kato-kuriki-2012-jjas-41-1.pdf

Size: px
Start display at page:

Download "kato-kuriki-2012-jjas-41-1.pdf"

Transcription

1 Vol. 41, No. 1 (2012), / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3 1 i ε i 0 t i T R m T = [a j, b j ] (2) a 1 b 1 < a 2 b m 1 < a m b m a 1 = [a 1, b 1 ] (, b 1 ] b m = [a m, b m ] [a m, ) c 2 ĉ 2 f (t; c) t T t T f (t; c) 0 (3) / 1

2 4.2 2 T (2) T = [a, b] T = m {a j} T = m {a j} (3) t = a j ( j = 1,...,m) (3) c { } K = K[T] = c f (t; c) 0 t T (Barvinok [1]) K (3) c K 3 H 0 : c = 0, H 1 : c K, H 2 : c R 3. (4) H 0 H 1 H 1 H 2 (3) 2 μ μ = 0 μ K 2 (Shapiro [8]) ( ) ( [4], Kuriki and Takemura [5]) K K K, 1 1 Karlin and Studden [2] T K K T m [a j, b j ] K K c ĉ ML ĉ K 2 c (4) ( ) 3 K K 4 Potthoff and Roy [6] Kato and Kuriki [3] 4 T 2

3 Vol. 41, No. 1 (2012) Q x,y Q = x Qy, x Q = x, x Q x A Π Q (x A) = argmin x c Q c A A Q x,y, x, Π(x A) (1) σ 2 ĉ ĉ ĉ N 3 (c, Σ) Σ=σ 2 Σ 0, Σ 0 = ( N i=1 ψ(t i)ψ(t i ) ) 1 σ 2 (ĉ, σ 2 ) σ 2 σ 2 ĉ ν = N 4 2 σ 2 χ 2 ν/ν ĉ N 3 (c, Σ) H 1 : c K ĉ K, Σ 1 H 0, H 2 0, ĉ 1 σ 2 H 0 vs. H 1 H 1 vs. H 2 λ 01 = ĉ K 2 Σ, λ 1 12 = ĉ ĉ K 2 Σ. (5) 1 ĉ K =Π Σ 1(ĉ K) ĉ K σ 2 β 01 = Σ = σ 2 Σ 0, ĉ K =Π Σ 1 (ĉ K) (5), (6) ĉ K 2 Σ 1 ĉ 2 Σ + ν, β ĉ ĉk 2 Σ 12 = 1 ĉ ĉ K 2 Σ + ν (6) 1 1 ĉ ĉ K 2 Σ = 1 ĉ 2 Σ ĉ 1 K 2 Σ 1 H 1 vs. H 2 Robertson, et al. [7] H 1 vs. H 2 σ 2 H 1 : c K c = 0 ( ) Kato and Kuriki [3] 3

4 λ 01 ĉ K (Robertson, et al. [7]) H 0 : c = 0 (5) λ 01, λ 12 P H0 (λ 01 a, λ 12 b) = 3 w i Ḡ i (a)ḡ 3 i (b). (7) i=0 Ḡ i i 2 Ḡ 0 (a) = 1(a 0), 0 (a < 0) (6) β 01, β 12 P H0 (β 01 a, β 12 b) = 3 w i B i i=0 2, 3 i+ν 2 (a) B 3 i 2, ν (b). (8) 2 B a,b (a, b) (8) {w i } (7) i w i i w i = 1 (λ 01,λ 12 ) {w i } 2 2 (β 01,β 12 ) 2 a = b = λ 01, λ 12, β 01, β 12 λ 01 λ 12 2 ( χ 2 ) (Shapiro [8], Takemura and Kuriki [10]) K {w i } (Wynn [13]) K K {w i } K 2 ( ) (Takemura and Kuriki [10, 11]) K 2 w 3 = Vol 2(K S 2 ) Vol 2 (S 2 ) w 1 = Vol 1 ( K (S 2 ) ) 2Vol 1 ((S 1 ) ) K K, w 2 = Vol 1( K S 2 ), 2Vol 1 (S 1 ), w 0 = Vol 2 (K (S 2 ) ) Vol. (9) 2 (S2 ) M[T] = co ({ ψ(t) t T }) K = K[T] = M[T] (Barvinok [1]) co(a) A K, K K, K S 2 = {x R 3 x Σ 1 = 1}, ( S n ) = {x R 3 x Σ = 1} Vol d,vol d, Σ 1,, Σ d 4

