PowerPoint Presentation

Size: px
Start display at page:

Download "PowerPoint Presentation"

Transcription

1 アインシュタイン LOVE in 東海大学 シンポジウムアインシュタインの思想世界 < 宇宙と平和 > 東海大学湘南校舎 2010 年 6 月 12 日 宇宙のはじまりと進化 梶野敏貴国立天文台 東京大学大学院 kajino@nao.ac.jp,

2 宇宙の大きさ インフレーション 潜熱が開放されて光で満たされ 対称性が破れる 素粒子が作られる ビッグバン ( 火の玉 ) 宇宙の始まり??? 秒 宇宙時間 宇宙の始まりと膨張 時間の始まりとは何か? スティーブン ホーキング v( 宇宙膨張 ) > c( 光速 ) 虚時間 実時間 宇宙の始まり 現在の宇宙 超大統一理論 量子重力場の理論 時間 空間もゆらぐ 星 銀河生成と世代の繰り返し

3 光で満ちた高温 高密度の火の玉宇宙では エネルギーが質量を持った物質 + 反物質に互いに入れ替わる! 光 光 エネルギーと質量は等価 E = mc 2 m/2 反物質 陽電子 対称性の破れ! m/2 電子 物質 いいね まじ簡単! 画期的!

4 素粒子の標準理論宇宙に存在するすべての物質をかたち作る究極の素粒子と力を伝える粒子たち 物質粒子力を媒介する粒子質量を作り出す粒子 G?? 三世代 電磁気力 弱い力 ( 強い力 ) 核力 重力 なぜ物質に質量があるのか? 自発的対称性の破れ (1961) 南部陽一郎 宇宙は何から作られているのか? 素粒子の標準理論 (1973) 小林誠益川英敏

5 動的な対称性を破ると ものごとは変化する けたぐり 下手投げ ガップリ四つ 対称性がよい ( 高い ) 静止状態 対称性を壊すと 大きな変化がおこる 真空は熱に満ち 素粒子誕生

6 膨張する宇宙とは何か? 火の玉 初期宇宇宙 冷たい宇宙 近くの銀河 天の川 X, y, z 軸の長さそのものが 時間とともに伸びること Albert Einstein ( ) 一般相対性理論 (1915) 遠くの銀河

7 ビルコッフの定理 : 物質が一様に分布している空間では 粒子に働く重力は 球の質量が中心に集中しているとした場合の重力と等価である 半径 r X M 質量 m の粒子 密度 の一様で等方的な物質の分布 球の質量 = 密度 x 体積 M = x 4/3 r 3 ニュートン方程式 E 1 2 m mv r Ý 2 GmM r 1 2 m r Ý Gm[(4 / 3) r 3 ] mv 2 r 2 v r Ý r (1/2m) r G 2 E mr 2 E

8 アインシュタイン方程式 ニュートン方程式 G 00 8 GT 00 g 00 宇宙項 v a 2 = H G k a 2 3 k = 空間の曲率 = -1, 0, +1 2 r v Ý r G 2 E mr 2 ハッブルパラメータ H = v / a = v / r -k = E/m 符号が反対 a ( 宇宙のスケール ) = r ( 球の半径 ) アインシュタイン方程式 ( フリードマン方程式 ) は 重力が弱い極限で ニュートン方程式を再現する

9 アインシュタインの一般相対性理論は正しかったのか? My greatest blunder! (1920 年代 ) 宇宙項 =Λ を考えたのは一世一代の過ち! ( 暗黒エネルギー ) 実は 私は正しかったのかもしれない! 大問題 : 宇宙項 =Λ( 暗黒エネルギー ) の正体は不明!

10 膨張する宇宙の証拠 互いに遠ざかる銀河 ( ハッブルの法則 ) を発見 (1919) エドウィン ハッブル (Edwin Hubble) 火の玉宇宙の名残である宇宙背景放射を発見 (1965) ペンジャス & ウィルソン (A.A. Penzia & R.W. Wilson) 宇宙背景放射の温度揺らぎを発見 (1992) スムート & マザー (G. Smoot & A. Mathar) 火の玉宇宙の名残である宇宙背景放射を予言 (1948) 火の玉宇宙での元素合成の予言 (1948) ジョージ ガモフ (George Gamow)

11 George Gamow の夢 (1948) 火の玉宇宙は巨大な核融合炉 水素からウランまで全ての元素を作りたい! 天文観測で重水素 ヘリウム リチウム等の核融合生成元素を発見! ビッグバン火の玉の証拠! しかし 夢は破れた! 梶野の夢 (1989) Gamow の夢は正しいのではないか? ゆらぐ火の玉宇宙でウランまでの重元素を作りたい! 宇宙背景放射ゆらぎの発見 (1992) の3 年前の予言

12 ゆらぐ火の玉宇宙の中での核融合 Kajino and Boyd, ApJ 359 (1989, 1990) 267 ベリリウム 9 Be 太陽近くの 若い星々 梶野理論の予測 (1989) ハッブル宇宙望遠鏡 倍以上の違い! ガモフ理論の予測 (1948) 年老いた星 時間 若い星 すばる望遠鏡

13 ブロア城で開催された国際会議 宇宙論と元素の起源論 にて 梶野敏貴 ゆらぎ宇宙論仮説 (1989 年 ) ジョージ スムート 2006 年度ノーベル物理学賞受賞宇宙背景放射ゆらぎの発見 (1992 年 )

14 初期宇宙は何故ゆらいでいたのか? スムート & マザーが発見した宇宙背景放射ゆらぎ 暗黒物質暗黒エネルギーの正体は何か? 38 万年 137 億年 スーパーコンピュータを用いた宇宙構造形成過程のシミュレーション 未知の暗黒エネルギー 73% と暗黒物質 23% を仮定すると 観測されている現在の宇宙構造がうまく再現できる

15 宇宙は加速的に膨張している! ダークエネルギーを仮定すると説明可能 宇宙の 宇宙の膨張と進化 現在 始まり 銀河や星が構造を作る! ダークマターを仮定すると説明可能

16 宇宙のエネルギー 質量は 何が担っているのか? 宇宙というパイの作り方 暗黒エネルギー ( 宇宙項 )? 暗黒物質? 普通の物質はたったの 4%! 未知の暗黒エネルギー ( 宇宙項 ) 普通の物質 未知の暗黒エネルギーと暗黒物質で満ちた宇宙に生きることは 得体の知れない素材でできているパイを食べるようなもの 未知の暗黒物質 科学者は 暗黒の謎 を解きたい

17 余次元 (5 次元 ) 宇宙モデル 私たちの 5 次元宇宙モデルでは 宇宙項 =0 すなわち リサランドール 暗黒エネルギー =0 でも観測 ( 宇宙の加速膨張 ) を説明 することができるのではなか 暗黒物質一元論の提唱 重力作用をになう暗黒素粒子の質量エネルギーが 3+1 次元の宇宙と余次元 (5 次元 ) の間で交換されると考える 暗黒素粒子は超対称性粒子! (LSP) Dark Radiation term = q = adjustable parameter

18 なぜ高い次元 (5 次元以上 ) が必要なのか? 2 次元平面 3 次元空間 射影は高次元の対象物の情報を全ては伝えられない リサ ランドールワープする宇宙 5 次元時空の謎を解く (NHK 出版 2007 年 )

19 現代宇宙物理学の到達点 究極の問い! 超大統一??? 基本的な力の統一理論を構築し 宇宙開闢と物質創生の謎 宇宙進化の謎を解明したい! 弱電統一! 大統一! 電気力 磁気力の統一マクスウェル (1864) 電磁気力 弱い力の統一ワインバーグ サラム (1973) 電弱力 強い力の大統一! ゲージ理論未完成 重力の超大統一??? 超ひも 超対称 超重力理論 重力 電磁気統一! 電気力 + 磁気力 弱い力 核力 ( 強い力 ) 高い次元 (5 次元以上 ) の時空が必要

