sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

Size: px
Start display at page:

Download "sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G"

Transcription

1 Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005 Herzog H S/I(H) Cohen Macaulay ( 4.9 ) 2007 Villarreal H S/I(G) unmixed ( 2.5 ) semi-unmixed unmixed Cohen Macaulay 2 Herzog Cohen Macaulay Villarreal unmixed semi-unmixed 3 semi-unmixed regularity 2 semi-unmixed Kummini unmixed semi-unmixed regularity 4 semi-unmixed sequentially Cohen Macaulay semi-unmixed hirotaka.higashidaira.eq.sun@gmail.com

2 sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G unmixed G V dim G = V 2.1 G semi-unmixed G Z Z G V dim G = V G Z G G Z semi-unmixed semi-unmixed V V (G) V G G V G V V (G V ) = V E(G V ) = {{i, j} E(G) i, j V } G \ V G V (G)\V V G N G (V ) = {w V (G) v V ; {v, w} E(G)} V = {v} N G (V ) = N G (v) v G N G [V ] = N G (V ) V, N G [v] = N G (v) {v} deg G (v) = N G (v) v G deg G (v) = 0 v G G iso(g) G semi-unmixed G \ iso(g) semi-unmixed Stanley Reisner square-free (G) V (G) I(G) (G) Stanley Reisner S/I(G) I(G) Min(G) (G) F(G) P C = (X i i C) Stanley Reisner Min(G) = {P C V (G) \ C F(G)} S/I(G) (G) 1 dim S/I(G) = dim (G)+1

3 V 1,..., V c V (G) G = (G; V 1,..., V c ) V (G) = V 1 V c G V 1,..., V c G G = (G; V 1,..., V c ) c = 2 G = (G; V 1, V 2 ) (G; V 1, V 2 ) v 1 V v 2 V 2 {v 1, v 2 } G (G; V 1,..., V c ) i, j (G Vi V j ; V i, V j ) H H = (H; X, Y ) r = X, s = Y Semi-unmixed 2.2 Z H (H; X, Y ) (1) H Z semi-unmixed (2) X Z r = s H X = {x 1,..., x r }, Y = {y 1,..., y s } (CM1) i (1 i r) {x i, y i } H (CM3) Z {x i, y j } {x j, y k } H {x i, y k } Z {x i, y k } H (CP) Z j (1 j s) {x j, y j } Z = H (NH (y j ) Z) (Y \Z) H (X\Z) (NH (x j ) Z) (3) P I(H) P P V (H)\Z dim S/P = dim S/I(H) (4) F (H) Z dim F = dim (H) ( ) (1) (3) (3) (4) 2.1 Stanley Reisner (1) (2) : H X Y H X Z H semi-unmixed r = X = dim H X Y = s r = s X = Z H semi-unmixed s = Y = dim H dim H = Y X = {x 1,..., x r }, Y = {y 1,..., y s } (CM1) (CM3) Z (CP) Z (CM3) Z H {x i, y j } {x j, y k } {x i, y k } Z {x i, y k } / E(H) {x i, y k } F H F F Z H semi-unmixed dim H = F

4 {x j, y j } F = F < Y = dim H (CM3) Z 1 j s {x j, y j } F = (x j 1 {y j } ) x i N H (y j ) Z, y k Y \ Z {x i, y k } H (Z Y ) {x i, y k } F F F(H) y k F \ Z F Z H Z semi-unmixed F = dim H x i F y j / F r + 1 j s x j / V (H) F < Y = dim H 1 j r x j F y l N H (x j ) Z {x j, y l } H y l Y Z F {x j, y l } F H (NH (y j ) Z) (Y \Z) H (X\Z) (NH (x j ) Z) (CP) Z (2) (1) : F F(H) F Z, F < Y (A) j (1 j r) {x j, y j } F = X Z (2) r = s F < Y X = Z y k F (CP) Z F {y r+1,..., y s } F < Y (A) (A) F {x i, y k } {x i, y j } {x j, y k } H {x i, y k } Z (CM3) Z {x i, y k } Z (CP) Z Z = X semi-unmixed 2.3 (H; X, Y ) (1) H X semi-unmixed (2) H X = {x 1,..., x r }, Y = {y 1,..., y s } (CM1) i (1 i r) {x i, y i } H (CM3) {x i, y j } {x j, y k } H {x i, y k } H (CP) j (r + 1 j s) H NH (y j ) Y G Semi-unmixed G unmixed G V G V semiunmixed (H; X, Y )

