( ) ( ) (B) ( , )

Size: px
Start display at page:

Download "( ) ( ) (B) ( , )"

Transcription

1 () () (B) ( , )

2 .,..

3 Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus min, max ).,., NR := R r, MR := HomR(NR, R)..2. NR, ϕ: NR R ϕ = min(m + c,..., m s + c s ) m,..., m s MR c,..., c s R..3. V ( NR), ϕ,..., ϕ s : NR R V = {p NR : ϕ i p affine }.

4 ϕ dq dq ξ ϕ.: ϕ (.4),..4. r = NR = R. ξ : NR = R R, p R ξ(p) = p (). ϕ := min( ξ,, ξ). min,.., ϕ (), {, } R. ϕ := ξ. ϕ..5. r = 2. ξ, η : NR = R 2 R ξ : R 2 (a, b) a R η : R 2 (a, b) b R, ϕ := min(ξ, η, 0).,.4., ξ, η, ξ 0, η η 0 η, ξ ξ η 0, ξ ϕ.2: (.5 ), ϕ,.2. 2

5 . ξ, η, ϕ = min(2ξ +, ξ + η, 2η +, ξ, η, ).,.3., ϕ. η ϕ ξ 2ξ + η ξ ξ + η 2η +.3: (.5 ).6., ξ, η.5, ϕ := min(aξ, bη) (a, b 0)., ϕ,.4. η aξ ( b ) a bη ξ.4: ϕ (.6) 2. (() [], [3] ). () () (fan) (2) 3

6 (3) (4), 2. (). (C ) 2 (x + y + = 0) R 2 (x, y) ( log x, log y ), 2. (). C \ {0, } P C \ {0,, } ppppp pppppppppppppppppppppppppppppppppppp ppppppppppp p ppppppppp ppp 0 2.:,.2. 3 () K C((t)) C((t)) = n C((t/n )). (C )., Puiseux. v K : K R v K : K i Q a it i min{i : a i 0} R. v K (0) :=, v K K R := R { }. R 0 R x log x,, R. T := (K ) r (r ), v T : T R r. v T : T = ( K ) r v r K R r (x,..., x r ) (v K (x ),..., v K (x r )) 4

7 3.. V T., f,..., f s K[X ±,..., X ± r ] V = {(x,..., x r ) : f i (x,..., x r ) = 0, i}., V V trop. V trop := v T (V ) R r V trop,, V := {(x, y) (K ) 2 : x + y + = 0} (K ) 2, V trop? x + y + = 0, 0, (x, y) V, v K (x)(=: ξ), v K (y)(=: η), v K () = 0. V trop min(ξ, η, 0). V trop, = ().,.2, 3.. v K (y) v K (x) V trop 3.: I K[X ±,..., X r ± ]. V(I), : a m x m I \ {0} m M V(I) trop = (ξ,..., ξ r ) R r : m (), m (2) M (m () m (2) ) s.t. v K (a m (i)) + (ξ, m (i) ) v K (a m ) + (ξ, m) ( m M, i =, 2) ( =: V trop (I) ). M = Z r, ξ = (ξ,..., ξ r ) R r, m = (m,..., m r ) M (ξ, m) := i ξ im i. 5

8 3.2, monomial, 0 monomial,,., monomial a m x m v K (a m ) + (ξ, m). 3.2, V, V trop min( )., V (I),, V := V(tX 2 + XY + ty 2 + X + Y + t) (K ) r V trop =. (, monomial )., V = V(X 2 + Y 2 + ) V trop = X 2 Y 2., 3.2, V trop [5] R r affine. (R, R r affine ). R r+ /R(,..., ) r., R r (T v K R r ) R r affine. ()., P 2,trop.,, P 2,trop. T trop. M = Z r. T = ( K ) r = HomK alg (K[M], K) NR. = HomZ(M, K ) v T HomZ(M, R) = NR. 6