20 スイス ジュネーブ郊外のセルン原子核研究所 素粒子どうしを衝突させてビッグバン初期宇宙と同じような高温高密度状態を作り出し 反物質を作って集め 磁気力で隔離 大ハドロン衝突加速器 LHC 素粒子 (SUSY, Higgs) ハンティング 暗黒物質の発見高次元時空の検証ミニ ブラックホール生成 反物質は 物質と出会うと瞬時にして消滅し光になり 巨大な熱エネルギーを解放する 反物質 反物質の消滅を兵器として使う! 天使と悪魔 E = mc 2 人類の希望の方程式悪魔の方程式

21 宇宙 ( 時間 空間 ) と物質 ( 人間 ) 世界 豊かな素粒子 原子核の世界物質 人間の起源? 大陸都市人間つめ 地球銀河宇宙大構造 神秘に満ちた広大な宇宙 時間 空間の起源? 細胞 素粒子原子核原子 DNA

22 鉄 コバルト ニッケル梶野敏貴 ( 東大 天文台グループ ) 超新星で合成されることを証明 森田浩介グループ ( 理化学研究所 ) 新元素 113 番を発見 トリウム ウラン 113

23 ピエールキューリー マリーキューリー 19 世紀末 ~20 世紀 現代科学の夜明け 放射能の発見 ベクレル (1896) 放射性元素 ( ラジウム ) の α 線 β 線 γ 線 単体分離に成功マリーキューリー (1902) 人間 物質を形作る究極の 粒子発見のステップ ラジウム ウラニウム α 線 (He 核 1911 年ラザフォード ) β 線 ( 電子 1897 年 トムソン ) γ 線 ( 電磁波 X 線 1895 年 )

24 量子力学では因果律が破れているのかマックスボルン? 波動関数の確率解釈の提唱 神はさいころをふらない 決まってはいるが 人間には分からないだけ 不確定性は神の原理 すべてを波で説明しようとこだわりすぎると矛盾が生じる この際 電子があるときは粒子で ある時は波だと二面性を認めてしまおう そもそも場所と運動を同時 に決定することはできない アルベルトアインシュタイン マックスボルン オリビアニュートンジョン歌手 ボルンの孫ニールスボーア

25 太陽は巨大な核融合炉 人類にとっての天恵! ミクロな世界の法則 量子論 粒子 = 確率波 が 太陽内部で 核融合を引き起こし 人間を形づくるさまざまな元素を作りだす 太陽はなぜ輝けるのか? クーロン力障壁 陽子は波でもある 陽子 陽子 太陽中心付近で 核融合が起きている ある確率で壁を透過した陽子 0 距離 陽子どうしの間にはクーロン反発力によるポテンシャルの壁ができ ある距離以内に近ずけないけれども 波としてある確率で壁を透過し核融合を起こす

26 小柴昌俊東京大学名誉教授 2002 年ノーベル物理学賞受賞 超新星 1987A からの素粒子ニュートリノを人類史上 ニュートリノは超新星内部で起きた 重元素ウラニウムは 原子核 素粒子反応の確かな証拠! 星の大爆発で作られるか! 初めて補足 ニュートリノ天文学を拓いた功績に対して 陽子電子中性子ニュートリノ 超新星 1987A

27 超新星爆発の数値計算機シミュレーションアダム バロウズ ( プリンストン大 ) QuickTime and a YUV420 codec decompressor are needed to see this picture. 10 km 300 km

28 約 100 年前のラジウムやウラニウムからの放射能の発見が 量子論を生みだした 量子論が現代科学 ( 原子核 素粒子物理学 固体物理学など ) の基礎を拓き 20 世紀の物質文化が開花 マリー キューリー β 線 α 線 γ 線 100 年間の疑問 重元素 ウラニウムは 宇宙のどこでどのように作られたのか? 21 世紀 解明 超新星爆発でのニュートリノの反応で作られた! ウラニウム 梶野の夢 (1989) Gamow の夢は正しいのではないか? ゆらぐ火の玉宇宙でウランまでの重元素を作りたい! 宇宙背景放射ゆらぎの発見 (1992) の3 年前の予言

29 世界は何から作られているのか? 古代ギリシャ ( デモクリトス ) 目に見えないがそれ以上分割できない世界要素 = 原子 (ATOM) 20 世紀 原子は 原子核 ( 陽子 + 中性子 ) と電子からなり 分割できる 人間 つめ? 陽子 電子 細胞 中性子 原子核 DNA 究極の素粒子? 原子核 原子

30 ガリレオ ガリレイ (1610) 望遠鏡の発明 ロバート フック (1665) 顕微鏡の発明 巨大望遠鏡と巨大粒子加速器が 宇宙および極微の世界を覗く科学的な道具! すばる望遠鏡 陽子 反陽子 地上でリトルバンを起こし 高エ ネルギー密度の火の玉を再現 巨大粒子加速器

31 陽子 (= 人間の体を構成する要素 ) の中から 赤 青 緑の 3 種類の色を持つ素粒子 クォーク が飛び出してきた! クォークは 6 種類の香りを持っている 私たちを作る素粒子ビッグバン初期宇宙の真空中を飛び交っていた素粒子

32 素粒子の標準理論宇宙に存在するすべての物質をかたち作る究極の素粒子と力を伝える粒子たち 物質粒子力を媒介する粒子質量を作り出す粒子 G?? 三世代 電磁気力 弱い力 ( 強い力 ) 核力 重力 なぜ物質に質量があるのか? 自発的対称性の破れ (1961) 南部陽一郎 宇宙は何から作られているのか? 素粒子の標準理論 (1973) 小林誠益川英敏

33 陽子の中の真空! 物質と宇宙の神秘的な結びつき 新しい粒子の生成 私たちの体の中に ビッグバン初期宇宙の 真空があった! クォーク対の生成 E = mc 2 陽子の中の小宇宙では 量子力学の原理によって 究極の素粒子クォークやグルーオンの エネルギー密度が揺らいでいる また クォーク閉じ込め対称性 カイラル対称性 (π 中間子 私たちの体は ビッグバン宇宙のかけらでできている! の質量の起源 ) などが回復している 真空の性質が ビッグバン宇宙の初期にそっくり!

34 自然の階層性 宇宙の法則はどこまでもミクロな世界の法則で成り立っている 自然は ちょうど ウロボロスの蛇が自分の尾を飲み込むような形で作られている ( グラショウ ) 宇宙の法則 小さな物質 世界の法則 人間 物質世界 ( 人間 ) と宇宙 ( 時間 空間 ) の統一

35 地球銀河宇宙大構造 大陸 人間を形づくる究極の エレメント は何か? 人間の体の中にあるミクロな世界の ゆらぎ 都市 人間 137 億年前のビッグバン初期 宇宙の ゆらぎ 素粒子原子核原子 DNA つめ細胞 宇宙の果てに見つかった ゆらぎ の起源は何か? 火の玉小宇宙の量子的ゆらぎが宇宙の膨張で引き伸ばされた! 私たち人間はビッグバン宇宙のかけらで作られている!

