ARMA ARFIMA (fractional ARIMA) ARIMA ARFIMA Ding et al. (1993) 2 2 (realized volatility) (2007) Beran (1994), Robinson (2003), Doukhan e

Size: px
Start display at page:

Download "ARMA ARFIMA (fractional ARIMA) ARIMA ARFIMA Ding et al. (1993) 2 2 (realized volatility) (2007) Beran (1994), Robinson (2003), Doukhan e"

Transcription

1 40, 2, Tests on Long Memory Time Series Haruhisa Nishino This paper surveys and explains testing problems on long memory time series. The first testing is a test where a null hypothesis is that a time series is short-memory stationary and alternatives is that it is long-memory. The paper explains a change point test and a two sample test for comparison of long memory parameters. It compares the performance of these tests with computer simulations and applies the tests to the realized volatility data of the Nikkei index. : 1. Box=Jenkins ARIMA (long-memory) ARIMA Granger and Joyeux (1980) Hosking (1981) (fractional difference) nishino@le.chiba-u.ac.jp.

2 ARMA ARFIMA (fractional ARIMA) ARIMA ARFIMA Ding et al. (1993) 2 2 (realized volatility) (2007) Beran (1994), Robinson (2003), Doukhan et al. (2003), Teyssiere and Kirman (2007), Palma (2007) (2003). ARFIMA(p, d, q) fractional Brownian motion 3 3 R/S KPSS V/S Lobato-Robinson (long-memory) (fractional difference) {y t ; t = 1, 2,..., } γ(k)

3 149 γ(k) = Cov(y t, y t+k ), k = 0, 1, 2,.... f(λ) γ(k) = π π e ikλ f(λ)dλ. ρ(k) = γ(k), k = 0, 1, 2,... γ(0) f(λ) Cλ 2d, as λ +0. (2.1) C (long memory time series) k C γ(k) Ck 2d 1, where 0 < d < 1/2, (2.2) hyperbolic (short-memory) γ(k) <, (2.3) k= 2.1 B By t = y t 1 1 B Box=Jenkins Granger and Joyeux (1980) Hosking (1981) (fractional difference) 1 B d d (1 B) d y t = ε t, 1/2 < d < 1/2, (2.4)

4 {ε t } W N(0, σ 2 ) (1 B) d = j=0 Γ(j + d) Γ(j + 1)Γ(d) Bj. (2.5) Γ(x) Γ(x) = 0 z x 1 e z dz, x Γ(x) = (x 1)! Hosking (1981) (2.4) d < 1/2 {y t } MA y t = j=0 1/2 < d {y t } Γ(j + d) Γ(j + 1)Γ(d) ε t j. (2.6) ARMA(p, q) φ(b)(1 B) d (y t µ) = θ(b)ε t, (2.7) ARFIMA(p, d, q) 0 < d < 1/2 (2.7) f(λ) = σ2 θ(e iλ ) 2π φ(e iλ ) 1 eiλ 2d = σ2 θ(e iλ ) 2π φ(e iλ ) 2 sin(λ 2 ) 2d Cλ 2d, as λ +0, (2.8) (2.1) 0 < d < 1/2, lim λ 0 f(λ) = 1/2 < d < 0 lim λ 0 f(λ) = d d Dickey and Fuller (1979) AR AR(1) (1 φb)y t = ε t, t = 1, 2,..., (2.9) φ = 1 φ < 1 (1 B) d y t = ε t, t = 1, 2,..., (2.10)

5 151 (2.9) φ = 1 (2.10) d = 1 Hosking (1981) d < 1/2 (2.10) d 1/2 1/2 d < 1 I(d) {y t } d = d 1 1/2 d < 0 I(d ) {z t } {ε t } (1 B) d z t = ε t I(d) {y t } y t = t j=1 z t, (t = 1, 2,...) {z t } I(1) {y t } {ε t } y t = t j=1 ε t, (t = 1, 2,...) (2.10) I(d) d (i) d = 0, (short-memory process) (ii) 0 < d < 1/2, (stationary long-memory process). (iii) 1/2 d < 1, (nonstationary fractionally integrated process) (iv) d = 1,, nonstationary process I(1) I(0) (2.9) {ε t } 0 < d < 1/2 I(d) Sowell (1990) fractional Brownian motion Sowell (1990) fractional Brownian motion(fbm) 2.3 Marinucci and Robinson (1999) Type I fbm (Marinucci and Robinson (1999 p. 120) ) Marinucci and Robinson (1999) fractional Brownian motion Type II Kwiatkowski et al. (1992) Saikkonen and Luukkonen (1993) I(0) I(1). Kwiatkowski et al. (1992) KPSS d 1/2 d tapering d Hurvich and Ray (1995), Velasco (1999a, b), Velasco and Robinson (2000) Shimotsu and Phillips (2005), Abadir