5 2.4 (H; X, Y ) (1) H unmixed (2) H Z H Z semi-unmixed (3) X = Y H X semi-unmixed ([12] ) (H; X, Y ) (1) H unmixed (2) X = Y H X = {x 1,..., x r }, Y = {y 1,..., y r } (CM1) i (1 i r) {x i, y i } H (CM3) {x i, y j } {x j, y k } H {x i, y k } H 3 Regularity regularity G G regularity S/I(G) Castelnuovo Mumford regularity reg(g) = reg(s/i(g)) = max{i + j Hm(S/I(G)) i j {0}} = max {j i, Tor i S(K, S/I(G)) i+j 0} m = (X 1,..., X n ) Eisenbud [1] regularity M E(G) M G M = 1 M 2 e f e N G [f] = G G im(g) im(g) = max{ M M G } Katzman im(g) reg(g) [7] Kummini 3.1 ([8] ) H H unmixed reg(h) = im(h) Kummini semi-unmixed regularity X semi-unmixed

6 3.2 (H; X, Y ) H X semi-unmixed reg(h) = im(h) ( ) Unmixed X < Y X V (H) X =, X = Y X H V (H ) = (X X ) Y, E(H ) = E(H) {{x, y} x X, y Y } H = (H ; X X, Y ) H H reg(h) reg(h ) ([6] ) im(h) = im(h ) F(H ) = (F(H) \ X) {X X } H unmixed im(h) reg(h) reg(h ) = im(h ) = im(h) im(h) = reg(h) Z X semi-unmixed ( 3.4) regularity G G reg(g) = 1 ( [2, Theorem 3.4] ) G V (G) = V (G) E(G) = {{v, w} {v, w} / E(G), v w} G 5 im(g) = 1 reg(g) = 1 ( ) reg(g) > 1 G 4 C C 4 C 2 G im(g) > 1 C 5 C 5 G reg(g) = (H; X, Y ) Z H Z X H Z semi-unmixed reg(h) = im(h) ( ) H im(h) reg(h) X Y, iso(h) = r = X, s = Y 2.2 H r = s X = {x 1,..., x r }, Y = {y 1,..., y r } (CM1) (CM3) Z (CP) Z H (H ; X, Y ) E(H ) = E(H) {{x j, y k } i; {x i, y i } Z =, x j N H (y i ) Z, y k N H (x i ) Z} S V (H) S = K[v v V (H)]

7 I(H ) = I(H) + (x i y k {x i, y k } E(H ) \ E(H)) (CP) Z I(H ) (w w / Z) = I(H) I(H ) I(H) H unmixed H I(H ) + (w w / Z) = P Q S 0 S/I(H) S/I(H ) S/(w w / Z) S/P Q 0 regularity reg(h) max{reg(s/p Q) + 1, reg(s/i(h ))} P Q 3.2 reg(s/p Q) + 1 = reg(s/i(h )) = im(h ) reg(h) im(h ) H im(h ) im(h) reg(h) = im(h) H H semi-unmixed reg(h) = im(h) 4 Sequentially Cohen Macaulay Cohen Macaulay unmixed semi-unmixed sequentially Cohen Macaulay ( 4.8) ( 4.4 ) S = K[X 1,..., X n ] K K Sequentially Cohen Macaulay Stanley 4.1 ([9]) M Z- S- M sequentially Cohen Macaulay M M i {0} = M 0 M 1 M r = M (1) i (1 i r) M i /M i 1 Cohen Macaulay (2) dim(m 1 /M 0 ) < dim(m 2 /M 1 ) < < dim(m r /M r 1 ) G S/I(G) sequentially Cohen Macaulay G

8 sequentially Cohen Macaulay G G Cohen Macaulay S/I(G) Cohen Macaulay 4.2 (H; X, Y ) 1. H Cohen Macaulay 2. X = Y H semi-unmixed sequentially Cohen Macaulay ( ) 4.1 S/I(H) Cohen Macaulay S/I(H) {0} M 1 = S/I(H) sequentially Cohen Macaulay S/I(H) P dim S/P = dim S/I(H) X = Y H semi-unmixed (P) V (G) \ iso(g) = {v 1,..., v t } (P) (P 1 ),..., (P l ) G (P 1 ),..., (P l ) V (G)\iso(G) = {v 1,..., v t } (P 1 ),..., (P l ) (CM1) (CP) H = (H; X, Y ) X semi-unmixed (H; X, Y ) (CM1) (CM3) (CP) sequentially Cohen Macaulay Tuyl Villarreal ([10, Lemma 3.9] ) (H; X, Y ) X Y E(H) H sequentially Cohen Macaulay H 1 y Y 4.4 ([10, Corollary 3.11]) H H v w N H (v) = {w} H sequentially Cohen Macaulay H \ N H [v] H \ N H [w] sequentially Cohen Macaulay H = (H; X, Y ) r = X, s = Y H