36 四つの力は統一 対称性が破れる 四つの力が分岐 ゆらぐ初期宇宙 豊かな宇宙構造形成 時間の始まり宇宙進化現在 0 時間 光に満ちた火の玉宇宙 2g ( 光 ) 物質 + 反物質 対称性の破れ : 物質 >> 反物質 物質でできた宇宙 物質粒子である陽子も 年で崩壊する

37 時間 空間と物質 ビッグバン宇宙論として統一 宇宙論 量子論 ( 一般相対性理論 ) ( 素粒子 原子核 場の理論 ) A. Einstein M. Planck

第2回 星の一生 星は生まれてから死ぬまでに元素を造りばらまく

第2回 星の一生  星は生まれてから死ぬまでに元素を造りばらまく 素粒子世界の物理 物質を形作るミクロの 世界の不思議 1. 素粒子の世界 2. 素粒子の標準模型 3. 標準模型の困難 : ニュートリノ質量と暗黒物質 4. 統一理論 1. 素粒子の世界 自然界のあらゆる物質は原子に分解される しかし 原子は最小の構成要素ではなく さらに原子核と電子に分解できる 原子核はさらに下部構造を持っており 現在 我々が到達可能な究極の構成要素が素粒子である 素粒子の世界の構造と物理は

More information

それを矛盾なくこの世の問題として解決できるような知恵が必要となる この世 ( 宇宙 ) のはじまり 1 はじまり より前 : 特異点 はじまりとは 時間の区切りの中で 終わりと共に特異な点となる 宇宙のはじまりにおいても この特異点は問題となっている この世のはじまりも 特異点で ビックバンと呼ばれ

それを矛盾なくこの世の問題として解決できるような知恵が必要となる この世 ( 宇宙 ) のはじまり 1 はじまり より前 : 特異点 はじまりとは 時間の区切りの中で 終わりと共に特異な点となる 宇宙のはじまりにおいても この特異点は問題となっている この世のはじまりも 特異点で ビックバンと呼ばれ 科学 技術の世界深く地球を考える - 科学と哲学と地質学と - 2006 年 5 月 16 日小出良幸 第 6 講はじまり : この世のはじまり 不可能を可能にする知恵 1 この世とあの世の境界 ありえないものを 考えることはできるだろうか 普通はできない 例えば はじまりの瞬間を考えるとき それは 限りなくゼロに近い時間や大きさ無限大の密度 温度などを 考えなければならないかもしれない これは いってみれば物理学の適用範囲を越えた場面となることもあるであろう

More information

大宇宙

大宇宙 大宇宙 銀河団 大規模構造 膨張宇宙 銀河群 数個 ~ 数十個の銀河の群れ 天の川銀河 250 万光年 アンドロメダ銀河 局所銀河群 http://www.astronomy.com/en/web%20extras/2005/02/ Dominating%20the%20Local%20Group.aspx 銀河団 100 個程度以上の集まり 銀河群との明確な区別はない 天の川銀河 6200 万光年

More information

これまでの研究と将来構想

これまでの研究と将来構想 2008 年度ノーベル物理学賞 受賞理論入門 岡山光量子科学研究所 石本志高 Ishimoto, Yukitaka 参考 URL http://nobelprize.org/ http://nobelprize.org/nobel_prizes/physics/laureates/2008/ 清心女子高 Nov 2008 発見に対してノーベル賞公式サイトより抜粋Y Ishimoto ノーベル物理学賞

More information

研究機関とサイエンスコミュニケーション①(森田)

研究機関とサイエンスコミュニケーション①(森田) 2009 (KEK) 2001 1992 94 97 2008 (KEK) 1 (Powers of Ten) 10 ( 1 ) 10 0 m 10 3 m= 1,000 m = 1 km ( 2 ) 10 5 m= 10,000m = 100km 10 6 m= 1,000 km 10 7 m= 10,000 km 10 13 m 10 21 m ( ) 2 図2 KEK の敷地 図3 銀河系 図4

More information

Microsoft PowerPoint - komaba ppt [互換モード]

Microsoft PowerPoint - komaba ppt [互換モード] 宇宙科学 II ( 電波天文学 ) 第 6 回 ビッグバン宇宙 ( 続 ) & 主系列星 前回の復習 1 黒体放射 黒体 ( すべての周波数の電磁波を吸収し 再放射する仮想的物体 ) から出る放射 黒体輻射の例 : 溶鉱炉からの光 電波領域 可視光 八幡製鉄所 黒体輻射の研究は 19 世紀末に溶鉱炉の温度計測方法として発展 Bν のプロット (10 0 ~ 10 8 K) 黒体輻射関連の式 すべて温度で決まる

More information

Microsoft PowerPoint - hiei_MasterThesis

Microsoft PowerPoint - hiei_MasterThesis LHC 加速器での鉛鉛衝突における中性 πおよびω 中間子測定の最適化 日栄綾子 M081043 クォーク物理学研究室 目的 概要 目的 LHC 加速器における TeV 領域の鉛鉛衝突実験における中性 π および ω 中間子の測定の実現可能性の検証 および実際の測定へ向けた最適化 何故鉛鉛衝突を利用して 何を知りたいのか中性 πおよびω 中間子測定の魅力 ALICE 実験検出器群 概要予想される統計量およびバックグランドに対するシグナルの有意性を見積もった

More information

自然界に思いをはせる ( エーテル = 第 5 元素 ) 地と天は異なる組成 古代ギリシャの四元素説空気 火 木 地も天も同じ組成 古代中国の五行説 火 土土水 ( いずもりよう : 須藤靖 ものの大きさ 図 1.1 より ) 金 水 2

自然界に思いをはせる ( エーテル = 第 5 元素 ) 地と天は異なる組成 古代ギリシャの四元素説空気 火 木 地も天も同じ組成 古代中国の五行説 火 土土水 ( いずもりよう : 須藤靖 ものの大きさ 図 1.1 より ) 金 水 2 Ⅳ 宇宙の組成 ~ 宇宙の主成分 : ダークマターと ダークエネルギー ~ 元素 ( バリオン ) 自然界に思いをはせる ( エーテル = 第 5 元素 ) 地と天は異なる組成 古代ギリシャの四元素説空気 火 木 地も天も同じ組成 古代中国の五行説 火 土土水 ( いずもりよう : 須藤靖 ものの大きさ 図 1.1 より ) 金 水 2 ものは何からできているのだろうか? 古代ギリシャの 4 元説

More information

week2_all

week2_all 観測的宇宙論入門 ー宇宙はどこまでわかったかー 岡村定矩法政大学教授 ( 理工学部創生科学科 ) 東京大学名誉教授 Week 1 現在の宇宙の姿 Week 2 ビッグバン宇宙論 Week 3 ダークマターとダークエネルギー Week 4 太陽系外惑星と元素の起源 第 2 週 : ビッグバン宇宙論 2.1 ビッグバン宇宙論の観測的基礎 2.2 フリードマン宇宙モデル 2.3 ハッブルの法則 2.4 ビッグバン宇宙論と定常宇宙論

More information

スライド タイトルなし

スライド タイトルなし 宇宙における物質の起源を解明する東北大の核物理グループ 宇宙にはなぜ物質しかないのか? クォークからどうやってハドロンや原子核ができたのか? さまざまな元素は宇宙の中でどうつくられたのか? 原子核以外の未知の物質が宇宙にあるのか? 原子核理学 ( 電子光センター ) 日本最大級の電子シンクロトロン SPring-8( 兵庫 ) 理研 RI ビームファクトリー ( 和光 ) 新奇加速器の開発 核内クォーク

More information

宇宙の始まりと終わり

宇宙の始まりと終わり 宇宙の始まりと終わり : I 始まり 日本大学文理学部総合科目 始まりと終わり 2006 年 4 月 10 日 14:40-16:10 東京大学大学院理学系研究科物理学専攻須藤靖 今回の講義の目的 1. 宇宙に始まりがある と考えられる科学的根拠を理解する 2. 宇宙初期のインフレーション理論を概観する 3. 標準ビッグバン理論とはどのようなものかを理解する 4. 宇宙が誕生してから現在に至る約 137