5 Vol. 41, No. 1 (2012) ( Vol d 1 S d 1 ) = Vol (( d 1 S d 1 ) ) 2π d/2 = Γ(d/2) (9) w 3, w 0 2 w 2, w 1 1 w i = w i = 1 (10) 2 i:even i:odd (Takemura and Kuriki [11]) w 3 = 1/2 w 1, w 0 = 1/2 w T 1. K ( ) K ( ) ν = 0 β 01 M = K S 2 K M θ ( ) Tube(M,θ) = { x S 2 min y M dist(x,y) θ}, dist(x,y) = cos 1 x,y. β 01 = Π(ĉ K) 2 ĉ 2 cos θ ĉ ĉ Tube(M,θ) H 0 ĉ/ ĉ Vol 2 (Tube(M,θ)) Vol 2 (S 2 ) = P H0 (β 01 cos θ) = 3 w i B i i=0 2, 3 i 2 (cos θ) 5

6 [4], Kuriki and Takemura [5] n w n+1,w n,w 1,w 0 (9) (10) n 4 (9) {w i } 0 i n+1 Kato and Kuriki [3] K K {w i } 0 i 3 w 1, w 2 (9) w 0, w 3 (10) w 2 w 1 K K (1 1 ) 4 (i) a 1 >, b m <, T = m [a j, b j ]. (ii) a 1 >, b m =, T = m 1 [a j, b j ] [a m, ). (iii) a 1 =, b m <, T = m j=2 [a j, b j ] (, b 1 ]. (iv) a 1 =, b m =, T = m 1 j=2 [a j, b j ] (, b 1 ] [a m, ). K f (t; c) 1 f (t; c) T (c K) c K (a) (b) (a) f (t; c) T (b) a 1 = b m = f (t; c) 1 ( ) Karlin and Studden [2] T = [0, ) (a) f (t; c) t 0 T ε>0 f (t 0 ; c ε(1, 0, 0)) = f (t 0 ; c) ε f (t 0 ;(1, 0, 0)) = ε <0. c ε(1, 0, 0) K (b) f (t; c ε(0, 0, 1)) = f (t; c) ε f (t;(0, 0, 1)) = εt 2 + o(t 2 ) t c ε(0, 0, 1) K c K (a), (b) a 1, b m t T c R 3 6

7 Vol. 41, No. 1 (2012) f (t; c + εc ) = f (t; c) + ε f (t; c ). c int K f (t; c) > 0 ε a 1 = b m = t ± ε f (t; c + εc ) > 0. c + εc K c int K 1 (b) 1 T f (t; c) a 1, b m a 1, b m a 1 = a m = 1 2 T 1 α(t a 1 ) + β(b m t) (a 1 >, b m < ), α(t a 1 ) + β (a 1 >, b m = ), f (t; c) = α + β(b m t) (a 1 =, b m < ), α (a 1 =, b m = ). α, β 0 1, 2 K ( ) 3 f (t; c), c K α, β 0 α, β > 0 α(t γ) 2, γ T (γ 2 ), α(t b j ) 2 + β(t b j )(t a j+1 ) (b j 1 ), j = 1,...,m 1, α(t a j+1 ) 2 + β(t b j )(t a j+1 ) (a j+1 1 ), j = 1,...,m 1. (i) a 1 >, b m < α(t b m ) 2 + β(b m t)(t a 1 ) α(b m t)(t a 1 ) + β(t a 1 ) 2 (b m 1 ), (a 1 1 ). (ii) a 1 >, b m = α + β(t a 1 ) (b m = 1 ), α(t a 1 ) + β(t a 1 ) 2 (a 1 1 ). (iii) a 1 =, b m < α(b m t) + β(b m t) 2 (b m 1 ), α + β(b m t) (a 1 = 1 ). (iv) a 1 =, b m = α (a 1 =, b m = 2 ). 7

8 ( ) 1 f (t; c), c K 1 (a) (b) (a) f (t; c) T f (t; c) γ int T ε>0 f (γ ε; c), f (γ + ε; c) 0 γ 2 f (t; c) = α(t γ) 2 γ = a j+1, b j ( j = 1,...,m) γ = a 1, b m γ 2 γ int T γ 1 γ = b j 1 f (t; c) 1 f (a j ; c) < 0 f (a j+1 ; c) < 0 f (t; c) 2 f (a j+1 ; c) 0 f (t; c) b j γ (b j, a j+1 ] 2 ( (t b j )(t γ) = (t b j ) t α α + β b j β ) α + β a j+1 α(t b j ) 2 + β(t b j )(t a j+1 ) γ = a j+1 1 f (t; c) a j+1 γ [b j, a j+1 ) 2 ( (t a j+1 )(t γ) = (t a j+1 ) t α α + β b j β ) α + β a j+1 α(t b j )(t a j+1 ) + β(t a j+1 ) 2 γ = a 1 1 a b m < b m = (T 1 ) (t a 1 ) = {α(t a 1 ) + β(b m t)} (t a 1 ) = α(t a 1 ) 2 + β(b m t)(t a 1 ), (T 1 ) (t a 1 ) = {α(t a 1 ) + β} (t a 1 ) = α(t a 1 ) 2 + β(t a 1 ) γ = b m 1 b m 1 2 a 1 > (T 1 ) (b m t) = {α(t a 1 ) + β(b m t)} (b m t) = α(b m t) 2 + β(b m t)(t a 1 ), a 1 = (T 1 ) (b m t) = {α + β(b m t)} (b m t) = α(b m t) + β(b m t) 2 8

