ節の T 細胞に比較して 腸管組織の T 細胞において高いこと そして 腸管内で T 細胞と XCR1 陽性樹状細胞が密に相互作用していることも明らかにな 和歌山県立医科大学 先端医学研究所 生体調節機構研究部 樹状細胞の新機能の発見 腸炎制御への新たなアプローチ 要旨和歌山県立医科大学先端医学研究所生体調節機構研究部の改正恒康教授 大田友和大学院生 ( 学振特別研究員 ) を中心とした共同研究グループは 病原体やがんに対する免疫応答に重要な樹状細胞 [1] の一つのサブセットが 腸管の免疫系を維持することによって 腸炎の病態を制御している新たなメカニズムを発見しました

More information

学位論文の内容の要旨 論文提出者氏名 小島光暁 論文審査担当者 主査森尾友宏 副査槇田浩史 清水重臣 論文題目 Novel role of group VIB Ca 2+ -independent phospholipase A 2γ in leukocyte-endothelial cell in

学位論文の内容の要旨 論文提出者氏名 小島光暁 論文審査担当者 主査森尾友宏 副査槇田浩史 清水重臣 論文題目 Novel role of group VIB Ca 2+ -independent phospholipase A 2γ in leukocyte-endothelial cell in 学位論文の内容の要旨 論文提出者氏名 小島光暁 論文審査担当者 主査森尾友宏 副査槇田浩史 清水重臣 論文題目 Novel role of group VIB Ca 2+ -independent phospholipase A 2γ in leukocyte-endothelial cell interactions: an intravital microscopic study in rat

More information

無顆粒球症

無顆粒球症 高松赤十字病院モーニングセミナー 2018 2018.5.17( 木曜日は臨床のコアレクチャー ) 同種造血細胞移植の激変 移植後シクロフォスファミド (PTCY) による HLA 半合致移植 高松赤十字病院副院長第一血液内科部長大西宏明 高松赤十字病院血液内科病棟 ( 本館 10 階 ) 2016 年 11 月にクリーンルーム 16 室 ( 全室個室 クリーンエリア内 14 室 エリア外 2 室

More information

< 背景 > HMGB1 は 真核生物に存在する分子量 30 kda の非ヒストン DNA 結合タンパク質であり クロマチン構造変換因子として機能し 転写制御および DNA の修復に関与します 一方 HMGB1 は 組織の損傷や壊死によって細胞外へ分泌された場合 炎症性サイトカイン遺伝子の発現を増強

< 背景 > HMGB1 は 真核生物に存在する分子量 30 kda の非ヒストン DNA 結合タンパク質であり クロマチン構造変換因子として機能し 転写制御および DNA の修復に関与します 一方 HMGB1 は 組織の損傷や壊死によって細胞外へ分泌された場合 炎症性サイトカイン遺伝子の発現を増強 岡山大学記者クラブ文部科学記者会科学記者会 御中 平成 30 年 3 月 22 日岡山大学 歯周炎進行のメカニズムの一端を解明 歯周炎による骨吸収が抗 HMGB1 抗体投与により抑制 岡山大学大学院医歯薬学総合研究科の平田千暁医員 ( 当時 ) 山城圭介助教 高柴正悟教授 ( 以上 歯周病態学分野 ) と西堀正洋教授 ( 薬理学分野 ) の研究グループは 歯周炎の進行に炎症メディエーター 1 である

More information

スライド 0

スライド 0 リンパ球移動のナビゲーション機構の発見最新のイメージング技術を用いた可視化によって免疫難病治療薬 がん治療薬開発のための新しい作用点が見つかる 細胞の動き を標的にした新たな治療法開発時代の幕開けー 大阪大学免疫学フロンティア研究センター 微生物病研究所 教授 熊ノ郷淳 助教 高松漂太 Semaphorins guide the entry of dendritic cells into the lymphaticsvia