6 et al. (2007), Shao (2010) tapering local Whittle Whittle 2.3 fractinal Brownian motion fractinal Brownian motion {B(t); 0 t 1} Brownian motion B(t) = B(t) tb(1) { B(t); 0 t 1} Brownian bridge fractional Brownian motion {B d (t); 0 t 1} Brownian motion Marinucci and Robinson (1999) Type I fractional Brownian motion B d (t) = 1 [ t 0 ] (t s) d db(s) + (t s) d ( s) d db(s), A(d) 0 [ 1 where A(d) = 2d { (1 + r) d r d} 2 dr ] 1/2, B d (t) = B d (t) tb d (1) { B d (t); 0 t 1} fractional Brownian bridge fractional Brownian motion 3 (i) k= γ(k) <, (ii) BM (functional central limit theorem) [nt] 1 (y t E(y t )) σ L B(t), as n. n j=1 σl 2 = k= γ(k) = 2πf(0). (iii) 4 sup h r,s= κ(h, r, s) <, 4 κ(h, r, s) = E(y k y k+h y k+r y k+s ) {γ(h)γ(r s) + γ(r)γ(h s) + γ(s)γ(h r)}

7 153 3 (i) γ(k) ck 1 2d as k, c (ii) fractional BM (functional central limit theorem) [nt] n 1/2 d j=1 (y t E(y t )) c d B d (t), as n. c 2 d = c/{d(2d + 1)}. (iii) n κ(h, r, s) = O(n 2d ), r,s= n 3.. {y t } (1 B) d y t = u t, t = 1, 2,..., n (3.1) {u t } d = 0 I(0) I(d)(0 < d < 1/2) u t ARMA LM Breitung-Hassler u t R/S KPSS V/S 3 Lobato-Robinson 3.1 ARFIMA(p, d, q) d Robinson (1994) Tanaka (1999) d LM Tanaka (1999) Breitung and Hassler (2002) Tanaka (1999) Harris et al. (2008) Tanaka (1999) Tanaka (1999) LM Breitung and Hassler (2002)

8 Tanaka (1999) LM Tanaka (1999) LM d = 0 d > 0 Tanaka (1999) S T = n n 1 j=1 ˆρ j/j ˆω (3.2) ˆρ j {y t } j ˆω 2 Tanaka (1999) (50) ω 2 ARMA(p, q) u t u t = ε t ω 2 = π 2 /6 u t u t = φu t 1 + ε t 1 AR(1) ω 2 = π2 6 (1 φ2 ) φ 2 (log (1 φ)) 2 (3.3) (3.3) d = 0 AR(1) ˆφ ˆω 2 LM ARFIMA(p, d, q) d = 0 ARMA(p, q) d = 0 S T d > 0 S T Breitung and Hassler (2002) Breitung and Hassler (2002) Tanaka (1999) LM (1 B) d y t = ε t {ε t } d d = 0 d > 0 t 1 yt 1 = y t j /j, (3.4) j=1 y t = ρy t 1 + e t (3.5) ρ = 0 t ρ t ˆτ n = n t=2 y ty t 1 ˆσ 2 e n t=2 y2 t 1 (3.6) ˆσ e 2 (3.5) ˆτ n

9 155 AR(1) (1 φb)(1 B) d y t = ε t d AR(1) ˆφ, AR(1) ˆx t = y t ˆφy t 1 (3.4) t 1 x t 1 = ˆx t j /j, (3.7) j=1 ˆx t = ρx t 1 + ψy t 1 + e t (3.8) ρ t AR(p) Breitung and Hassler (2002) MA 3.2 R/S KPSS V/S 3 {u t } (long-run variance) R/S {y t } rescaled range (R/S) Lo (1991) R/S R/S Q n (q) = 1 k max (y j ȳ) min ŝ n,q 1 k n 1 k n ŝ 2 n,q = 1 n j=1 n (y t ȳ) t=1 k (y j ȳ), (3.9) j=1 q ω j (q)ˆγ(j), (3.10) {ω j } Bartlett ω j = 1 j/(q + 1) ˆγ(j) j=1 ˆγ(j) = 1 n j (y t ȳ)(y t+j ȳ), (3.11) n t=1 ŝ 2 n,q 2πf(0) = k= γ(k) (long-run variance) (2.1) ŝ 2 n,q Lo (1991) q Andrews (1991) q = [k n ], k n = ( ) ( 1/3 3n 2 ˆφ ) 2/3 2 1 ˆφ (3.12) 2

10 q k n ˆφ 1 q KPSS n Q n U MRS = max B(t) min B(t), (3.13) 0 t 1 0 t 1 { B(t); 0 t 1} Brownian bridge B(t) = B(t) tb(1) Brownian motion B(t) U MRS (3.13) U MRS Lo (1991) (3.9) F MRS (x) = (1 4k 2 x 2 )e 2k2 x 2, (3.14) k=1 U MRS Lo (1991, II) ( q n ) d 1 n Q n sup B d (t) inf B d (t), 0 t 1 0 t 1 { B d (t)} B d (t) = B d (t) tb d (1) fractional Brownian bridge KPSS Kwiatkowski et al. (1992) KPSS Saikkonen and Luukkonen (1993) I(0) I(1). Lee and Schmidt (1996) Lee and Amsler (1997) d = 0 (d = 1) (0 < d < 1/2) (1/2 d < 1) Lee and Schmidt (1996) Lee and Amsler (1997) ξ = 0 KPSS T n = 1 ŝ 2 n,qn 2 ( n k 2 (y t ȳ)), (3.15) k=1 t=1 T n U KP SS = 1 0 B(t) 2 dt, (3.16)