9 Vol. 41, No. 1 (2012) f (t; c) T 1 (b) a 1 = b m = f (t; c) 2 α(t a 1 ) + β (a 1 >, b m = ), α(b m t) + β (a 1 =, b m < ), α (a 1 =, b m = ) f (t; c) α, β > 0 3 K K 3 ϕ(t) = (t 2, 2t, 1), ϕ j = (b j a j+1, b j a j+1, 1), j = 1,...,m 1, (t t 0 ) 2 = ϕ(t 0 ) ψ(t), (t b j )(t a j+1 ) = ϕ j ψ(t) ( b m a 1, b m + a 1, 1) (a 1 >, b m < ), ( a 1, 1, 0) (a 1 >, b m = ), ϕ m = (b m, 1, 0) (a 1 =, b m < ), (1, 0, 0) (a 1 =, b m = ) (t a 1 )(b m t),α(t a 1 ), α(b m t), α ϕ mψ(t) 3 K 4 α, β K = m ({ αϕ(t) t [a j, b j ] } { αϕ j + βϕ(b j ) } { αϕ j + βϕ(a j+1 ) }). (11) a m+1 = a 1 t = ± ϕ(t) = (1, 0, 0) (11) α, β > 0 {} (11) α, β > 0 K (2 ) 0 (11) K 4 K ( ) K {ψ(t) t T} {αψ(t) t T, α 0} {(x,y,z) x + z = 1} (x,y) t {αψ(t) α 0} ψ(t)/(1 + t 2 ) (x,y) 9

10 ( t, t ) = 1 ( 1 t t t, 2t ) ( 1 ) t 2 2, 0 1/2 {αψ(t) t T, α 0} K (extreme ray) ψ(b j ) ψ(a j+1 )() K ( 1( ) ) 5 α, β m ({ K = αψ(t) t [a j, b j ] } { αψ(b j ) + βψ(a j+1 ) }). (12) a m+1 = a 1 t = ± ψ(t) = (0, 0, 1) (12) α, β > 0 {} (12) α, β > 0 K (2 ) 0 (12) K 3.2. {w i } 4, 5 K K w i (9) w 1, w 2 w 2 = Vol 1( K S 2 ) 4π, w 1 = Vol 1 ( K (S 2 ) ). 4π (10) w 2 w 1 4 (11) w 2 ξ(t) = ϕ(t)/ ϕ(t) Σ 1 { αϕ(t) t [a j, b j ],α>0 } S 2 = { ξ(t) t [a j, b j ] } b j dξ(t) dt a j Σ 1 dt { αϕ j + βϕ(b j ) α, β > 0 } S 2 ϕ(b j )/ ϕ(b j ) Σ 1 ϕ j / ϕ j Σ 1 cos 1 ϕ(b j ),ϕ j Σ 1 ϕ(b j ) Σ 1 ϕ j Σ 1 { αϕ j + βϕ(a j+1 ) α, β > 0 } S 2 10

11 Vol. 41, No. 1 (2012) cos 1 ϕ j,ϕ(a j+1 ) Σ 1 ϕ j Σ 1 ϕ(a j+1 ) Σ 1 w 2 = 1 m { b j dξ(t) 4π dt a j Σ 1 dt + cos 1 ϕ(b j ),ϕ j Σ 1 ϕ(b j ) Σ 1 ϕ j Σ 1 + cos 1 ϕ j,ϕ(a j+1 ) } Σ 1 ϕ j Σ 1 ϕ(a j+1 ) Σ 1 (13) 5 (12) w 1 η(t) = ψ(t)/ ψ(t) Σ w 1 = 1 m { b j dη(t) 4π dt dt + cos 1 ψ(b j ),ψ(a j+1 ) } Σ (14) Σ ψ(b j ) Σ ψ(a j+1 ) Σ 6 a j ϕ(t) ξ(t) = ϕ(t) Σ 1, η(t) = ψ(t) ψ(t) Σ w 2, w 1 (13), (14) w 3 = 1 2 w 1, w 0 = 1 2 w ĉ K (5) (6) λ 01, λ 12, β 01, β 12 H 1 c ĉ K ĉ K 3 c K f (t; c) 1 K (extreme ray) (t γ) 2, γ T, (t b j )(t a j+1 ), j = 1,...,m 1. (i) a 1 >, b m < (b m t)(t a 1 ), (ii) a 1 >, b m = t a 1,1, (iii) a 1 =, b m < b m t,1, (iv) a 1 =, b m = 1. K 1 ψ 1 (t) = (1, t) Q 2 2 (Q 0) (t γ) 2, γ T, 1 ψ 1 (t) Qψ 1 (t) T f (t; c) () 11