9 , A r K := K r = Hom (N r, K) v K Hom(N r, R)., N = {0,,...}, K., A r,trop := Hom (N r, R) = R r. ([4, Proposition.8]), A,trop, A 2,trop. A,trop = R ( = R 0 ) r A 2,trop = R 2, P,trop = A,trop A,trop r r r r P,trop = =,. P 2,trop = A 2,trop P 2,trop = A = B C A B C. P 2,trop. ()., P 3,trop. 3.7.,, N r. P r,trop, P r P v P r r,trop V V trop, V trop. 7

10 NR 3.2: x + y + = 0 P 2,trop 3.3: X a + Y b 3.8. P 2,trop NR, x + y + = 0, 3.2. X a + Y b, 3.3. NR 3.2 P 2,trop, boundary, 3.3, P 2,trop boundary. 4 Tropical Bezout Theorem on P 2,trop (d ).(e ) = = de (Bezout Theorem). tropical. 4. NR, node. 4. (Tropical Bezout Theorem [2, Corollary 4.4]). f d, g e. V trop (f) V trop (g) node,. V trop (f).v trop (g) = de 8

11 q node 4.:, node 4.2. [5], generic tropical curves. generic, f d, boundary. [5] tropical P 2 boundary, boundary., binomial curve X a + X b, X c + X d, 4.2, boundary. boundary c c 4.2: boundary., (), d e de., f g ( x, y, z ), x, y, z f, g. boundary.,. 4..,, ([2, Section 5]).,.,., 3.2 V = V(X + Y + ) 3.4 V = V(X 2 + Y 2 + ), Bezout. 9

12 4.3. x m, x m, m m = w (primitive vector) w X 2 + Y 2 +, X + Y +, X Y 2 X Y X 2 + Y 2 + X + Y + 4.3:, X 2 + Y 2 + X 2 ( ) ( ) ( ) ( ) = = , 2.,., 4.4. C e prim(e) D w t e w e e prim(e P ) 4.4: 4.4, C D P i(c.d; P ) i(c.d; P ) := w e w e M/(Z prim(e) + Z prim(e )) = w e w e det(prim(e), prim(e ))., M monomial. prim(e) = ( ) a b, prim(e ) = ( ) c d, i(c.d; P ) = w e w e ad bc. 0

13 C e tp e D 4.5:, boundary. boundary. P 2,trop (), 4.5. i(c.d; P ) = w e w e. P 2,trop ( 4.6),, 4.6 base (, ) ( ) ( ) a prim(e) =, prim(e c ) = b d, i(c.d; P ) = w e w e min(ad, bc). prim(e) = ( ) a b C tp prim(e ) = ( ) c d D 4.6: P 2,trop 4.5. C D C.D. C.D = P : i(c.d; P ), , P, (( ) ( )) det 0, 0 =.

14 , =. 4.7, boundary Q. primitive vector ( ), Q.,. t ( 0 ) ( ) P 0 4.7: tx + Y X + Y tq 4.7., 2 ( 4.8). 2 = 2. d d d 4.8: X 8 +X 4 +X 2 Y +XY 2 +Y 5 +Y 8 tx 2 +Y, 4.9, d. 4d ( ) ( 2 ) ( d 3 ) tx 2 + Y 3 X 8 + X 4 + X 2 Y + XY 2 + Y 5 + Y :. 2

15 4.9., 4.0 X a + Y b X c + Y d (a, b, c, d 0, a b, c b). 4.0 P, Q, R, P ( b a) Q ( d ( ( ) ) c) n P 0 R 4.0: X a + Y b X c + Y d ( det d c ) b a, Q min(bc, ad). R,, base ( ) ( ), 0. base, ( ) ( ) ( ) b = (a b) + a a 0, R min((a b)c, a(c d))., ( ) det d b + min(bc, ad) + min((a b)c, a(c d)) = ac c a, Tropical Bezout Theorem. [] T. Kajiwara, Tropical hypersurfaces and degeneration of projective toric varieties, 2005 [2] T. Kajiwara, Tropical toric varieties, preprint [3] G. Mikhalkin, Enumerative tropical algebraic geometry in R 2, math.ag/

16 [4] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge Band 5, Springer-Verlag, Berlin, 988 [5] J. Richter-Gebert, B. Sturmfels, and T. Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, , Contemp. Math., 377, Amer. Math. Soc., Providencs, RI, 2005 [6] D. Speyer and B. Sturmfels, Tropical mathematics, math.co/