More information

Microsoft PowerPoint - 公開講座 pptx

Microsoft PowerPoint - 公開講座 pptx 宇宙のダークエネルギー とは何か? 郡 和範 ( こおりかずのり ) Kazunori Kohri 高エネルギー加速器研究機構 (KEK) 理論センター宇宙物理グループ 総合研究大学院大学素粒子原子核専攻 本日 説明すること 宇宙の大きさは? 宇宙の外は? 宇宙の始まりのインフレーション加速膨張 現在の宇宙の加速膨張とダークエネルギー 現在 わかっていないこと 宇宙の大きさは??? 地球の大きさ 10000000m=10

More information

スライド 1

スライド 1 宇宙暗黒物質の謎と未知の素粒子 今井憲一 ( 理学研究科 ) 宇宙の暗黒物質 ダークマター 宇宙には 見えない物質が 見える物質 ( 星や原子分子 ) にたいして重さにして約 10 倍ある!!! なぜそんなことがいえるの? ダークマターは未知の素粒子かもしれない その正体をつきとめよう! 出所 htp:/en.wikipedia.org/wiki/james_clerk_maxwel 出所 htp:/en.wikipedia.org/wiki/heinrich_hertz

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc . 序論本講義は高エネルギー物理学 素粒子実験物理学 の観点から 素粒子物理学の概要 特に電磁相互作用 QD の基礎と現象論的観点からの弱い相互作用 強い相互作用及び電弱統一理論について講義します 小林さん要チェック 後期は理論的な発展を中心に クォークモデル 量子色力学 大統一理論について講義されます. 素粒子とは世界を構成する最小の基本単位 つまり世界は何からできているかという 素朴な疑問に答える学問が素粒子物理学です

More information

Microsoft Word - Lec06.doc

Microsoft Word - Lec06.doc 地学小出良幸第 6 講はじまり : 宇宙のはじまり http://ext-web.edu.sgu.ac.jp/koide/chigaku/ E-mail: chigaku2018@ykoide.com 不可能を可能にする知恵 1 この世とあの世の境界 2 境界をこの世に引き込む例光より速い光を考える 例光より速い通信の方法 この世 ( 宇宙 ) のはじまり 1 はじまり より前 : 特異点 無境界仮説

More information

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を

2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を 2011 年度第 41 回天文 天体物理若手夏の学校 2011/8/1( 月 )-4( 木 ) 星間現象 18b 初代星形成における水素分子冷却モデルの影響 平野信吾 ( 東京大学 M2) 1. Introduction 初代星と水素分子冷却ファーストスター ( 初代星, PopIII) は重元素を含まない原始ガスから形成される 宇宙で最初に誕生する星である 初代星はその後の星形成や再電離など宇宙初期の天文現象に強く関係し

More information

ゼロからはじめる「科学力」養成講座1(2009年度)

ゼロからはじめる「科学力」養成講座1(2009年度) 第 1 5章 力と物質の基本法則 身近にある力としては 重力 電磁気力があります また その他にも原子核の陽子や 中性子を結びつけている力 核力があることを学びました それではいったい力は何種類 あるのでしょうか また 私たちの知っている原子を構成している粒子は 陽子 中性子 そして電子です それらの粒子をバラバラにしてそれ以上細かくすることはできないので しょうか こうしたことを研究するのが素粒子物理学です

More information

粒子と反粒子

粒子と反粒子 対称性の破れをめぐる 50 年の歩み 小林誠 1956 T.D.Lee and C.N.Yang パリティ対称性の破れ 反粒子とは? 粒子には対応する反粒子が存在する 粒子と反粒子の質量は等しい粒子と反粒子の電荷は符号が反対 電子 e - 陽電子 e 反粒子が実際に使われている例 PET( 陽電子放射断層写真 ) 脳研究やがん診断で活躍 ディラック方程式 反粒子発見のきっかけ 近代物理学の 本の柱

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

<91BA8E5290C428938C8B9E91E58A778D918DDB8D CA48B868F8A909495A898418C CA48B868B408D5C208B408D5C92B CD967B939682C982D082C682C282C882CC82A C2082B182CC92988ED282C995B782AF207C208CBB91E C8

<91BA8E5290C428938C8B9E91E58A778D918DDB8D CA48B868F8A909495A898418C CA48B868B408D5C208B408D5C92B CD967B939682C982D082C682C282C882CC82A C2082B182CC92988ED282C995B782AF207C208CBB91E C8 1 / 7 2012/10/07 9:55 この著者に聞け 2011 年 08 月 29 日 ( 月 ) 村山斉 ( 東京大学国際高等研究所数物連携宇宙研究機構機構長 ) 宇宙は本当にひとつなのか 物質の最小単位である素粒子の世界をやさしくひもとき たくさんの人たちの心をつかんだ村山斉氏の近著 宇宙は本当にひとつなのか が 発売 1 週間で重版され 早くも話題になっている 宇宙はどこまでわかってきて

More information

素粒子論的宇宙論基礎 新井真人 ( チェコ工科大学 )

素粒子論的宇宙論基礎 新井真人 ( チェコ工科大学 ) 素粒子論的宇宙論基礎 新井真人 ( チェコ工科大学 ) チェコってどこ? Where is Czech? 首都 : プラハ公用語 : 人口 : Where is Czech? 首都 : プラハ公用語 : チェコ語人口 :1 千 43 万人 Where is Czech? 首都 : プラハ公用語 : チェコ語人口 :1 千 43 万人ビール消費量 159 リットル / 人 / 年 ( 日本の約 3 倍

More information

ひも理論で探る ブラックホールの謎

ひも理論で探る ブラックホールの謎 第 34 回知の拠点セミナー 2014 年 7 月 18 日於京都大学東京オフィス 超ひも理論のフロンティア : ブラックホールから ホログラフィー原理へ 高柳 匡 京都大学基礎物理学研究所 京都大学基礎物理研究所 当研究所は 湯川秀樹博士のノーベル物理学賞を記念して 1953 年に我が国初の共同利用研究所として創設されました 理論物理学のほぼすべての分野 ( 素粒子 原子核 宇宙 物性 ) の第一線の研究者が揃っております

More information

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から 55 要旨 水温上昇から太陽の寿命を算出する 53 町野友哉 636 山口裕也 私たちは, 地球環境に大きな影響を与えている太陽がいつまで今のままであり続けるのかと疑問をもちました そこで私たちは太陽の寿命を求めました 太陽がどのように燃えているのかを調べたら水素原子がヘリウム原子に変化する核融合反応によってエネルギーが発生していることが分かった そこで, この反応が終わるのを寿命と考えて算出した

More information

原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構

原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構 原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構造 原子核の Shell 構造と魔法数 元素合成 太陽系の元素組成 様々な元素合成過程 元素合成における核構造の役割まとめ資料は

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

具合が大きくなり 一般相対性理論 3 に基づく重力の記述が破綻するためである この問題を解決する新しいアプローチとして 1997 年米国プリンストン大のマルダセナ教授は ブラックホールの中心を含めて正しく重力を記述する理論を提唱した この理論によれば ちょうどホログラムが立体図形の情報を平面上に記録

具合が大きくなり 一般相対性理論 3 に基づく重力の記述が破綻するためである この問題を解決する新しいアプローチとして 1997 年米国プリンストン大のマルダセナ教授は ブラックホールの中心を含めて正しく重力を記述する理論を提唱した この理論によれば ちょうどホログラムが立体図形の情報を平面上に記録 報道関係者各位 平成 26 年 4 月 23 日大学共同利用機関法人高エネルギー加速器研究機構国立大学法人京都大学国立大学法人茨城大学 ブラックホールを記述する新理論をコンピュータで検証 本研究成果のポイント ホログラムが立体図形を平面上に記録できるように ブラックホールのように曲がった時空で起こる力学現象を平坦な時空上で厳密に記述できる新理論に基づき 重力の量子力学的効果が無視できない条件下でのブラックホールの質量と温度の関係をコンピュータで計算

