k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

Size: px
Start display at page:

Download "k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable"

Transcription

1 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid for Scientic Research (KAKENHI No ) and the Grantin-Aid for JSPS fellows.

2 k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable cone (=movable ) Movable 2 ( ) n 3 X P n+1 Lefschetz Pic (X) = ZO X (1) X

3 2.3. *1 X P 1 P 3 (2, 4) Lefschetz Pic (X) = ZO X (1, 0) ZO X (0, 1) X 3 Calabi- Yau f : X P 3 2 generically finite X X0 2 f 0 (Y 0,..., Y 3 ) + X 0 X 1 f 1 (Y 0,..., Y 3 ) + X1 2 f 2 (Y 0,..., Y 3 ) f 0, f 1, f 2 4 f fiber (Y 0 : : Y 3 ) P 3 f 0, f 1, f 2 fiber P 1 ( 4 3 = 64 ) f Stein fiber g : X Y K X g 64 P 1 flopping contraction g flop g : X Y f : X P 3 ι X 2 [Og, Theorem 3.3] ι O X (0, 1) = O X (0, 1), O X (1, 0) + ι O X (1, 0) = O X (0, 4) X = X g = g ι Mov (X) O X (1, 0) ι O X (1, 0) = O X ( 1, 4) Mov (X) Nef (X) = R 0 O X (1, 0) + R 0 O X (0, 1) Nef (X ) = ι Nef (X) = R 0 O X (0, 1) + R 0 O X ( 1, 4) Mov (X) ι O X (1, 0) = O X ( 1, 4) Nef(X ) Nef(X) O X (0, 1) = ι O X (0, 1) O X (1, 0) X 2.4. Q toric *1

4 Cox ( 2.13) = D D- D- D-nef D- [HK, Proposition 1.11] D ( [GOST] ( K X )- ) K X K3 Enriques 1. X 2. X nef cone 3. X Proof. 1 2 [AHL] X nef cone nef semi-ample Riemann-Roch log mmp log abundance K3 Enriques nef semi-ample (R ) ( [Og, Theorem 3.1 (3)] ) 3 2 Morrison ([Kaw, Theorem 2.1]) Calabi-Yau ( )

5 2.2 Cox VGIT 2.6. X X Weil Γ Wdiv (X) Γ R X (Γ) Γ k- R X (Γ) = H 0 (X, O X (D)). D Γ Weil D R(X, D) = m 0 H 0 (X, O X (md)) 2.7. X Q Cl (X) X Weil Γ Γ Q Cl (X) Q ( Q = Z Q) Γ R X (Γ) X Cox 2.8. Cl (X) torsion free Γ Cl (X) Cox Cl (X) Cox (log terminal,log canonical ) [GOST, Remark 2.17] 2.9. Example X Picard ZO X (1) O X (1) R(X, O X (1)) = k[x 0,..., X n+1 ]/(F (X 0,..., X n+1 )) X Cox (F X ) X toric [Co] X Cox X torus 1 1 Cox Γ Γ torus T = Hom gp (Γ, k ) s H 0 (X, O X (D)) R X (Γ) g T g s = g(d)s

6 T V = Spec R X (Γ) GIT( ) D Γ T ev D ev D (g) = g(d) k V ss (ev D ) V V ss (ev D ) T GIT V ss (ev D ) T (categorical quotient)v ss (ev D ) V ss (ev D )//T Proj (R(ev D )) R(ev D ) ev D semi-invariant R X (Γ) f ev D semi-invariant m g f = ev D (g) m f ( g T ) m R(ev D ) X 2.2 V = Spec k[x 0,..., X n+1 ]/(F (X 0,..., X n+1 )) = V (F ) A n+2 V \ V ss (ev A ) = {(0,..., 0)} V (A = O X (1)) V ss (ev A )//k = Proj (k[x 0,..., X n+1 ]/(F (X 0,..., X n+1 ))) = X D R(ev D ) GIT VGIT(variation of GIT quotients) R(ev D ) = R(X, D) Cox VGIT A 1 D V ss (ev A ) V ss (ev A ) V ss (ev D ) V ss (ev D ) /T /T //T V ss (ev A )/T V ss (ev A ) V ss (ev D )/T V ss (ev D )//T = ( ) X φ D Proj R(X, D) =