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

<4D F736F F D2095BD90AC E937890B68A888F4B8AB E397C394EF82CC93AE8CFC82C98AD682B782E992B28DB895AA90CD2E646F6378>

<4D F736F F D2095BD90AC E937890B68A888F4B8AB E397C394EF82CC93AE8CFC82C98AD682B782E992B28DB895AA90CD2E646F6378> 28 3 IT 1,124 1,414 9,986 1,205 247 2 6,663 6,802 3 4,155 ICD-10 p.2 26 3 4,155 1,124 10 3,628 10.62% 10 31.29%30.75%15.62% 36.31% 29.88%20.94% 928 692 412 205 6,127 4,971 3,246 2,291 1,968 1,658 35.77

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n ) Talk/7Akita-cont.tex Dated: 7/Feb/ wikipedia Pafnuty Lvovich Chebyshev 8 6-89 8 6 Chebychev Chebyshov Tchebycheff Tschebyscheff https://ja.wikipedia.org/wiki/ wikipediaa) 96 cos π 7 cos π 7 cos π 7 = x

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

1 2 2 2 1 3 1.1............................................ 3 1.2......................................... 7 1.3.................................. 8 2 12 3 16 3.1.......................... 16 3.2.........................

More information

V. 7 1 ICD ICD F00 F99 2 ICD G40 3 1 1. 2. 3. 4. 2 1. 2. 3. 4. 3 1. 2. 3. 4 1. 2. 3. 4. 5 1. 2. 3. 4. 6 1. 2. 3. 4. 5. 6. 7 1. 2. 3. 4. 5. 8 1. 2. 3. 9 1. 2. 3. 4..... 10 1.... 2. 3. 4..... 5. 6. 7.

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 3 90 2006 1. V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 = xz y 2 = 0} V (x,y) n = 1 n = 2 (x,y) V n = 1 n = 2 (3/5,4/5),(5/13,12/13)... n 3 V (0,±1),(±1,0) ( ) n 3 x n + y n = z n,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

100 100 6 1 8 10 18 5 12 9 26 2 9 80 2500 7 1400 1 20 7 5 1 3 16 16 16 16 No No.010101 020301 No.020302 021301 TP+3.00 3.06 TP+3.06 3.14 Ho To Ho 1.35m 3.0m To 5.6s 6.8s Ho 2.49m 3.0m

More information

取扱説明書 [F-08D]

取扱説明書 [F-08D] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a bc d a b c d 17 a b cd e a b c d e 18 19 20 21 22 a c b d 23 24 a b c a b c d e f g a b j k l m n o p q r s t u v h i c d e w 25 d e f g h i j k l m n o p q r s

More information

8 8 0

8 8 0 ,07,,08, 8 8 0 7 8 7 8 0 0 km 7 80. 78. 00 0 8 70 8 0 8 0 8 7 8 0 0 7 0 0 7 8 0 00 0 0 7 8 7 0 0 8 0 8 7 7 7 0 j 8 80 j 7 8 8 0 0 0 8 8 8 7 0 7 7 0 8 7 7 8 7 7 80 77 7 0 0 0 7 7 0 0 0 7 0 7 8 0 8 8 7

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

取扱説明書 [F-12C]

取扱説明書 [F-12C] F-12C 11.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 a bc b c d d a 15 a b cd e a b c d e 16 17 18 de a b 19 c d 20 a b a b c a d e k l m e b c d f g h i j p q r c d e f g h i j n o s 21 k l m n o p q r s a X

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa

A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osa A bound of the number of reduced Arakelov divisors of a number field (joint work with Ryusuke Yoshimitsu) Takao Watanabe Department of Mathematics Osaka University , Schoof Algorithmic Number Theory, MSRI

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

untitled

untitled C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

損保ジャパンの現状2011

損保ジャパンの現状2011 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63 64 65 66 67 68 69