9 4.5 (H; X, Y ) Z H H 1 y Y H (CM1) (CM3) Z X = {x 1,..., x r}, Y = {y 1,..., y s} (CM1) (CM3) y 1 = y ( ) X = {x 1,..., x r }, Y = {y 1,..., y s } (CM1) (CM3) Z y = y α α > r x β N H (y α ) β r y β y α deg H (y α ) = 1 (CM1) (CM3) Z α r φ {1,..., r} i (1 i r) x φ(i) = x i, y φ(i) = y i j (r + 1 j s) y j = y j X = {x 1,..., x r}, Y = {y 1,..., y s} (CM1) (CM3) Z φ φ(α) = 1 y = y α = y Z H H X = {x 1,..., x r }, Y = {y 1,..., y s } (CM1) (CM3) Z Z r i=1 {x i, y i } H sequentially Cohen Macaulay (H; X, Y ) (CM1) (CM2) (CM3) Z () i (1 i r) (CM2) i : {x i, y j } H i j H sequentially Cohen Macaulay y Y y = y α (CM3) Z Z r i=1 {x i, y i } α r α 4.5 deg H (y 1 ) = 1 (H; X, Y ) (CM1) (CM2) 1 (CM3) Z Z r i=1 {x i, y i } H 2 = H \ N H [y 1 ] (H 2 ; X \ {x 1 }, X \ {y 1 }) (CM1) (CM3) Z Z r i=2 {x i, y i } 4.4 H 2 sequentially Cohen Macaulay 4.5 deg H2 (y 2 ) = 1 (CM2) 1 (H; X, Y ) (CM1) (CM2) 1 (CM2) 2 (CM3) Z H 3 = H 2 \ N H [y 2 ] 4.7 (H; X, Y ) (CM1) (CM2) (CM3) H sequentially Cohen Macaulay () X = r r = 1 H sequentially

10 Cohen Macaulay r > 1 X = {x 1,..., x r }, Y = {y 1,..., y s } (CM1) (CM2) (CM3) H 1 = H \ N H [y 1 ], H 2 = H \ N H [x 1 ] N H [y 1 ] = {x 1, y 1 }, iso(h 1 ) {y r+1,..., y s } H H 1 (CM1) (CM2) (CM3) H 1 sequentially Cohen Macaulay H 2 (CM3) iso(h 2 ) = {x i y i N H (x 1 ), 2 i r} N H (x 1 ) iso(h 2 ) = {x i, y i y i N H (x 1 ), 2 i r} {y j y j N H (x 1 ), r < j} H 2 H H H 2 (CM1) (CM2) (CM3) H 2 sequentially Cohen Macaulay 4.4 H sequentially Cohen Macaulay (CM3) Z Z = X 4.7 Z X 4.8 Z X (CP) X Z : i (1 i r) H N H (y i ) Z (Y \Z) (CP) X Z semi-unmixed ( 2.2 ) 4.8 Z H Z < X H X = {x 1,..., x r }, Y = {y 1,..., y s } (CP) X Z Z r i=1 {x i, y i } (H; X, Y ) (CM1) (CM2) (CM3) Z H sequentially Cohen Macaulay (H; X, Y ) Z semi-unmixed (1) H sequentially Cohen Macaulay (2) (H; X, Y ) (CM1) (CM2) (CM3) Z ( ) (1) (2) : 4.6 (2) (1) : (H; X, Y ) (CM1) (CM2) (CM3) Z Z = X 4.7 H sequentially Cohen Macaulay Z X (CP) Z 2.2 (1) (2)

11 4.8 H sequentially Cohen Macaulay ([4, Corollary ] [3] ) (H; X, Y ) (1) H Cohen Macaulay (2) X = Y (H; X, Y ) (CM1) (CM2) (CM3) 5 Unmixed semi-unmixed unmixed unmixed 5.1 ([5]) c G = (G; V 0, V 1,..., V c ) (c+1) G G \ V 0 = (G; V 1,..., V c ) c (G; V 0, V 1,..., V c ) i (1 i c) G i := G V0 V i (G i ; V 0, V i ) 5.2 (G; V 0, V 1,..., V c ) G unmixed i (1 i c) G i semi-unmixed 5.1 G unmixed G G regulariy 5.3 ([5, Lemma 5.2] ) (G; V 0, V 1,..., V c ) (1) reg(g) = max{reg(g 1 ),..., reg(g c ), 1} (2) im(g) = max{im(g 1 ),..., im(g c ), 1} (3) i (1 i c) reg(g i ) = im(g i ) reg(g) = im(g) [5] semi-unmixed