11 157 { B(t); 0 t 1} Brownian bridge Anderson and Darling (1952) (4.35) U KP SS Anderson and Darling (1952, Table 1) Anderson and Darling (1952) U KP SS U KP SS = k=1 Y 2 k π 2 k 2 N(0, 1) {Y k } U KP SS φ KP SS (θ) = ( sin ) 1/2 2iθ 2iθ (3.17) Tanaka (1996, Figure 1.2) (3.17) Tanaka (1996, Table 1.2) U KP SS Giraitis et al. (2003) ( q n ) 2d Tn 1 0 B d (t) 2 dt, { B d (t)} fractional Brownian bridge KPSS (long-run variance) Hobijn et al. (2004) KPSS Bartlett Quadratic Spectral 2 Bartlett ω j = 1 j/(q + 1) (3.10) Quadratic Spectral ω j = [ ] 25 sin (6π(j/m)/5) 12π 2 (j/q) 2 cos (6π(j/m)/5) 6π(j/m)/5 (3.10) 2 Andrews (1991) Newey and West (1994) q Quadratic Spectral 2 Hobijn et al. (2004, Table 3) q V/S Giraitis et al. (2003) KPSS V/S rescaled variance

12 M n (q) = 1 ŝ 2 n,qn 2 ( n k ) 2 ( (y t ȳ) 1 n n k=1 t=1 k=1 t=1 ) 2 k (y t ȳ), (3.18) S k = k t=1 (y t ȳ) M n S k ŝ2 n,q n M n = 1 n 1 n n j=1 (S j S ) 2 ŝ 2, n,q M n U V S = 1 0 ( 1 B(t) 2 dt 0 B(t)dt) 2, (3.19) { B(t); 0 t 1} Brownian bridge Watson (1961) (22) U V S F V S (x) = 1 + 2( 1) k e 2k2 π 2x, (3.20) k=1 U V S Kolmogorov- Smirnov F KS (x) F V S (x) = F KS (π x) Kolmogorov-Smirnov Smirnov (1948) U V S U V S Watson (1961) (16) U V S = k=1 Y 2 k + Z2 k 4π 2 k 2 N(0, 1) ({Y k }, {Z k }) Watson (1961) U V S φ V S (θ) = ( sin ) 1/2 iθ/2 iθ/2 (3.21) Giraitis et al. (2003) ( q n ) 2d Mn 1 0 ( 1 B d (t) 2 dt 0 B d (t)dt) 2,

13 Lobato-Robinson Lobato and Robinson (1998) d = 0 I(0) I(d) d Robinson (1995) Whittle Shao and Wu (2007) R/S KPSS V/S 3 Whittle Whittle d n 1 < m < n/2 m λ j = 2πj/n, j = 1,..., m, R(d) = log 1 m m I(λ) = 1 n 2 y 2πn t e itλ, (3.22) j=1 λ 2d t=1 j I(λ j ) 2d m m log(λ j ), (3.23) R(d) d Whittle Whittle R(d) R(d) d = 0 LM LM LM = t 2 m ν j = log j m 1 m j=1 log j, Ĉ0 = m 1 m j=1 I(λ j), Ĉ1 = m 1 m j=1 ν ji(λ j ) Shao and Wu (2007) (8) j=1 1/2 Ĉ1 t m = m, (3.24) Ĉ t 2 m χ2 1 t m n Whittle ˆd loc d = 0 ˆd loc = t m /2 d > 0 100α% t m α d = 0 d > 0 t m m 1 m + m5 (log m) 2 n 4 0, as n,

14 m Lobato and Robinson (1998) m = 0.06n 4/5 m = 1.2n 4/5 ( ) 4/5 3n m opt = ˆφ 4π (1 ˆφ) 2 ˆφ {y t } AR(1) y t 1 1 m m opt Lobato and Savin (1998) 2/5 3.4 Tanaka (1999) LM Breitung-Hassler, R/S KPSS V/S Lobato-Robinson 6 ARFIMA(0, d, 0) ARFIMA(1, d, 0)(φ = 0.2, 0.5, 0.8), ARFIMA(0, d, 1)(θ = 0.8) 5, d = 0 d = 0.1, 0.2, 0.3 n = 500, %, 1% 1000 Tanaka (1999) LM LM Breitung and Hassler (2002) BH R/S (mr/s) KPSS V/S q KPSS V/S Bartlett Quadratic Spectral q Hobijn et al. (2004, 3) Bartlett n 0 = [8(n/100) 1/4 ] Quadratic Spectral n 0 = [8(n/100) 2/25 ] BT, QS R/S KPSS V/S Bartlett Quadratic Spectral (3.12) Lo (1991) Bartlett Lo Lobato and Robinson (1998) L-R Lobato-Robinson m opt Ox (Doornik (2008)) 1 ARFIMA(0, d, 0) ARFIMA(0, d, 0) R/S LM Breitung-Hassler (BH) Lobato-Robinson 3 R/S KPSS V/S R/S KPSS V/S 3 Lo (1991) q R/S