More information

ブラックホールを コンピュータ上で 創る 柴田大 ( 京都大学基礎物理学研究所 )

ブラックホールを コンピュータ上で 創る 柴田大 ( 京都大学基礎物理学研究所 ) ブラックホールを コンピュータ上で 創る 柴田大 ( 京都大学基礎物理学研究所 ) 内容 1. 一般相対論と万有引力 2. ブラックホールの証拠 3. ブラックホールはどのように誕生するのか 4. 重力波でブラックホールを探る 5. ブラックホールを創る 1 一般相対論と万有引力 u ニュートンの万有引力理論 : 2 つの物体がひきつけあう 2 10 30 kg 引力 ja.wikipedia.org

More information

ポリトロープ、対流と輻射、時間尺度

ポリトロープ、対流と輻射、時間尺度 宇宙物理学 ( 概論 ) 6/6/ 大阪大学大学院理学研究科林田清 ポリトロープ関係式 1+(1/) 圧力と密度の間にP=Kρ という関係が成り立っていると仮定する K とは定数でをポリトロープ指数と呼ぶ 5 = : 非相対論的ガス dlnp 3 断熱変化の場合 断熱指数 γ, と dlnρ 4 = : 相対論的ガス 3 1 = の関係にある γ 1 等温変化の場合は= に相当 一様密度の球は=に相当

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

JPS-Niigata pptx

JPS-Niigata pptx l l 1916 Ø 2016/12/10 日本物理学会新潟支部 2 l l 1916 Ø l 2016/12/10 日本物理学会新潟支部 3 l 2015 9 14 UTC Ø Advanced LIGO l 2016 2 11 2 12 Ø LIGO & Virgo https://losc.ligo.org/events/gw150914/ http://media1.s-nbcnews.com/

More information

H20マナビスト自主企画講座「市民のための科学せミナー」

H20マナビスト自主企画講座「市民のための科学せミナー」 平成 20 年度マナビスト自主企画講座支援事業 - 日常の生活を科学の目で見る - 2008 年 11 月 13 日 ( 木 )~12 月 4( 木 ) 18:30-20:30 アバンセ 村上明 1 第 1 回 現代科学から見た星占い ー星占いの根拠って何? - 2008 年 11 月 13 日 ( 木 ) 村上明 2 内容 1. 西洋占星術の誕生から現在まで 2. 科学の目で見た西洋占星術 3.

More information

スライド 1

スライド 1 相対論的プラズマにおける PIC シミュレーションに伴う数値チェレンコフ不安定の特性ついて 宇宙物理学研究室 4 年池谷直樹 研究背景と目的 0 年 Ie Cube 国際共同実験において超高エネルギーニュートリノを検出 780Tev-5.6PeV 890TeV-8.5PeV 相互作用が殆んど起こらないため銀河磁場による軌道の湾曲が無く 正確な到来方向の情報 を得られる可能性がある ニュートリノから高エネルギー宇宙線の起源を追う

More information

銀河風の定常解

銀河風の定常解 2011年 国立天文台プラズマセミナー 2011/12/02 球対称定常銀河風の遷音速解 銀河の質量密度分布との関係 筑波大学 教育研究科 教科教育専攻 つちや まさみ 理科教育コース 2年 土屋 聖海 共同研究者 森正夫 筑波大学 新田伸也 筑波技術大学 発表の流れ はじめに 銀河風とは 流出過程 エネルギー源 周囲に及ぼす影響 研究内容 問題の所在 研究の目的 方法 理論 銀河の質量密度分布 研究成果

More information

宇宙のダークエネルギーとは何か

宇宙のダークエネルギーとは何か 宇宙のダークエネルギー とは何か 東京大学院理学系研究科物理学専攻須藤靖 東邦大学理学部物理学科公開講座 ミクロの物質とマクロの宇宙 2007 年 7 月 7 日 http://www-utap.phys.s.u-tokyo.ac.jp/~suto/mypresentation_2007j.html イタリアの青空 夜来たる 6 つの太陽をもつ惑星ラガッシュに 2049 年に一度の夜が訪れる ( すばる観測所

More information

ニュースリリース 平成 27 年 5 月 1 日 国立大学法人千葉大学 自然科学研究機構国立天文台 スーパーコンピュータによる 宇宙初期から現在に いたる世界最大規模のダークマターシミュレーション 概要 千葉大学 東京経済大学 愛媛大学 東京大学 文教大学による研究グループは 理化学研究所計算科学研

ニュースリリース 平成 27 年 5 月 1 日 国立大学法人千葉大学 自然科学研究機構国立天文台 スーパーコンピュータによる 宇宙初期から現在に いたる世界最大規模のダークマターシミュレーション 概要 千葉大学 東京経済大学 愛媛大学 東京大学 文教大学による研究グループは 理化学研究所計算科学研 ニュースリリース 平成 27 年 5 月 1 日 国立大学法人千葉大学 自然科学研究機構国立天文台 スーパーコンピュータによる 宇宙初期から現在に いたる世界最大規模のダークマターシミュレーション 概要 千葉大学 東京経済大学 愛媛大学 東京大学 文教大学による研究グループは 理化学研究所計算科学研究機構のスーパーコンピュータ 京 ( けい ) 1 と 国立天文台の アテルイ 2 を用いた世界最大規模の宇宙の構造形成シミュレーションを行い

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Microsoft PowerPoint - Ppt ppt[読み取り専用]

Microsoft PowerPoint - Ppt ppt[読み取り専用] Astroparticle physics 富山大学 松本重貴 1. 暗黒物質問題 2. 暗黒物質の正体? 3. 暗黒物質の探査 Astroparticle physics って何? 素粒子 物理学 ニュートリノ暗黒物質暗黒エネルギー宇宙のバリオン数インフレーション 宇宙 物理学 宇宙の暗黒物質問題暗黒物質の存在は確立したが その正体 ( 質量 スピン 量子数や相互作用 ) については不明であるという問題!

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

宇宙線のまとめ 3 x 10 10 cm 3 惑星間空間の粒子密度は1 cm 3 数密度 星間空間のいたるところに存在し 地球に飛来する宇宙線はほぼ等方的である GeV 109 ev にピーク 太陽からくる高エネルギー粒子 が存在する 地上付近では宇宙線は大気と衝突するため 宇宙空間から直接来る一次

宇宙線のまとめ 3 x 10 10 cm 3 惑星間空間の粒子密度は1 cm 3 数密度 星間空間のいたるところに存在し 地球に飛来する宇宙線はほぼ等方的である GeV 109 ev にピーク 太陽からくる高エネルギー粒子 が存在する 地上付近では宇宙線は大気と衝突するため 宇宙空間から直接来る一次 第二土曜会 講演 2016年1月9日 土 宇宙物理の未解決問題 銀河宇宙線の話題を中心に オーストリア宇宙科学研究所 太陽圏プラズマ部門 成田康人 序 宇宙空間は地上では実現不可能な低密度 高エネルギーの物理の実験の場を提供し 宇宙空間の現象を調べるこ とは物理学に大きく発展してきた 宇宙物理は現代物理学の基盤となる相対性理論と量子力学のうち 相対性理論 が大きく活躍する分野でもある かつては神話ととらえられていた天体の運行も万有引力や一般相対性理論の構築