12 5.4 ([5, Theorem 1.4] ) G unmixed reg(g) = im(g) ( ) G = (G; V 0, V 1,..., V c ) i (1 i c) G i := G V0 V i G i 5.1 i (1 i c) G i semi-unmixed 3.5 i (1 i c) reg(g i ) = im(g i ) 5.2 reg(g) = im(g) [1] W. Bruns and J. Herzog, Cohen Macaulay rings, revised edition, Cambridge studies in advanced mathematics 39, Cambridge University Press, [2] A. Dochtermann and A. Engström, Algebraic properties of edge ideals via combinatorial topology, Electron. J. Combin. 16(2) (2009), #R2. [3] J. Herzog and T. Hibi, Distributive lattices, bipartitegraphs and Alexander duality, J. Alg. Combin. 22 (2005), [4] J. Herzog and T. Hibi, Monomial ideals, Graduate Texts in Mathematics 260, Springer-Verlag London Limited, [5] H. Higashidaira, On the sequentially Cohen Macaulay properties of almost complete multipartite graphs, Commun. Algebra 45(6) (2017), [6] S. Jacques, Betti Numbers of Graph Ideals, Ph.D. thesis, The University of Sheffield, (2004). [7] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A 113 (2006), [8] M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Alg. Combin. 30 (2009), [9] R. P. Stanley, Combinatorics and Commutative Algebra, Second Edition., Progr.Math., vol.41, Birkhäuser Boston, Inc., [10] A. Van Tuyl and R. H. Villarreal, Shellable graphs and sequentially Cohen- Macaulay bipartite graphs, J. Combin. Theory Ser. A 115 (2008), [11] R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), [12] R. H. Villarreal, Unmixed bipartite graphs, Rev. Colombiana Mat. 41 (2007),

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [ SQUFOF SQUFOF NTT 2003 2 17 16 60 Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) 60 1 1.1 N 62 16 24 UBASIC 50 / 200 [ 01] 4 large prime 943 2 1 (%) 57 146 146 15

More information

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi +

2.3. p(n)x n = n=0 i= x = i x x 2 x 3 x..,?. p(n)x n = + x + 2 x x 3 + x + 7 x + x + n=0, n p(n) x n, ( ). p(n) (mother function)., x i = + xi + ( ) : ( ) n, n., = 2+2+,, = 2 + 2 + = 2 + + 2 = + 2 + 2,,,. ( composition.), λ = (2, 2, )... n (partition), λ = (λ, λ 2,..., λ r ), λ λ 2 λ r > 0, r λ i = n i=. r λ, l(λ)., r λ i = n i=, λ, λ., n P n,

More information

0. Grover Grover positive support Grover Ihara weighted Grover Ihara [19] P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 1980 Serre [

0. Grover Grover positive support Grover Ihara weighted Grover Ihara [19] P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 1980 Serre [ Grover Grover positive support Grover Ihara weighted Grover 1 1966 Ihara [19 P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 198 Serre [32 Ihara 1986 Sunada [36,37 Ihara Ihara Hashimoto [16 1989

More information

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 )

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 ) 1/14 * 1. Vassiliev Hopf P = k P k Kontsevich Bar-Natan P k (g,n) k=g 1+n, n>0, g 0 H 1 g ( S 1 H F(Com) ) ((g, n)) Sn. Com F Feynman ()S 1 H S n ()Kontsevich ( - - Lie ) 1 *2 () [LV12] Koszul 1.1 S F

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 計算代数幾何学入門 - グレブナー基底とその応用 - 工藤桃成 * * 九州大学大学院数理学府数理学専攻九大整数論セミナー 2017/6/8( 木 ) 6/5/2017 1 目次 : 1. Introduction 2. Gröbner bases 3. Applications 4. How do we study Computational Algebraic Geometry? 6/5/2017

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

1. 1 1840-1919 2 1642 3 3 4 5 6 (1875-1950) 7 1879 8 1881-1946 9 10 1904-1998 11 12 1 2005 pp.17-19 2 1890 1959 p.21 3 1642 3 1893 11 1932 489,pp.340-