15 161 1 ARFIMA(0, d, 0) LM BH mr/s KPSS V/S L-R n 5%test n = 500 n = %test n = 500 n = 1000 q Lo BT QS BT QS BT QS m opt d V/S KPSS (Lobato-Robinson ) ARFIMA(1, d, 0) AR ARFIMA(0, d, 1) MA AR φ = 0.2, 0.5, 0.8 MA θ = 0.5 q m opt ARFIMA(0, d, 0) AR AR 3 φ = 0.2, 0.5, φ = 0.2 ARFIMA(0, d, 0) LM Lobato-Robinson Breitung-Hassler (BH) 3 φ = 0.5 KPSS V/S 4 φ = 0.8

16 ARFIMA(1, d, 0)(φ = 0.2) LM BH mr/s KPSS V/S L-R n 5%test n = 500 n = %test n = 500 n = 1000 q Lo BT QS BT QS BT QS m opt d LM AR Lobato-Robinson LM 1 R/S 5 MA(1)(θ = 0.8) Breitung-Hassler 5 LM LM MA(1) Lobato-Robinson

17 163 3 ARFIMA(1, d, 0)(φ = 0.5) LM BH mr/s KPSS V/S L-R n 5%test n = 500 n = %test n = 500 n = 1000 q Lo BT QS BT QS BT QS m opt d LM AR MA Breitung-Hassler 1 Lobato-Robinson MA(1) φ φ = 0.2 LM φ φ q Bartlett Quadratic Spectral (long-run variance) KPSS V/S Bartlett Quadratic Spectral KPSS V/S

18 ARFIMA(1, d, 0)(φ = 0.8) LM BH mr/s KPSS V/S L-R n 5%test n = 500 n = %test n = 500 n = 1000 q Lo BT QS BT QS BT QS m opt d (realized volatility) (2007) 5, RV t

19 165 5 ARFIMA(0, d, 1)(θ = 0.5) LM mr/s KPSS V/S L-R n 5%test n = 500 n = %test n = 500 n = 1000 q Lo BT QS BT QS BT QS m opt d RV t = c c = n ri,t, 2 (3.25) i=1 T t=1 (R t R) 2 T n t=1 i=1 r2 i,t (3.26) R t R r i,t t 5 c (3.26) c (, Hansen and Lunde (2005), (2007) ). 1 1 (2007) (2007)

20 RV log(rv) ACF of log(rv) log(rv) of Nikkei225, 3 July June c = RV t log RV t log RV t 1 log RV t log RV t log RV t 6 log RV t Ljung-Box Ljung-Box 10 LB(10) = log RV t LM Breitung-Hassler, R/S KPSS V/S Lobato-Robinson 6 ARFIMA LM Breitung-Hassler AR(1) ARFIMA(1, d, 0) 7 5% 1% Breitung-Hassler, R/S 2 1% log RV t Breitung-Hassler R/S

21 167 6 (n = 487) LB(10) (n = 487) LM BH mr/s KPSS V/S L-R q Lo BT QS BT QS BT QS m opt % % Beran and Terrin (1996) Horvath and Shao (1999), Horvath (2001) Whittle Ling (2007) CSS (conditional sum of squares) Horvath (2001) Wald Yamaguchi (2010) Ling (2007) CSS Bai (1997) {y t, t = 1, 2,..., n} k = [nt](0 < t < 1) Horvath and Shao (1999), Horvath (2001) Whittle (σ 2, τ) S T (0, ) R r ARFIMA(p, d, q) r = p + q + 1 ARFIMA(1, d, 1)

22 τ = (d, φ, θ) Whittle (3.22) I(ω) f(ω τ) Q = 1 n 1 I(ω j ) 2n f(ω j=1 j τ) (4.1) τ ˆτ n(ˆτ τ) N (0, 4πW(τ) 1 ) W(τ) r r (i, j) w ij (τ) w ij (τ) = π π 2 1 f(ω τ) τ i τ j f(ω τ) dτ k = [nt](0 < t < 1) L 1 = 1 [nt] I(ω j ) 2n f(ω j=1 j τ) (4.2) ˆτ [nt],1 L 2 = 1 2n n 1 j=[nt]+1 I(ω j ) f(ω j τ) (4.3) ˆτ [nt],2 Ẑ n (t) = 1 { 1/2 n 1/2 t(1 t) (ˆτ [nt],1 ˆτ [nt],2 ) Ŵ(nt)(ˆτ [nt],1 ˆτ [nt],2 )} (4.4) 4π Ŵ(nt) k = [nt] Ŵ(k) = k n W(ˆτ k,1) + n k n W(ˆτ k,2) Ẑ n (t) M(t) (4.5) M(t) M(t) = ( B 1 j r (j) 2 (t))1/2 ( B (1) (t), B (2) (t),..., B (r) (t)) r Brownian bridge d M(t) = B(t) Brownian bridge B(t) = B(t) tb(1) E ε t 4+ρ, (ρ > 0) 4 Brownian bridge B(t) N (0, t(1 t))