7 /T (geometric) 1 1 ( ) φ D Proj R(X, D) 2 D, E φ D φ E ([Ok, Proposition 6.8]) X D E X 1. V ss (ev D ) = V ss (ev E ) 2. φ D φ E B(D) = B(E) B(D) = m Bs md D stable base locus Pic (X) R 2 (=[HK, Proposition 2.9]) X Q Cl (X) X X Cox toric Cox Fano X Fano effective Q (X, ) klt (K X + ) 0 Fano nef cone nef semi-ample [BCHM] ([BCHM, Corollary 1.3.2]) Fano Cox Fano Cox R X (Γ) Γ [HK] (

8 ) Γ ([CL]) GKZ X Cox VGIT Γ Q Cl (X) Q Γ Q χ(t ) Q (χ(t ) T ) D ev D Cl (X) Q χ(t ) Q effective cone ( semi-invaraint ) cone effective cone 3.1. X effective cone 2.12 ( 2 ) [Ok, Proposition 6.8] toric Gelfand-Kapranov-Zelevinsky(GKZ) [OP] [Ok] Zariski Cox VGIT GIT [Hau] [Ok, Example 9.1] X Fan (X) 3.2 ([Ok, Theorem 1.1]) 3.2. X f : X Y (Y Q ) Y

9 Y Cox X Cox f f : Pic (Y ) R Pic (X) R X Y Y X ([Ok, Theorem 1.2]) Fan (Y ) = Fan (X) Pic (Y )R Fan (X) Pic (Y )R Fan (X) Pic (Y ) R ([Ok] ) 3.3 global Okounkov body [LM] (global) Okounkov body [LM] X n L big X Y = (Y 0 = X Y 1 Y n = {pt}) ( ) R n Y (X, L) L (Y )Okounkov body L Y (X, L) Euclid ( n! ) L Okoukov body L ( ) Seshadri [I] toric Okounkov body moment polytope Okounkov body global Okounkov body R n N 1 (X) R big L N 1 (X) fiber L Okounkov body ( Y ) (global) Okounkov body toric toric strata global Okounkov body [LM, Proposition 6.1

10 (ii)] toric 3.4. X global Okounkov body [LM, Problem 7.1] [Ok3] 3.5. X N 1 (X) R Zariski ( Fan (X) ) ([Ok3, Lemma 1.2]) 3.6. global Okounkov body Okounkov body Y (X, L) Y 1 Okounkov body ( ) ([Ok3, Lemma 4.1]) X 3.7 X (2 ) global Okounkov body ( [Ok3]) [S] X Cox ( affine V ) GIT V us (ev A ) = V \ V ss (ev A )(A ample ) V 3 X Picard 1 X toric 2 1 ([S]) toric

11 3 toric ample [Kaw][Og] Fano Cox toric Cox ([HK, Corollary 2.10]) toric Fano Fano - - ( ) [GOST] 3.8. X Fano X Cox log terminal [GOST] log terminal F ([HW, Theorem 3.9]) 3.8 ([GOST, Theorem 1.2]) 3.9. X Fano X F F F F ([GOST, Proposition 2.10]) F F (of globally F -regular type) [GOST, Definition 2.13] [SS] Fano F [SS, Theorem 1.2] 3.9 [Ok2] X F ( ) X F X [Ok2]