1. 1 1840-1919 2 1642 3 3 4 5 6 (1875-1950) 7 1879 8 1881-1946 9 10 1904-1998 11 12 1 2005 pp.17-19 2 1890 1959 p.21 3 1642 3 1893 11 1932 489,pp.340- * 12 Shigeru JOCHI ** 1642?-1708 300 1775-1849 1782-1838 1847-1931 12 1690-12 * 2007 8 21 ** (Graduate School of Japanese Studies, National Kaohsiung First University of Science and Technology) 1 1. 1

More information

A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract.. 1. Koszul Rings, Koszul,., Koszul, [5, 7, 11, 13, 14]. Convention 1.1.,, 1., k ( ),. graded k-algebra A,,, (

A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract.. 1. Koszul Rings, Koszul,., Koszul, [5, 7, 11, 13, 14]. Convention 1.1.,, 1., k ( ),. graded k-algebra A,,, ( A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract. 1. Koszul Rings, Koszul,, Koszul, [5, 7, 11, 13, 14] Convention 1.1.,, 1, k ( ), graded k-algebra A,,, (1) A k-, A := iz A i ; (2) A i A j A i+ j for all i, j;

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box

., White-Box, White-Box. White-Box.,, White-Box., Maple [11], 2. 1, QE, QE, 1 Redlog [7], QEPCAD [9], SyNRAC [8] 3 QE., 2 Brown White-Box. 3 White-Box White-Box Takayuki Kunihiro Graduate School of Pure and Applied Sciences, University of Tsukuba Hidenao Iwane ( ) / Fujitsu Laboratories Ltd. / National Institute of Informatics. Yumi Wada Graduate School

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge Edwrd Wring Lgrnge n {(x i, y i )} n x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) () n j= x x j x i x j (2) Runge [] [2] = ξ 0 < ξ < ξ n = b [, b] [ξ i, ξ i ] y = /( + 25x 2 ) 5 2,, 0,,

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

各位                               平成17年5月13日

各位                               平成17年5月13日 9000 1 6 7 8 8 9000 1960 1 2 2 3 3 1471 4 1362 5 2006 6 7 8 1967 9 1988 1988 10 1000 1348 5000 3000 2 11 3 1999 12 13 14 9000 A 15 9000 9000 9000 10000 16 6000 7000 2000 3000 6800 7000 7000 9000 17 18

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000 Tomoyuki Shirai Istitute of Mathematics for Idustry, Kyushu Uiversity Erdös-Réyi Erdös-Réyi 959 Erdös-Réyi [] 6 Liial-Meshulam [] (cf. [, 7,, 8]) Kruskal-Katoa Erdös- Réyi ( ) Liial-Meshulam ( ) [8]. Kruskal

More information

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16 Lecture 11: PSRGs via Random Walks on Graphs October 22, 2013 Nii (NII) Lec. 11 October 22, 2013 1 / 16 expander graph [IZ89] Nii (NII) Lec. 11 October 22, 2013 2 / 16 Expander Graphs Expander Graph (

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

Emms et al Grover walk Grover( ) 2 Grover 3 Grover edge marix History , Ihara [22]: On discrete subgroups of the two by two projective

Emms et al Grover walk Grover( ) 2 Grover 3 Grover edge marix History , Ihara [22]: On discrete subgroups of the two by two projective Emms et al Grover walk Grover( ) 2 Grover 3 Grover edge marix 2 1 1.1 History 1. 1966, Ihara [22: On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

untitled

untitled g g/cm3 g / cm3 g g g g/cm3 cm2 kv

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd

43-03‘o’ì’¹‘®”q37†`51†i„¤‰ƒ…m†[…g†j.pwd n 808 3.0 % 86.8 % 8.3 % n 24 4.1 % 54.0 % 37.5 % 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 0% 37.4 % 7.2 % 27.2 % 8.4 % n 648 13.6 % 18.1% 45.4 % 4.1% n 18 0% % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

2016

2016 2016 1 G x x G d G (x) 1 ( ) G d G (x) = 2 E(G). x V (G) 2 ( ) 1.1 1: n m on-off ( 1 ) off on 1: on-off ( on ) G v v N(v) on-off G S V (G) N(v) S { 3 G v S v S G G = 1 OK ( ) G 2 3.1 u S u u u 1 G u S

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 + 2016 12 16 1 1 2 2 2.1 C s................. 2 2.2 C 3v................ 9 3 11 3.1.............. 11 3.2 32............... 12 3.3.............. 13 4 14 4.1........... 14 4.2................ 15 4.3................

More information