23 169 Ling (2007) CSS 0 ARFIMA(p, d, q) (2.7) ε t = θ(b) 1 φ(b)(1 B) d y t y t 0 y t = 0 (t 0) ˆɛ t ˆɛ t = θ(b) 1 φ(b)(1 B) d y t, (4.6) y t = 0 (t 0) Conditional Sum of Squares L 1 = 1 2 k ˆɛ 2 t, L2 = 1 2 t=1 n t=k+1 ˆɛ 2 t, (4.7) τ 1 τ 2 ˆɛ 2 t/2 1 2 D t (τ) = τ ( 1 ) ( 2 ˆɛ2 t, P t (τ) = 2 τ 2 1 ) 2 ˆɛ2 t, τ 1 τ 2 ˆD t ( τ 1 ), ˆD t ( τ 2 ), ˆPt ( τ 1 ), ˆPt ( τ 2 ) ˆΣ n (k) = ˆΩ n (k) = k ˆP t ( τ 1 ) + t=1 n t=k+1 k ˆD t ( τ 1 ) ˆD t( τ 1 ) + t=1 ˆP t ( τ 2 ) n t=k+1 ˆD t ( τ 2 ) ˆD t( τ 2 ) Wald τ 1 τ 2 ˆΣ n (k) ˆΩ n (k) k(n k) W n (k) = n 2 ( τ 1 τ 2 ) [ˆΣn ] (k)ˆω n (k) 1 ˆΣn (k) ( τ 1 τ 2 ) (4.8) Ling (2007) (r < k < n r) r sup Ŵ n (r) = max W n(k) b n (r) r<k<n r a n (r) (4.9) a n (r) = b n (r)/(2 log log n), b n (r) = [2 log log n + (r log log log n)/ 2 log Γ(r/2)] 2 /(2 log log n) Γ( ) Ling (2007, Theorem 2.1) {ε t } near epoch dependence (NED) Darling-Erdös P [Ŵn(r) < x] exp ( 2e x/2 ) as n. (4.10)

24 Horvath and Shao (1999) Whittle ˆτ 1 ˆτ 2 Ẑn(t) max 1 k<n Ẑn(k/n) (4.10) sup 4.2 Lavancier et al. (2010) Giraitis et al. (2003) rescaled variance (V/S ) V/S ( n k ) 2 ( V = (y t ȳ) 1 n 2 k (y t ȳ)) (4.11) n k=1 t=1 k=1 t=1 ŝ 2 1q V/S M n (3.18) M n = V/ŝ 2 q V 1 /ŝ 2 1,q 2 V 2/ŝ 2 2,q T n T n = V 1/ŝ 2 1,q V 2 /ŝ 2 2,q + V 2/ŝ 2 2,q V 1 /ŝ 2, (4.12) 1,q Lavancier et al. (2010, Proposition 2.6) d 1 = d 2 = d U 1 U 2 U i = 1 0 T n T = U 1 U 2 + U 1 U 2, (4.13) ( 1 B i (t) 2 dt 0 B i (t)dt) 2, i = 1, 2, fractional Brownian bridge B i (t) fractional Brownian bridge 2 fractional Brownian motion (B d1 (t), B d2 (t)) 2 B d1 (t) B d2 (t) 0 d 1 d 2 T n p, (4.14) 2 1{y 1t } 2{y 2t } (long-run covariance) ŝ 2 12,q ỹ 1t = y 1t ŝ2 12,q ŝ 2 y 2t (4.15) 2,q

25 171 ỹ 1t (4.11) Ṽ1 Ṽ1 s 2 1,q = ŝ 2 1,q ŝ 2 12,q/ŝ 2 2,q Ṽ1, s 2 1,q, V 2, ŝ 2 2,q T n Ṽ 1 / s T 2 1,q n = V 2 /ŝ 2 2,q + V 2/ŝ 2 2,q, (4.16) Ṽ 1 / s 2 1,q Lavancier et al. (2010, Proposition 2.7) d 1 = d 2 T n T n (4.13) d 1 > d 2 T n d 1 < d 2 T n 1 2 T n Lavancier et al. (2010) 5% t 5% 3.7d d (4.17) V/S ARMA Lavancier et al. (2010) q Abadir et al. (2009) ARFIMA Horvath (2001) Ling (2007) Whittle ˆd CSS d Lavancier et al. (2010) (LPS) ARFIMA(0, d, 0) n = 500 n = 1000 t = 0.5 Lavancier et al. (2010) ARFIMA(0, d, 0) q = 0 d 1 = 0.1 d 2 d 2 = 0.1, d 2 = 0, 2, 0.3, d d π 2 /6 d

26 ARFIMA(0, d, 0)(d 1 = 0.1) n = 500 n = 1000 d 2 WH CSS LPS WH CSS LPS Whittle ˆd CSS d WH CSS Lavancier et al. (2010) LPS (LPS) 2 Whittle CSS ARFIMA(0, d, 0) (LPS) , 500 Lavancier et al. (2010) (LPS) Whittle CSS CSS ARFIMA(0, d, 0) 3.4 AR MA Ling (2007) Yamaguchi (2010) ARMA Lavancier et al. (2010) 5. I(0) I(d)(0 < d < 1/2) R/S KPSS V/S 3 Lobato-Robinson ARFIMA(0, d, 0) LM Lobato-Robinson R/S KPSS V/S 3 Shao and Wu (2007) I(d)