More information

矢ヶ崎リーフ1.indd

矢ヶ崎リーフ1.indd U 鉱山 0.7% U 235 U 238 U 鉱石 精錬 What is DU? U 235 核兵器 原子力発電濃縮ウラン濃縮工場 2~4% 使用済み核燃料 DU 兵器 U 235 U 236 再処理 0.2~1% 劣化ウラン (DU) 回収劣化ウランという * パーセント表示はウラン235の濃度 電子 原子 10-10 m 10-15 m What is 放射能? 放射線 陽子中性子 原子核 1

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

観測的宇宙論WS2013.pptx

観測的宇宙論WS2013.pptx ì コンテンツ イントロダクション 球対称崩壊モデル ビリアル平衡 結果 まとめ イントロダクション 宇宙磁場 銀河や銀河団など様々なスケールで磁場が存在 起源や進化について未だに謎が多い 宇宙の構造形成に影響 P(k)[h -3 Mpc 3 ] 10 6 10 5 10 4 10 3 10 10 1 10 0 10-1 10-10 -3 10-4 10-4 10-3 10-10 -1 10 0 10

More information

Microsoft PowerPoint - komaba ppt [互換モード]

Microsoft PowerPoint - komaba ppt [互換モード] 宇宙科学 II ( 電波天文学 ) 第 6 回 ビッグバン宇宙 ( 続 ) & 星の一生 前回の復習 1 黒体放射 黒体 ( すべての周波数の電磁波を吸収し 再放射する仮想的物体 ) から出る放射 黒体輻射の例 : 溶鉱炉からの光 電波領域 可視光 八幡製鉄所 黒体輻射の研究は 19 世紀末に溶鉱炉の温度計測方法として発展 Bν のプロット (10 0 ~ 10 8 K) 黒体輻射関連の式 すべて温度で決まる

More information

WFMOS で期待されるサイエンス ( ダークエネルギー編 ) 2008 年度光学赤外線天文連絡会シンポジウム 地上大型望遠鏡計画 :2020 年のための決心 2008 年 8 月 22 国立天文台 東京大学大学院理学系研究科物理学専攻須藤靖 1

WFMOS で期待されるサイエンス ( ダークエネルギー編 ) 2008 年度光学赤外線天文連絡会シンポジウム 地上大型望遠鏡計画 :2020 年のための決心 2008 年 8 月 22 国立天文台 東京大学大学院理学系研究科物理学専攻須藤靖 1 WFMOS で期待されるサイエンス ( ダークエネルギー編 ) 2008 年度光学赤外線天文連絡会シンポジウム 地上大型望遠鏡計画 :2020 年のための決心 2008 年 8 月 22 日 @ 国立天文台 東京大学大学院理学系研究科物理学専攻須藤靖 1 ダークエネルギーと 21 世紀の物理 宇宙のサイズ 宇宙の加速膨張 137 億年 減速膨張 時間 万有斥力? 宇宙定数? ダークエネルギー? 一般相対論の破綻?

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Microsoft Word - プレス原稿_0528【最終版】

Microsoft Word - プレス原稿_0528【最終版】 報道関係各位 2014 年 5 月 28 日 二酸化チタン表面における陽電子消滅誘起イオン脱離の観測に成功 ~ 陽電子を用いた固体最表面の改質に道 ~ 東京理科大学研究戦略 産学連携センター立教大学リサーチ イニシアティブセンター 本研究成果のポイント 二酸化チタン表面での陽電子の対消滅に伴って脱離する酸素正イオンの観測に成功 陽電子を用いた固体最表面の改質に道を拓いた 本研究は 東京理科大学理学部第二部物理学科長嶋泰之教授

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

Microsoft Word - D-7

Microsoft Word - D-7 7. 宇宙はなぜこのような宇宙なのか : 人間原理と宇宙論 本書の目次 第 1 章天の動きを人間はどう見てきたか 第 2 章天の全体像を人間はどう考えてきたか 第 3 章宇宙はなぜこのような宇宙なのか 第 4 章宇宙はわれわれの宇宙だけではない 第 5 章人間原理のひもランドスケープ 終章グレーの階調の中の科学 著者 : 青木薫 講談社現代新書 2013 年 7 月 20 日発行 760 円 1956

More information

PowerPoint Presentation

PowerPoint Presentation 原子核反応論 八尋正信 九州大学 九大 目次. 散乱の量子論 基礎 Ekonal 近似 Glaube 近似 多重散乱理論.CDCC 理論 3. 天体核反応 太陽ニュートリノ問題 漸近係数 Ekonal-CDCC 4. ビッグバン元素合成と宇宙論への応用 5. 最先端の核反応とハドロン物理 散乱の量子論 目次. 散乱の基礎論.Bon 近似と Ekonal 近似 3.Glaube 近似 4.Glaube

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

1 はじめに ILCとは インターナショナル リニアコライダー の略です 話の前半は ILCが目指す素粒子 宇宙の謎解き についてです この中で皆さんを最先端の素粒子物理学と宇宙物理学にご案内します 恐らく頭の中が混乱してクラクラすると思うのですが 私も20~30 年かけてようやくここまでたどり着い

1 はじめに ILCとは インターナショナル リニアコライダー の略です 話の前半は ILCが目指す素粒子 宇宙の謎解き についてです この中で皆さんを最先端の素粒子物理学と宇宙物理学にご案内します 恐らく頭の中が混乱してクラクラすると思うのですが 私も20~30 年かけてようやくここまでたどり着い 1 はじめに ILCとは インターナショナル リニアコライダー の略です 話の前半は ILCが目指す素粒子 宇宙の謎解き についてです この中で皆さんを最先端の素粒子物理学と宇宙物理学にご案内します 恐らく頭の中が混乱してクラクラすると思うのですが 私も20~30 年かけてようやくここまでたどり着いたのです 後半は ILCの現状と 北上山地に建設されることを想定してこれからどのような準備をしなければならないかを話します

More information

宇宙の組成を探る

宇宙の組成を探る 宇宙の組成を探る 大学院理学系研究科物理学専攻須藤靖 2006 年 12 月 22 日東京大学理学系研究科ビッグバン宇宙国際研究センター講演会 宇宙の最大のなぞ : ダークエネルギー http://www-utap.phys.s.u-tokyo.ac.jp/~suto/mypresentation_2006j.html 秋の青空 ( 韓国 ) 秋の青空 ( 日本 ) 冬の星空 ( 米国ニューメキシコ州

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

/1 平成 年 1 月 7 日第 9 章膨張宇宙 t» t = 137億年になる (9.3) ハップルの法則がそのままで膨張宇宙を示すわけではない この法則は宇宙の中の極限られた一点 ( 地球 ) で見出されたにすぎない このままなら地球が宇宙の中心だということにもなりうるのだ ここで 宇宙は (

/1 平成 年 1 月 7 日第 9 章膨張宇宙 t» t = 137億年になる (9.3) ハップルの法則がそのままで膨張宇宙を示すわけではない この法則は宇宙の中の極限られた一点 ( 地球 ) で見出されたにすぎない このままなら地球が宇宙の中心だということにもなりうるのだ ここで 宇宙は ( 1/1 平成 年 1 月 7 日第 9 章膨張宇宙 第 9 章膨張宇宙 Ⅰ. ハッブルの法則 光速の 1/1 程度 銀河の後退速度 16 億光年先 Mp = 33 万光年 =3.1 1 19 km 上図がハッブルの法則が実証しているデータである ハッブルの法則とは 銀河の後退速度 ( ) は銀河までの距離 ( d L ) に比例する : = dl ことを ハッブル (Edwi Powell ubble,