12 [ADHL] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface, Cox rings, arxiv: [AHL] M. Artebani, J. Hausen, and A. Laface, On Cox rings of K3 surfaces, Compos. Math. 146 (2010), no. 4. [BCHM] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2. [CL] A. Corti, V. Lazic, New outlook on Mori theory, II, arxiv: v2. [Co] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, [GIT] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer- Verlag, Berlin, [GOST] Y. Gongyo, S. Okawa, A. Sannai, and S. Takagi, Characterization of varieties of Fano type via singularities of Cox rings,. [HW] N. Hara and K.-i. Watanabe, F -regular and F -pure rings vs. log terminal and log canonical singularities, J. Algebraic. Geom. 11 (2002), no. 2, [Hau] J. Hausen, Cox rings and combinatorics II. Mosc. Math. J. 8 (2008), no. 4. [HK] Y. Hu and S. Keel, Mori Dream Spaces and GIT, Michigan Math. J. 48 (2000). [I] A. Ito, Okounkov bodies and Seshadri constants, preprint. [Kaw] Y. Kawamata, On the cone of divisors of Calabi-Yau fiber spaces, Internat. J. Math. 8 (1997). [LM] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5. [M] J. Mckernan, Mori dream spaces, Jpn. J. Math. 5 (2010), no. 1. [OP] T. Oda and H. Park, Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions, Tohoku Math. J. (2) 43 (1991), no. 3. [Og] K. Oguiso, Birational automorphism groups and the movable cone theorem for Calabi-Yau manifolds of Wehler type via universal Coxeter groups, arxiv: [Ok] S. Okawa, On Images of Mori Dream Spaces, arxiv: [Ok2] S. Okawa, Surfaces of globally F -regular type are of Fano type,.

13 [Ok3] S. Okawa, On global Okounkov bodies of Mori dream spaces, in the proceedings of the Miyako-no-Seihoku Algebraic Geometry Symposium (2010). Also available on [S] J. Shin-Yao, A Lefschetz hyperplane theorem for Mori dream spaces, Math. Z. 268 (2011), no [SS] K. Schwede and K. Smith, Globally F -regular and log Fano varieties, Adv. Math. 224 (2010), no. 3.

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 3 90 2006 1. V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 = xz y 2 = 0} V (x,y) n = 1 n = 2 (x,y) V n = 1 n = 2 (3/5,4/5),(5/13,12/13)... n 3 V (0,±1),(±1,0) ( ) n 3 x n + y n = z n,

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0)D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C Thomas [22] Bridgeland K3 2 Harder- Narasimhan 2.1 2.1.

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

References tll A. Hurwitz, IJber algebraischen Gebilde mit eindeutige Transformationen Ann. in sich, Math. L27 A. Kuribayashi-K. Komiya, On Weierstrass points of non-hyperelliptic compact Riemann surfaces

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0 2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0) = + a i 0 i=0 v T Λ R 0 = {x Λ R v T (x) 0} R Remark

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]).

3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S (CMC 1), 1 ( [AA]). 3 H 3 CMC 1 Bryant ([B, UY1]). 3 de Sitter CMC 1 (Shoichi Fujimori) Department of Mathematics, Kobe University 3 de Sitter S 3 1 1 (CMC 1), 1 ( [AA]) 3 H 3 CMC 1 Bryant ([B, UY1]) H 3 CMC 1, Bryant ([CHR, RUY1, RUY2, UY1, UY2, UY3,

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract.. 1. Koszul Rings, Koszul,., Koszul, [5, 7, 11, 13, 14]. Convention 1.1.,, 1., k ( ),. graded k-algebra A,,, (

A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract.. 1. Koszul Rings, Koszul,., Koszul, [5, 7, 11, 13, 14]. Convention 1.1.,, 1., k ( ),. graded k-algebra A,,, ( A RÉSUMÉ: KOSZUL RYOTA OKAZAKI Abstract. 1. Koszul Rings, Koszul,, Koszul, [5, 7, 11, 13, 14] Convention 1.1.,, 1, k ( ), graded k-algebra A,,, (1) A k-, A := iz A i ; (2) A i A j A i+ j for all i, j;

More information

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L) W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K 2 admits a Stein diagram h 0 h 1 h 2 h 2 is attached

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

FANO多様体の諸問題 (複素幾何学の諸問題)