27 173 LM Lobato-Robinson KPSS V/S 2 Whittle CSS 2 V/S Lavancier et al. (2010) (2004) 2 2 (C)# Abadir, K. M., Distaso, W. and Giraitis, L. (2007). Nonstationarity-extended local Whittle estimation, J. Econom., 141, Abadir, K. M., Distaso, W. and Giraitis, L. (2009). Two estimators of the long-run variance: Beyond short memory, J. Econom., 150, Anderson, T. W. and Darling, D. A. (1952). Theory of certain Goodness of fit criteria based on stochastic processes, Ann. Math. Stat., 23, Andrews, D. W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation, Econometrica, 59, Bai, J. (1997). Estimation of a change point in multiple regression models, Rev. Econ. Stat., 79,

28 Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall, New York. Beran, J. and Terrin, N. (1996). Testing for a change of the long-memory parameter, Biometrika, 83, Breitung, J. and Hassler, U. (2002). Inference on the cointegration rank in fractionally integrated processes, J. Econom., 110, Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with unit roots, J. Am. Stat. Assoc., 74, Ding, Z., Granger, C. W. J. and Engle, R. F. (1993) A long memory property of stock market returns and a new model Journal of Empirical Finance, 1, Doornik, J. A. (2008). Ox: Object Oriented Matrix Programming Language, Timberlake Consultants Press: London. Doukhan, P., Oppenheim, G. and Taqqu, M. S. (eds.) (2003). Long-Range Dependence: Theory and Applications, Birkhauser, Boston. Giraitis, L., Kokoszka, P., Leipus, R. and Teyssiere, G. (2003). Rescaled variance and related tests for long memory in volatility and levels, J. Econom., 112, Granger, C. W. J. and Joyeux, R. (1980). An introduction to long memory time series model and fractional differencing, J. Time Ser. Anal., 1, Hansen, P. R. and Lunde, A. (2005). A Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?, J. Appl. Econ., 20, Harris, D., McCabe, M. and Leybourne, S. (2008). Testing for long memory, Econ. Theory, 24, Hobijn, B., Franses, P. H. and Ooms, M. (2004). Generalizations of the KPSS-test for Stationarity, Statistica Neerlandica, 58, Horvath, L. (2001). Change-point detection in long-memory processes, J. Multivar. Anal., 78, Horvath, L. and Shao, Q.-M. (1999). Limit theorems for quadratic forms with applications to Whittle s estimate, Ann. Appl. Probab., 9, Hosking, R. M. J. (1981). Fractional differencing, Biometrika, 68, Hurvich, C. M. and Ray, B. K. (1995). Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes, J. Time Ser. Anal., 16, Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root, J. Econom., 54, Lavancier, F., Philippe, A. and Surgailis, D. (2010). A two-sample test for comparison of long memory parameters, J. Multivar. Anal., 101, Lee, H. S. and Amsler, C. (1997). Consistency of the KPSS unit root test against fractionally integrated alternative, Econ. Lett., 55, Lee, D. and Schmidt, P. (1996). On the power of the KPSS test of stationarity against fractionally-integrated altenatives, J. Econom., 73, Ling, S. (2007). Testing for change points in time series models and limiting theorems for NED sequences, Ann. Stat., 35, Lo, A. W. (1991). Long-Term Memory in Stock Market Prices, Econometrica, 59, Lobato, I. N. and Robinson, P. M. (1998). A nonparametric test for I(0), Review of Economic Studies, 65, Lobato, I. N. and Savin, N. E. (1998). Real and Spurious Long-Memory Properties of Stock-Market Data (with discussion), J. Bus. Econ. Stat., 16, Marinucci, D. and Robinson, P. M. (1999). Alternative forms of fractional Brownian motion, J. Stat. Plann. Inference, 80, Newey, W. K. and West, K. D. (1994). Automatic Lag Selection in Covariance Matrix Estimation, Review of Economic Studies, 61, (2004). 19, Palma, W. (2007). Long-Memory Time Series: Theory and Methods, Wiley: New York.

29 175 Robinson, P. M. (1994). Tests of Nonstationary Hypotheses, J. Am. Stat. Assoc., 89, Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence, Ann. Stat., 23, Robinson, P. M. (ed.) (2003). Time Series with Long Memory, Oxford, Oxford. Saikkonen, P. and Luukkonen, R. (1993). Testing for a moving average unit root in autoregressive integrated moving average models, J. Am. Stat. Assoc., 88, Shao, X. (2010). Nonstationarity-extended Whittle estimation, Econ. Theory, 26, Shao, X. and Wu, W. B. (2007). Local asymptotic powers of nonparametric and semiparametric tests for fractional integration, Stochastic Processes and their Applications, 117, Shimotsu, K. and Phillips, P. C. B. (2005). Exact local Whittle estimation of fractional integration, Ann. Stat., 33, Smirnov, N. (1948). Table for estimating the Goodness of fit of empirical distributions, Ann. Math. Stat., 19, Sowell, F. (1990). The fractional unit root distribution, Econometrica, Tanaka, K. (1996). Time Series Analysis - Nonstationary and Noninvertible Distribution Theory, Wiley, New York. Tanaka, K. (1999). The nonstationary fractional unit root, Econ. Theory, 15, Teyssiere, G. and Kirman, A. P. (eds.) (2007). Long Memory in Economics, Springer, New York. Velasco, C. (1999a). Gaussian semiparametric estimation of non-stationary time series, J. Time Ser. Anal., 20, Velasco, C. (1999b). Non-stationary log-periodgram regression, J. Econom., 91, Velasco, C. and Robinson, P. M. (2000). Whittle pseudo-maximum likelihood estimation for nonstationary time series, J. Am. Stat. Assoc., 95, (2007). Realized Volatility 58, Watson, G. S. (1961). Goodness-of-fit tests on a circle, Biometrika, 48, (2003).,,. Yamaguchi, K. (2010). Estimating a change point in the long memory parameter, Discussion papers, No , Graduate School of Economics, Hitotsubashi University.