More information

宇宙における爆発的リチウム生成の初観測に成功-新星爆発は宇宙のリチウム合成工場だった-

宇宙における爆発的リチウム生成の初観測に成功-新星爆発は宇宙のリチウム合成工場だった- 自然科学研究機構国立天文台国立大学法人大阪教育大学国立大学法人名古屋大学名寄市なよろ市立天文台学校法人京都産業大学 宇宙における爆発的リチウム生成の初観測に成功 新星爆発は宇宙のリチウム合成工場だった 国立天文台 大阪教育大学 名古屋大学 京都産業大学などの研究者からなる研究チームは 2013 年 8 月に現れた新星をすばる望遠鏡で観測し 3 番目に軽い元素であるリチウムがこの新星で大量に生成されていることを突き止めました

More information

宇宙の背景輻射 現在 150億年 50億年 星や銀河の 形成 自然界には4つの力 3つの分岐点が今回のシリーズの目標 3K LHC温度 1016K (10-12 ~ 10-14s) 10億年 (2) GUTへの挑戦 超対称性による大統一 3000K 30万年 原子 分子の形成 3分 原子核の形成 10-10 秒 弱い相互作用が分離 3つの力が分離する 量子重力の世界 10-34 秒 10-43 秒

More information

過去 2 世紀にわたって私達の宇宙像を支配してきたのは 万物は原子でできている という基本概念です 量子力学に支配される原子が宇宙のすべてを構成し 地球上の日常生活から太陽系の運動まですべての重力現象はアインシュタインの一般相対性理論によってうまく記述できていたのです しかし 1998 年に発見され

過去 2 世紀にわたって私達の宇宙像を支配してきたのは 万物は原子でできている という基本概念です 量子力学に支配される原子が宇宙のすべてを構成し 地球上の日常生活から太陽系の運動まですべての重力現象はアインシュタインの一般相対性理論によってうまく記述できていたのです しかし 1998 年に発見され 東京大学国際高等研究所数物連携宇宙研究機構 16 世紀から 17 世紀にかけた宇宙論の黎明期に生きた ガリレオが残した言葉です 現在私達に突き付けられている とてつもなく大きな疑問に立ち向かう IPMU の取るべき 戦略を端的に示唆する言葉です IPMU は最先端の数学と物理学を結集して宇宙の謎に迫ります 新たな戦略のもとに新たな研究が展開されています 世界トップレベル研究拠点形成促進プログラム 過去

More information

sougou070507

sougou070507 総合演習 子どもの未来と教育 長島雅裕 ( 長崎大学教育学部 ) 1. 宇宙と地球 4/16 地球から見た宇宙 : 宇宙観の発展 4/23 現代の宇宙論 5/7 宇宙における地球 5/14 宇宙における生命 (JAXA 担当 ) この 4 回では 主として宇宙 地球 生命の自然科学的認識について扱います 質問は積極的に 私が担当する分について時間外に質問したい場合は 6 階 624 号室まで来てください

More information

栗まんじゅう問題の考察 篠永康平 ドラえもんの有名な道具の一つに バイバイン というものがある これは液体状の薬品で 物体に 1 滴振り掛けると その物体の個数が 5 分ごとに 2 n 個に増殖する 食べ物の場合は 食べるなどして元の形が崩れると それ以上の増殖はない 5 分ごとに 2 倍に増えるの

栗まんじゅう問題の考察 篠永康平 ドラえもんの有名な道具の一つに バイバイン というものがある これは液体状の薬品で 物体に 1 滴振り掛けると その物体の個数が 5 分ごとに 2 n 個に増殖する 食べ物の場合は 食べるなどして元の形が崩れると それ以上の増殖はない 5 分ごとに 2 倍に増えるの 栗まんじゅう問題の考察 篠永康平 ドラえもんの有名な道具の一つに バイバイン というものがある これは液体状の薬品で 物体に 滴振り掛けると その物体の個数が 5 分ごとに n 個に増殖する 食べ物の場合は 食べるなどして元の形が崩れると それ以上の増殖はない 5 分ごとに 倍に増えるので 分で 6 個 時間で 96 個 時間で 67776 個になる のび太はこの道具を使って栗まんじゅうを増やしたが

More information

1. 内容と成果研究チームは 天の川銀河の中心を含む数度の領域について 一酸化炭素分子が放つ波長 0.87mm の電波を観測しました 観測に使用した望遠鏡は 南米チリのアタカマ砂漠 ( 標高 4800m) に設置された直径 10m のアステ望遠鏡です 観測は 2005 年から 2010 年までの長期

1. 内容と成果研究チームは 天の川銀河の中心を含む数度の領域について 一酸化炭素分子が放つ波長 0.87mm の電波を観測しました 観測に使用した望遠鏡は 南米チリのアタカマ砂漠 ( 標高 4800m) に設置された直径 10m のアステ望遠鏡です 観測は 2005 年から 2010 年までの長期 プレスリリース報道解禁 : 7 月 20 日 ( 金 )15 時 (7/24 関連論文のリンクを追記 ) 2012 年 7 月 12 日 報道関係者各位 天の川銀河の中心部に巨大ブラックホールの 種 を発見 ~7 月 20 日 ( 金 ) に記者発表を開催 ~ 慶應義塾大学国立天文台 慶應義塾大学物理学科の岡朋治准教授らの研究チームは いて座方向 太陽系から約 3 万光年の距離にある天の川銀河の中心部において

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

Microsoft Word - 1-4Wd

Microsoft Word - 1-4Wd 第 4 章運動範囲が制限された電子の Scrödinger 方程式の解とその解釈原子 分子の中の電子の運動は原子核の正の電荷によって制約を受けています. 運動範囲が制限された電子はどのような行動をとるか を Scrödinger 方程式を解いて調べましょう. 具体的には, 箱 に閉じ込められた電子の問題です ( 図 1-5). この問題は簡単な系についての Scrödinger 方程式のとき方の例であると同時に量子論の本質が含まれています.

More information

Curvature perturbation from Ekpyrotic collapse with multiple fields

Curvature perturbation  from Ekpyrotic collapse    with multiple fields 研究会 宇宙初期における時空と物質の進化 @ 東京大学 2007. 5. 29 Curvature perturbations from Ekpyrotic collapse with multiple fields 水野俊太郎 (RESCEU, 東大 ) with 小山和哉 ( ポーツマス大 ) David Wands ( ポーツマス大 ) arxiv:0704.1152 1.Introduction

More information

有限密度での非一様なカイラル凝縮と クォーク質量による影響

有限密度での非一様なカイラル凝縮と  クォーク質量による影響 空間的に非一様なカイラル凝縮に対する current quark mass の影響 東京高専 前段眞治 東京理科大学セミナー 2010.9.6 1 1.Introduction 低温 高密度における QCD の振る舞い 中性子星 compact star クォーク物質の理解に重要 T 0 での QCD の基底状態 カイラル対称性の破れた相 カラー超伝導相 μ 2 有限密度において fermionic

More information

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1 重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1) で 加速された大質量による非ニュートン的な重力効果を利用した 図 1に示す重力マシンの可能性について検討している

More information

Microsoft Word - Angels_and_Demons_v1

Microsoft Word - Angels_and_Demons_v1 天使と悪魔 について (http://public.web.cern.ch/public/en/spotlight/spotlightaandd-en.html の訳 ) ダン ブラウン著の 天使と悪魔 は 反物質を使ってローマ教皇庁を破壊しようと目論む秘密結社についてのスリラーです 小説の中では この反物質は CERN から盗まれたという設定になっています (ambigram courtesy John

More information

スライド 1

スライド 1 実験 III 素粒子テーマ 素粒子物理学とは 物質の究極の構造 ( 素粒子 ), 素粒子間に働く力 ( 相互作用 ) 時空の構造, 対称性を探求する分野です 担当教員 : 佐藤 TA: 和田 内山連絡先 : 自然学系棟 D208 (x4270) ksato@hep.px.tsukuba.ac.jp 実験スケジュール 第 1 回 : 素粒子物理概説,μ 粒子寿命測定法, 同軸ケーブルとインピーダンス,NIMモジュールの機能.