FANO多様体の諸問題 (複素幾何学の諸問題) $\bullet$ $\bullet$ 1731 2011 106-126 106 FANO CONTENTS 1. 1 2. Fano 2 2.1. 2 2.2. MMP2 2.3. MMP 3 24. 4 2.5. Fano 4 3. 5 4. Fano - - 7 4.1. 7 42. 8 4.3. Novelli-Occhetta 10 4.4. Casagrande -BCHM - 12

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h Non-Kähler complex structures on R 4 ( ) 1. Antonio J. Di Scala (Politecnico di Torino), Daniele Zuddas (KIAS) [1] R 4 non-kähler complex surfaces Kähler 1. (M, J) complex manifold M complex structure

More information

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α

2018 : msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald Weyl Demazure. g, h Cartan., Q := i I Zα i h root lattice, Q + := i I Z 0α 2018 : 2018 21 msjmeeting-2018mar-02i003 : Demazure ( ) 1. Macdonald 1.1. Weyl Demazure. g, h Cartan, Q := i I Zα i h root lattice, Q + := i I Z 0α i Q, P := i I Zϖ i h g weight lattice ;, ϖ i h, i I,

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

- (1) ( incompressibility) S S i π 1 (S i ) π 1 (M) (2) ( bicollaredness) S ; h: S [ 1, 1] M; (x, t) h(x, t) i) h t=0 S M ii) h(s [ 1, 1]) M = h( S [

- (1) ( incompressibility) S S i π 1 (S i ) π 1 (M) (2) ( bicollaredness) S ; h: S [ 1, 1] M; (x, t) h(x, t) i) h t=0 S M ii) h(s [ 1, 1]) M = h( S [ 1 3 - (Takashi Hara) 2013 5 31 3 - () 2013 3 16 18 17 On Culler-Shalen theory for 3-manifolds and related topics topology () triangulation ( simplicial decomposition) cellular decomposition pants decomposition

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

ALG2005.dvi

ALG2005.dvi Auslander-Reiten k 0, G SL d (k). S k[[x 1,,x d ]], S G G. S G. CM S G maximal Cohen-Macaulay S G -, CMS G -. S G - mod S G CM S G, Krull-Schmidt. Auslander, 2 [A][Y1]. 0.1 d =2. (1) S G, CM S G -. (2)

More information

Contents Jenkins-Strebel Ke

Contents Jenkins-Strebel Ke Contents 1. 2 1.1. 2 1.2. 2 1.3. 4 1.4. 4 2. 4 2.1. 4 2.2. 5 2.3. 5 3. 6 3.1. 6 3.2. 7 3.3. 7 3.4. Jenkins-Strebel 7 3.5. 8 4. 9 4.1. 9 4.2. 9 4.3. Kerckhoff 11 5. 13 5.1. 13 5.2. 13 6. 14 6.1. Gardiner-Masur

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

main_02ko.dvi

main_02ko.dvi ............................................................................................ 3 I.......................................................... 5 I........................................................

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

(note-02) Rademacher 1/57

(note-02) Rademacher 1/57 (note-02) Rademacher 1/57 (x 1, y 1 ),..., (x n, y n ) X Y f : X Y Y = R f Y = {+1, 1}, {1, 2,..., G} f x y 1. (x 1, y 1 ),..., (x n, y n ) f(x i ) ( ) 2. x f(x) Y 2/57 (x, y) f(x) f(x) y (, loss) l(f(x),

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

main.dvi

main.dvi Nim naito@math.nagoya-u.ac.jp,.,.,,,.,,,,,,, Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:. August 10-11, 1999 2 1 Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $ 863 1994 132-142 132 Horocycle Rigidity (Ryuji Abe) 1 Introductjon Horosphere horocycle v horocycle horocycle flow $\circ$ M. Ratner [Rl horocycle flow N 2 Riemann $M_{c}$ $N_{c},$ $M_{c} $ Ratner $M$