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

ウェーブレット分数を用いた金融時系列の長期記憶性の分析

ウェーブレット分数を用いた金融時系列の長期記憶性の分析 TOPIX E-mail: masakazu.inada@boj.or.jp wavelet TOPIX Baillie Gourieroux and Jasiak Elliott and Hoek TOPIX I (0) I (1) I (0) I (1) TOPIX ADFAugmented Dickey-Fuller testppphillips-perron test I (1) I (0)

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

43, 2, Forecasting Based Upon Cointegration Analysis and Its Applications Taku Yamamoto 80 The cointegration analysis has been a major

43, 2, Forecasting Based Upon Cointegration Analysis and Its Applications Taku Yamamoto 80 The cointegration analysis has been a major 43, 2, 2014 3 315 334 Forecasting Based Upon Cointegration Analysis and Its Applications Taku Yamamoto 80 The cointegration analysis has been a major topic in time series analysis in the field of economics

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

Hi-Stat Discussion Paper Series No.228 経済時系列分析と単位根検定 : これまでの発展と今後の展望 黒住英司 December 27 Hitotsubashi University Research Unit for Statistical Analysis i

Hi-Stat Discussion Paper Series No.228 経済時系列分析と単位根検定 : これまでの発展と今後の展望 黒住英司 December 27 Hitotsubashi University Research Unit for Statistical Analysis i 経済時系列分析と単位根検定 : これまでの発展と今後の Title 展望 Author(s) 黒住, 英司 Citation Issue 27-12 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/186/15111 Right Hitotsubashi University Repository

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

kato-kuriki-2012-jjas-41-1.pdf

kato-kuriki-2012-jjas-41-1.pdf Vol. 41, No. 1 (2012), 1 14 2 / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3

More information

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 87 6.1 AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t 2, V(y t y t 1, y t 2, ) = σ 2 3. Thus, y t y t 1,

More information

オーストラリア研究紀要 36号(P)☆/3.橋本

オーストラリア研究紀要 36号(P)☆/3.橋本 36 p.9 202010 Tourism Demand and the per capita GDP : Evidence from Australia Keiji Hashimoto Otemon Gakuin University Abstract Using Australian quarterly data1981: 2 2009: 4some time-series econometrics

More information

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

日本統計学会誌, 第44巻, 第2号, 251頁-270頁 44, 2, 205 3 25 270 Multiple Comparison Procedures for Checking Differences among Sequence of Normal Means with Ordered Restriction Tsunehisa Imada Lee and Spurrier (995) Lee and Spurrier (995) (204) (2006)

More information

( ) p.2/70

( ) p.2/70 p.1/70 ( ) p.2/70 ( p.3/70 (1)20 1970 cf.box and Jenkins(1970) (2)1980 p.4/70 Kolmogorov(1940),(1941) Granger(1966) Hurst(1951) Hurst p.5/70 Beveridge Wheat Prices Index p.6/70 Nile River Water Level p.7/70

More information

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1 2016 1 12 4 1 2016 1 12, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, 1980 1990.,, 225 1986 4 1990 6, TOPIX,1986 5 1990 2, explosive. 2,.,,,.,, 1986 Q2 1990 Q2,,. :, explosive, recursiveadf,

More information

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) LA-VAR 1 1 1973 4 2000 4 Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2) E-mail b1215@yamaguchi-u.ac.jp 2 Toda, Hiro Y. and Yamamoto,T.(1995) 3

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

kanatani0709wp.dvi

kanatani0709wp.dvi Recent Studies on Estimation of Volatility in the Presence of Market Microstructure Noise 2009 9 RV MMN 21730174 522-8522 1-1-1 HP: http://www.biwako.shiga-u.ac.jp/sensei/t-kanatani/ Email: t-kanatani@biwako.shiga-u.ac.jp

More information

On model selection problems in terms of prediction mean squared error and interpretaion of AIC (slides)

On model selection problems in terms of prediction mean squared error and interpretaion of AIC (slides) Applications in Econometrics and Finance by Long Memory Processes 2007 11 6 13:30-16:10 Table of Contents PART1 PART2 PART3 PART1 1 {y t } ρ(h) = ( h ) = Cov[y t y t+h ]/ Var[y t ] (yt y)(y t+h y) ρ(h)

More information

Working Paper Series No March 2012 日本の商品先物市場におけるボラティリティの 長期記憶性に関する分析 三井秀俊 Research Institute of Economic Science College of Economics, Nihon Un