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

H27 28 4 1 11,353 45 14 10 120 27 90 26 78 323 401 27 11,120 D A BC 11,120 H27 33 H26 38 H27 35 40 126,154 129,125 130,000 150,000 5,961 11,996 6,000 15,000 688,684 708,924 700,000 750,000 1300 H28

More information

学習の手順

学習の手順 NAVI 2 MAP 3 m 17 13 19 12 17 24 1 20 18 23 18 12 1 12 17 11 14 16 19 22 m 12 16 A 16 20 B 20 24 24 28 C 20 AC 40 cm AD A 0.20 12 0.300 B 0.200 0.12 12 C D 40 1.000 20 2 2 0 20 30 cm 14 1 1 160 160 16

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

_TZ_4797-haus-local

_TZ_4797-haus-local 1.1.................................... 3.3.................................. 4.4......................... 8.5... 10.6.................... 1.7... 14 3 16 3.1 ()........................... 16 3. 7... 17

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

離散数学 第 4回 集合の記法 (1):外延的記法と内包的記法

離散数学 第 4回  集合の記法 (1):外延的記法と内包的記法 4 (1) okamotoy@uec.ac.jp 2014 5 13 2014 5 12 09:28 ( ) (4) 2014 5 13 1 / 35 () 1 (1) (4 8 ) 2 (2) (4 15 ) 3 (3) (4 22 ) () (4 29 ) () (5 6 ) 4 (1) (5 13 ) 5 (2) (5 20 ) 6 (4) (5 27 ) 7 (1) (6 3 ) (6 10

More information

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000

Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University 1 Erdös-Rényi Erdös-Rényi 1959 Erdös-Rényi [4] 2006 Linial-Meshulam [14] 2000 Tomoyuki Shirai Istitute of Mathematics for Idustry, Kyushu Uiversity Erdös-Réyi Erdös-Réyi 959 Erdös-Réyi [] 6 Liial-Meshulam [] (cf. [, 7,, 8]) Kruskal-Katoa Erdös- Réyi ( ) Liial-Meshulam ( ) [8]. Kruskal

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0

2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0 2017 : msjmeeting-2017sep-00f003 ( ) 1. 1 = A 1.1. / R T { } Λ R = a i T λ i a i R, λ i R, lim λ i = + i i=0 R Λ R v T ( a i T λ i ) = inf λ i, v T (0) = + a i 0 i=0 v T Λ R 0 = {x Λ R v T (x) 0} R Remark

More information

1 z q w e r t y x c q w 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 R R 32 33 34 35 36 MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR

More information

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 )

2/14 2 () (O O) O O (O O) id γ γ id O O γ O O O γ η id id η I O O O O I γ O. O(n) n *5 γ η γ S M, N M N (M N)(n) ( ) M(k) Sk Ind S n S i1 S ik N(i 1 ) 1/14 * 1. Vassiliev Hopf P = k P k Kontsevich Bar-Natan P k (g,n) k=g 1+n, n>0, g 0 H 1 g ( S 1 H F(Com) ) ((g, n)) Sn. Com F Feynman ()S 1 H S n ()Kontsevich ( - - Lie ) 1 *2 () [LV12] Koszul 1.1 S F

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

eng10june10.dvi

eng10june10.dvi The Gauss-Bonnet type formulas for surfaces with singular points Masaaki Umehara Osaka University 1 2 1. Gaussian curvature K Figure 1. (Surfaces of K0 L p (r) =the length of the geod. circle of

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Jacobi, Stieltjes, Gauss : :

Jacobi, Stieltjes, Gauss : : Jacobi, Stieltjes, Gauss : : 28 2 0 894 T. J. Stieltjes [St94a] Recherches sur les fractions continues Stieltjes 0 f(u)du, z + u f(u) > 0, z C z + + a a 2 z + a 3 +..., a p > 0 (a) Vitali (a) Stieltjes

More information

1 48

1 48 Section 2 1 48 Section 2 49 50 1 51 Section 2 1 52 Section 2 1 53 1 2 54 Section 2 3 55 1 4 56 Section 2 5 57 58 2 59 Section 2 60 2 61 Section 2 62 2 63 Section 2 3 64 Section 2 6.72 9.01 5.14 7.41 5.93

More information