More information

60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起

60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起 60 秒でわかるプレスリリース 2006 年 4 月 21 日 独立行政法人理化学研究所 敗血症の本質にせまる 新規治療法開発 大きく前進 - 制御性樹状細胞を用い 敗血症の治療に世界で初めて成功 - 敗血症 は 細菌などの微生物による感染が全身に広がって 発熱や機能障害などの急激な炎症反応が引き起こされる病態です 免疫力が低下している場合に 急性腎盂腎炎や肺炎 急性白血病 肝硬変 悪性腫瘍などさまざまな疾患によって誘発され

More information

No146三浦.indd

No146三浦.indd 三浦光一秋田大学大学院医学系研究科医学専攻腫瘍制御医学系消化器内科特任講師 非アルコール性脂肪性肝炎 ( 以下 NASH) はメタボリック症候群の肝臓での表現型とされ 肝硬変や肝臓癌へ進展する可能性のある疾患である 近年 NASH 患者数は増加傾向にあり 今後重要な健康問題となると予想されるが いまだ有効な治療法は少ない NASH 発症メカニズムに関して不明な点が多いことから その解明が有効な治療法の開発につながると考えられる

More information

本研究成果は 2015 年 7 月 21 日正午 ( 米国東部時間 ) 米国科学雑誌 Immunity で 公開されます 4. 発表内容 : < 研究の背景 > 現在世界で 3 億人以上いるとされる気管支喘息患者は年々増加の一途を辿っています ステロイドやβ-アドレナリン受容体選択的刺激薬の吸入によ

本研究成果は 2015 年 7 月 21 日正午 ( 米国東部時間 ) 米国科学雑誌 Immunity で 公開されます 4. 発表内容 : < 研究の背景 > 現在世界で 3 億人以上いるとされる気管支喘息患者は年々増加の一途を辿っています ステロイドやβ-アドレナリン受容体選択的刺激薬の吸入によ 喘息を抑える新しいメカニズムの発見 1. 発表者 : 中江進 ( 東京大学医科学研究所附属システム疾患モデル研究センターシステムズバイオロジー研究分野准教授 ) 2. 発表のポイント : 気管支喘息を抑える新しい免疫応答機構を発見した ( 注 同じマスト細胞 1) でも アレルゲンに結合した免疫グロブリン E (IgE) ( 注 2) によって刺激された場合には気管支喘息を悪化させるが インターロイキン

More information

研究の背景 1 細菌 ウイルス 寄生虫などの病原体が人体に侵入し感染すると 血液中を流れている炎症性単球注と呼ばれる免疫細胞が血管壁を通過し 感染局所に集積します ( 図 1) 炎症性単球は そこで病原体を貪食するマクロファ 1 ージ注と呼ばれる細胞に分化して感染から体を守る重要な働きをしています

研究の背景 1 細菌 ウイルス 寄生虫などの病原体が人体に侵入し感染すると 血液中を流れている炎症性単球注と呼ばれる免疫細胞が血管壁を通過し 感染局所に集積します ( 図 1) 炎症性単球は そこで病原体を貪食するマクロファ 1 ージ注と呼ばれる細胞に分化して感染から体を守る重要な働きをしています 平成 26 年 8 月 19 日 報道関係者各位 国立大学法人筑波大学 Tel:029-853-2039( 広報室 ) 科学技術振興機構 ( J S T ) Tel:03-5214-8404( 広報課 ) 貪食細胞が細菌感染を感知する仕組みを解明 研究成果のポイント 1. 病原体を貪食する免疫細胞が細菌感染を感知する重要な分子を発見しました 2. この免疫分子の介在により貪食細胞が感染局所に集積するメカニズムの一端を解明しました

More information

株式会社 デンドリックス

株式会社 デンドリックス 癌を対象とした免疫細胞治療 - 第 3 種再生医療の最先端 - がんの発生 放射線 紫外線 化学物質 等 DNA 修復酵素 損傷 免疫系による変異細胞の除去 損傷 n がん 免疫監視機構からの逸脱 がん治療の限界について 手術 放射線は多くの塊を除去できるが 100 % ではない 除去しきれていなかったがん細胞は 免疫系の細胞が処理する 体力低下等の理由で免疫系が十分働けないと再発 転移という結果になる

More information