Working Paper Series No March 2012 日本の商品先物市場におけるボラティリティの 長期記憶性に関する分析 三井秀俊 Research Institute of Economic Science College of Economics, Nihon Un Working Paper Series No. 11-04 March 2012 日本の商品先物市場におけるボラティリティの 長期記憶性に関する分析 三井秀俊 Research Institute of Economic Science College of Economics, Nihon University 2012 3, FIGARCH, FIEGARCH.,,, ( ),., Student-t,,

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

Part 1 GARCH () ( ) /24, p.2/93

Part 1 GARCH () ( ) /24, p.2/93 基盤研究 A 統計科学における数理的手法の理論と応用 ( 研究代表者 : 谷口正信 ) によるシンポジウム 計量ファイナンスと時系列解析法の新たな展開 平成 20 年 1 月 24 日 ~26 日香川大学 Realized Volatility の長期記憶性について 1 研究代表者 : 前川功一 ( 広島経済大学 ) 共同研究者 : 得津康義 ( 広島経済大学 ) 河合研一 ( 統計数理研究所リスク解析戦略研究センター

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

都道府県別パネル・データを用いた均衡地価の分析: パネル共和分の応用

都道府県別パネル・データを用いた均衡地価の分析: パネル共和分の応用 No.04-J-7 4 3 * yumi.saita@boj.or.jp ** towa.tachibana@boj.or.jp *** **** toshitaka.sekine@boj.or.jp 103-8660 30 * ** *** London School of Economics **** : Λ y z x 4 3 / 1 (panel cointegration) Meese and

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

Recent Developments and Perspectives of Statistical Time Series Analysis /ta) : t"i,,t Q) w (^ - p) dp *+*ffi t 1 ] Abraham, B. and Ledolter, J. (1986). Forecast functions implied by autoregressive

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

50-4 平井健之.pwd

50-4 平井健之.pwd GDP GNP Gupta 1967, Wagner and Weber 1977, Mann 1980, Abizadeh and Gray 1985, Ram 1987, Abizadeh and Yousefi 1988, Nagarajan and Spears 1990 GDP GNP GDP GNP GDP GNP Adolph Wagner Wagner 1967 Ram 1987,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾ Kano Lab. Yuchi MATSUOKA December 22, 2016 1 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 2 / 32 1 1.1 1.2 1.3 1.4 2 ARMA 2.1 ARMA 3 / 32 1.1.1 - - - 4 / 32 1.1.2 - - - - - 5 / 32 1.1.3 y t µ t = E(y t ), V

More information

(i) EX(t)=m (ii) ć(t-s)=coĘ(x(t),x(s)) (1) (2) (3)

(i) EX(t)=m (ii) ć(t-s)=coĘ(x(t),x(s)) (1) (2) (3) (i) EX(t)=m (ii) ć(t-s)=coĘ(x(t),x(s)) (1) (2) (3) (7) (8) (9) 5 Adelmean, I. (1965) : Long cycles-fact or Artifact. Amer. Econ. Rev. 60,444-463. Agiaklogolou, C., Newbold, P. and Wohar,

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2) Vol. 47 No. SIG 14(TOM 15) Oct. 2006 RBF 2 Effect of Stock Investor Agent According to Framing Effect to Stock Exchange in Artificial Stock Market Zhai Fei, Shen Kan, Yusuke Namikawa and Eisuke Kita Several

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

IV (2)

IV (2) COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

6),7) Basu & Fernald 8) 34 Holtz-Eakin & Lovely 9) Haughwout 10) Duggal, et al. 11) Aschauer Everaert & Heylen 12) (error correction mechanism) Pereir

6),7) Basu & Fernald 8) 34 Holtz-Eakin & Lovely 9) Haughwout 10) Duggal, et al. 11) Aschauer Everaert & Heylen 12) (error correction mechanism) Pereir 1 2 1 739-8527 1-4-1 E-mail:mtukai@hiroshima-u.ac.jp 2 606-8501 E-mail:kkoba@psa.mbox.media.kyoto-u.ac.jp (Auto-Regressive Fractionally Integrated Moving Averaged model with exogenous variables:arfimax)

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv(h:=y=ynikkei4csv,header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)

More information

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x 2D-RCWA two dimensional rigoros copled wave analsis, 2] εx, εx, ϵ mn exp +jmk x x + nk ] m,n m,n ξ mn exp +jmk x x + nk ] 2 K x K x Λ x Λ ϵ mn ξ mn K x 2π Λ x K 2π Λ ϵ mn ξ mn Λ x Λ x Λ x Λ x Λx Λ Λx Λ

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

02.„o“φiflì„㙃fic†j

02.„o“φiflì„㙃fic†j X-12-ARIMA Band-PassDECOMP HP X-12-ARIMADECOMP HPBeveridge and Nelson DECOMP X-12-ARIMA Band-PassHodrick and PrescottHP DECOMPBeveridge and Nelson M CD X ARIMA DECOMP HP Band-PassDECOMP Kiyotaki and Moore

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

読めば必ずわかる 分散分析の基礎 第2版

読めば必ずわかる 分散分析の基礎 第2版 2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information