More information

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb

C 1 -path x t x 1 (f(x u), dx u ) rough path analyi p-variation (1 < p < 2) rough path 2 Introduction f(x) = (fj i(x)) 1 i n,1 j d (x R d ) (n, d) Cb Rough path analyi 1 x t ( t 1) R d path f(x) = t (f 1 (x),, f d (x)) R d R d - C x t 1 (f(x u), dx u ) Stieltje path x t p-variation norm (1 < p < 2) x p := { up D } 1/p N x ti x ti 1 p (D = { = t <

More information

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ 80 80 80 3 3 5 8 10 12 14 14 17 22 24 27 33 35 35 37 38 41 43 46 47 50 50 52 54 56 56 59 62 65 67 71 74 74 76 80 83 83 84 87 91 91 92 95 96 98 98 101 104 107 107 109 110 111 111 113 115

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 )

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 ) 1/14 * 1. Vassiliev Hopf P = k P k Kontsevich Bar-Natan P k (g,n) k=g 1+n, n>0, g 0 H 1 g ( S 1 H F(Com) ) ((g, n)) Sn. Com F Feynman ()S 1 H S n ()Kontsevich ( - - Lie ) 1 *2 () [LV12] Koszul 1.1 S F

More information

2018 : msjmeeting-2018sep-07i003 ( ) Banach Banach Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B

2018 : msjmeeting-2018sep-07i003 ( ) Banach Banach Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B 2018 : msjmeeting-2018sep-07i003 () Banach Banach 1. 1.1. Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B 1 } a B e B Example 1. 1. Hausdorff K C(K) f = sup{

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

2 K = f (x) K[[x]] = r f (x) r D = D (0, r) a D f (x) a D Figure X d : X X R 0 d(x, z) max{d(x, y), d(y, z)} x, y, z X (X, d) clopen 1.1. (X,

2 K = f (x) K[[x]] = r f (x) r D = D (0, r) a D f (x) a D Figure X d : X X R 0 d(x, z) max{d(x, y), d(y, z)} x, y, z X (X, d) clopen 1.1. (X, 2008. 1. 1.1.. 4 affinoids analytic reduction Raynaud visualization Zariski-Riemann 1.2.. 1905 K. Hensel p- 1918 A. Ostrowski Q 1930 W. Schöbe 1940 M. Krasner 1 2 K = f (x) K[[x]] = r f (x) r D = D (0,

More information

0. Grover Grover positive support Grover Ihara weighted Grover Ihara [19] P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 1980 Serre [

0. Grover Grover positive support Grover Ihara weighted Grover Ihara [19] P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 1980 Serre [ Grover Grover positive support Grover Ihara weighted Grover 1 1966 Ihara [19 P GL(2, F ) (F : p- ) p- Selberg (Ihara-Selberg Ihara ) 198 Serre [32 Ihara 1986 Sunada [36,37 Ihara Ihara Hashimoto [16 1989

More information

中期経営計画

中期経営計画 (2008 4 2011 3 ) 2007 8 28 2 I. 06/3-08/3 1. 5 2. CV 6 3. CV 7 4. 8 5. 9 II. 09/3-11/3 1. 11 2. 12 3. 13 4. 14-18 5. 19-24 6. 25-32 . '06/3 '08/3 1. 2. CV 3. CV 4. 5. 1. '07/3 1 '08/3 1,000 '08/3 '06/3

More information

2 Lurie quasi category -category quasi category Yoneda s lemma Vague analogies between Higher Category Theory and Algebra Remark (BOOK, Remark

2 Lurie quasi category -category quasi category Yoneda s lemma Vague analogies between Higher Category Theory and Algebra Remark (BOOK, Remark Lurie s quasi category topos theory 1 ( ) 1. Introduction 2 Lurie 730 [BOOK] Jacob Lurie, Higher Topos Theory, September 26, 2008, http://www-math.mit.edu/ lurie/topoibook/ highertopoi.pdf Quillen quasi

More information

2016select追加小冊子_0704出稿0706修正.indd

2016select追加小冊子_0704出稿0706修正.indd -JPN3 -JPN3 -G1 -G1 -G3 -OP -OP -OP -G3 -G3 -G3 -G3 -G3 -L -L -G1 -JPN1 -OP -G3 -OP -JPN2 -G3 -JPN1 -G3 -G3 -L-L -L -L -G3 -L -L -G2 -L -G3 -G1 -G2 -G2 -G3 -L -G1 -G2 -G3 -G1 -G3 -L -L -L -G3 -G3 -L -G1