More information

今回の話の内容 I. 宇宙に始まりがあると考えられる理由 II. 宇宙のインフレーション III. 万年 IV. 宇宙の進化と物質世界の進化 V. 宇宙の未来 VI. 世界は法則に支配されているか

今回の話の内容 I. 宇宙に始まりがあると考えられる理由 II. 宇宙のインフレーション III. 万年 IV. 宇宙の進化と物質世界の進化 V. 宇宙の未来 VI. 世界は法則に支配されているか 宇宙の起源について??? 東京大学大学院 理学系研究科物理学専攻 須藤靖??? 三鷹市民大学於三鷹市社会教育会館 2015 年 10 月 31 日 10:00-12:00 http://www-utap.phys.s.u-tokyo.ac.jp/~suto/mypresentation_2015j.html? 今回の話の内容 I. 宇宙に始まりがあると考えられる理由 II. 宇宙のインフレーション

More information

「特集にあたって」

「特集にあたって」 連載最新宇宙誌 4 49 最新宇宙誌 4 エポックⅡ: 宇宙の晴れ上がり ~ 輻射と物質の時代の終わり & 暗黒時代の始まり ( 前編 ) 福江純 ( 大阪教育大学 ) 1. 無色透明あるいは暗黒の時代 宇宙の晴れ上がり純白の時代の次には 暗黒の時代が到来する それまで光とエネルギーに満ちていた宇宙は暗転し 宇宙開闢時の残光以外 何一つ見えなくなってしまった 暗黒というよりは 宇宙全体が無色透明になってしまったといった方が適切だろう

More information

前回中間評価の主な指摘事項に対する対応(1)_2

前回中間評価の主な指摘事項に対する対応(1)_2 効果的な広報 前回指摘された課題 国民の信頼と支持を得ていくためには 効果的な広報を通して 日本の施設が国際的な拠点となり科学技術や学術の最先端に挑戦する研究活動が行われていることを示していく取り組みが必要である 前回示された方向性 国民の信頼と支持を得ていくために 様々な関係者が情報発信と広報活動について 更なる工夫と強化を図る 13 効果的な広報 (1) 全体 全国的な展開 プレスリリース数の推移

More information

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動 / 平成 9 年 3 月 4 日午後 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 t t - x x - t, x 静止静止静止静止 を導いた これを 図の場合に当てはめると t - x x - t t, x t + x x + t t, x (5.) (5.) (5.3) を得る

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

ます この零エネルギーの輻射が量子もつれを共有できることから ブラックホールが極めて高温な防火壁で覆われているという仮説が論理的必然でないことを明らかにしました 本研究の成果は 米国物理学会誌 Physical Review Letters に 2018 年 5 月 4 日 ( 米国東部時間 ) オ

ます この零エネルギーの輻射が量子もつれを共有できることから ブラックホールが極めて高温な防火壁で覆われているという仮説が論理的必然でないことを明らかにしました 本研究の成果は 米国物理学会誌 Physical Review Letters に 2018 年 5 月 4 日 ( 米国東部時間 ) オ 平成 30 年 5 月 7 日 報道機関各位 東北大学大学院理学研究科 ブラックホールにおける量子もつれが既知の 限界 より強い可能性を明らかにホーキング博士の議論の穴を発見 発表のポイント 量子ビット ( 注 1) を用いた模型の理論的解析により ブラックホールの熱的エントロピー ( 注 2) の導入に用いられてきたホーキング博士の考え 方に穴がある可能性を指摘した 量子もつれ ( 注 3) に関する予想の不十分な点を見出し

More information

本講義の内容 I. 宇宙に始まりがあると考えられる理由 II. 宇宙はなぜ進化する III. 宇宙の進化と物質世界の進化 IV. 宇宙の未来 V. 宇宙論の進化

本講義の内容 I. 宇宙に始まりがあると考えられる理由 II. 宇宙はなぜ進化する III. 宇宙の進化と物質世界の進化 IV. 宇宙の未来 V. 宇宙論の進化 宇宙の始まりと終わり?????? 物理学専攻須藤靖 理学クラスター講義 進化 2008 年 7 月 24 日 10:00-12:00@ 小柴ホール? http://www-utap.phys.s.u-tokyo.ac.jp/~suto/mypresentation_2008j.html 本講義の内容 I. 宇宙に始まりがあると考えられる理由 II. 宇宙はなぜ進化する III. 宇宙の進化と物質世界の進化

More information

Microsoft Word - 1-2Wd.doc

Microsoft Word - 1-2Wd.doc 第 章原子の構造と関連する物理量.1. 原子を構成する粒子 原子は原子核原子核 (nucleus) と電子 (electron) からできています. さらに, 原子核は, 陽子 (proton) と中性子 (neutron) からできています. これらを核子 ( かくし : 電子 中性子 - + - + 陽子 図 -1. ヘリウム原子の構造 nucleon) といいます ( 核子とは陽子と中性子のことをいいます

More information

ハッブル図の作成と ハッブル定数 宇宙年齢の導出 明星大学理工学部総合理工学科物理学系天文学研究室 学籍番号 :13S1-012 大越遥奈 1

ハッブル図の作成と ハッブル定数 宇宙年齢の導出 明星大学理工学部総合理工学科物理学系天文学研究室 学籍番号 :13S1-012 大越遥奈 1 ハッブル図の作成と ハッブル定数 宇宙年齢の導出 明星大学理工学部総合理工学科物理学系天文学研究室 学籍番号 :13S1-012 大越遥奈 1 目次要旨 1 宇宙膨張説 1.1 宇宙の始まりから現在まで 1.2 ハッブルの法則 1.3 赤方偏移 1.4 加速膨張宇宙 2 電波天文学 2.1 電波天文学について 2.2 電波望遠鏡 2.3 電波干渉計 2.4 輝線放射のメカニズム 3 データ解析 3.1

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 基幹科目自然論 自然界の構造 第 4 回 原子核物理学とがん治療 原子核物理学について - 原子核とは何? - 原子核の様々な性質 社会における原子核 - 工業 農業への応用 - 医療 ( がん治療 ) への応用 東北大学大学院理学研究科物理学専攻原子核理論研究室准教授萩野浩一 Powers of Ten (10 のべき乗 ) 1 m 1 m = 10 0 m 10 0 m 1977 年にアメリカで作られた教育映画

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

Microsoft Word - 03fukue-utyushi.doc

Microsoft Word - 03fukue-utyushi.doc ダークマターの現状 - - 最新宇宙誌 番外編 ダークマターの現状 福江 純 ( 大阪教育大学 ) 素朴な疑問 以前からも 年に数回ぐらいは高校に出向いてブラックホールの話をしたり 何回かは一般向けの講演を頼まれることがあったが この数年は異常に増えている とくに大学が地域連携事業や大学訪問などを積極的にはじめてから やはり天文は人気が高くて 高校生向けの模擬授業などが今年は 10 回を超えそうな勢いだ

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

超対称模型におけるレプトンフレーバーの破れ

超対称模型におけるレプトンフレーバーの破れ 超対称模型におけるレプトンフレーバーの破れ 東北大学大学院理学研究科物理学専攻中村佳祐 内容 すでに知ってる アレ? 昨日の講義で νmssm/mssmrn における荷電レプトンフレーバーの破れ (clfv) 特に ニュートリノ混合角 θ 13 が与える影響について 2012 年 初の精密測定 2 目標 何か一つでも へ ~ と思って頂ければ 3 目次 準備 標準模型とその拡張 ニュートリノ振動 &

More information