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

−g”U›ß™ö‡Æ…X…y…N…g…‰

−g”U›ß™ö‡Æ…X…y…N…g…‰ 1 / 74 ( ) 2019 3 8 URL: http://www.math.kyoto-u.ac.jp/ ichiro/ 2 / 74 Contents 1 Pearson 2 3 Doob h- 4 (I) 5 (II) 6 (III-1) - 7 (III-2-a) 8 (III-2-b) - 9 (III-3) Pearson 3 / 74 Pearson Definition 1 ρ

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

16, dim V V U, V U V (c) ϕ P V, p, q ϕ = p/q, q(p ) 0, ϕ P (regular), P ϕ ϕ dom ϕ, ϕ ϕ P ϕ ϕ(p ) = p(p )/q(p ), k (= A 1 ) ϕ(p ) = 0 P ϕ (zero) 1.3, P

16, dim V V U, V U V (c) ϕ P V, p, q ϕ = p/q, q(p ) 0, ϕ P (regular), P ϕ ϕ dom ϕ, ϕ ϕ P ϕ ϕ(p ) = p(p )/q(p ), k (= A 1 ) ϕ(p ) = 0 P ϕ (zero) 1.3, P 15, pp.15-60 Riemann-Roch 1 1.1 (a) k A n = A n (k) = {(x 1,, x n ) x 1,, x n k} (affine space) A 1, A 2 k[x] = k[x 1,, X n ] n k- X = (X 1,, X n ) A n f(x) k[x], x A n, f x f(x) k[x] I, V = V (I) = {x

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

* Department of Mathematics, Graduate School of Science, Osaka University Sep. 29 Contents

* Department of Mathematics, Graduate School of Science, Osaka University Sep. 29 Contents 1668 2009 7-24 7 - * Department of Mathematics, Graduate School of Science, Osaka University goto@mathsciosaka-uacjp 2009 Sep 29 Contents 1 2 3 4 5 1 $n$ $x$ $\omega$ $x$ $K_{X}$ $\Omega$ $n$ $n$ $(\Omega,\omega)$

More information

2001 11 14 19971219947 2 13 4 1 1 1 1 200 1000 1 1 00 2 3 30 100 3 5000 5 1 100 1 100 4 5 6 1 26,234 12,084 9,142 26,916 7 , 1 1 4 8 3 9 100 1895 3516870 100 10 11 W 14 15 New 16 W 11 14 21 1 W 63

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

MSRI(Einsenbud professor) Newton Institute Brazilian Topology meeting Surveys in Geometry,

MSRI(Einsenbud professor) Newton Institute Brazilian Topology meeting Surveys in Geometry, . 1964 2 23 / : 606-8502 tel/fax: 075-753-2662 kfujiwara@math.kyoto-u.ac.jp 2017 4 1986 3 : 1988 3 : 1993 3 :. Laplacian on graphs ( ) 1990 4-1996 3 : 1996 4-1998 3 : 1998 4-2007 3 : / 2007 4-2012 3 2012

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

2017 : msjmeeting-2017sep-02i004 Euler-Bernoulli (elastica) Elastica of Euler-Bernoulli and its generalization: from sprout of elliptic functions to r

2017 : msjmeeting-2017sep-02i004 Euler-Bernoulli (elastica) Elastica of Euler-Bernoulli and its generalization: from sprout of elliptic functions to r 017 : msjmeeting-017sep-0i004 Euler-Bernoulli (elastica) Elastica of Euler-Bernoulli and its generalization: from sprout of elliptic functions to reconstruction of Abelian function theory ( ) Elastica

More information

eng10june10.dvi

eng10june10.dvi The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1 2 1. Gaussian curvature K Figure 1. (Surfaces of K0 L p (r) =the length of the geod. circle of

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information