12 7 T = m [a j, b j ] f (t; c) m 1 f (t; c) =ψ 1 (t) Qψ 1 (t) + u j (t b j )(t a j+1 ) u m (b m t)(t a 1 ) + u m (t a 1 ) u m (b m t) (a 1 >, b m < ), (a 1 >, b m = ), (a 1 =, b m < ). (15) ψ 1 (t) = (1, t) Q 2 2 u 1,...,u m 0. ( ) 1 (15) (15) T ĉ K (symmetric cone programming) (cylindrical algebraic decomposition) (15) f (t; c) e(q, u) ψ(t) e(q, u) 3 Q u = (u 1,...,u m ) 1 ĉ K d d ĉ c 2 Σ 1 (2 ), c = e(q, u) Q 0 u 1,...,u m 0 ( ), (), ( ) SeDuMi (Sturm [9]) u i = v 2 i, Q 2 2 R = (r ij) Q = R R ĉ e(q, u) 2 v Σ 1 i, r ij v i r ij Mathematica ([12] ) f (t; ĉ 1 ), f (t; ĉ 2 ) 2 H 1 t T f (t; c 1 ) f (t; c 2 ) = f (t; c 1 c 2 ) 0. 2 Potthoff and Roy [6] 8, 10, 12, 14 12

13 Vol. 41, No. 1 (2012) ĉ Σ 11 t i t + 11 x it 2 x it = f (t; c) + ε it, f (t; c) = c 0 + c 1 t + c 2 t 2. ε it i 0 Cov(ε it,ε it ) 2 f (t; c) f (t) = ĉ 0 + ĉ 1 t + ĉ 2 t 2, ĉ = (1.968, 0.310, 0.053). ĉ Σ = Σ Σ (3) 2 T T = [ 3, 3], [ 3, 1] [1, 3], { 3, 1, 1, 3} 3 T f (t; ĉ) ĉ K = ĉ λ 01 = ĉ K 2 Σ = ĉ 2 1 Σ = (w 0,w 1,w 2,w 3 ) = (0.030, 0.200, 0.470, 0.300) (T = [ 3, 3]), = (0.029, 0.198, 0.471, 0.302) (T = [ 3, 1] [1, 3]), = (0.027, 0.198, 0.473, 0.302) (T = { 3, 1, 1, 3}) p T = [ 3, 3] T = [ 3, 1] [1, 3] T = { 3, 1, 1, 3} H 0 : c = 0 vs. H 2 : c R 3 p p p [1] Barvinok, A. (2002). A Course in Convexity. AMS, Providence, Rhode Island. [2] Karlin, S. and Studden, W. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience Publishers, Wiley, New York. 13

14 [3] Kato, N. and Kuriki, N. (2011). Likelihood ratio test for positivity in polynomial regressions. arxiv: [4], (2008).., 60 (2), [5] Kuriki, S. and Takemura, A. (2009). Volume of tubes and the distribution of the maximum of a Gaussian random field. Selected Papers on Probability and Statistics, AMS Translations Series 2, 227, No. 2, [6] Potthoff, R. and Roy, S. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51 (3-4), [7] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, Chichester. [8] Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis. Internat. Statist. Rev., 56 (1), [9] Sturm, J. F. (1999). Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, 11 (1), [10] Takemura, A. and Kuriki, S. (1997). Weights of chi-bar-square distribution for smooth or piecewise smooth cone alternatives. Ann. Statist., 25 (6), [11] Takemura, A. and Kuriki, S. (2002). On the equivalence of the tube and Euler characteristic methods for the distribution of the maximum of Gaussian fields over piecewise smooth domains. Ann. Appl. Probab., 12 (2), [12] Wolfram MathWorld. Cylindrical Algebraic Decomposition. [13] Wynn, H. P. (1975). Integrals for one-sided confidence bounds: a general result. Biometrika, 62, nkato@ism.ac.jp 14

15 Japanese J. Appl. Statist. 41 (1) (2012), Test for positivity in quadratic polynomial regression over intervals Naohiro Kato and Satoshi Kuriki The Graduate University for Advanced Studies and The Institute of Statistical Mathematics / JST, CREST Abstract A polynomial that is nonnegative over a given domain T is called a positive polynomial. We consider the likelihood ratio test for the hypothesis of positivity that the estimand quadratic polynomial regression curve is a positive polynomial when T is the union of intervals. We define hierarchical hypotheses including the hypothesis of positivity, and derive their null distributions as mixtures of chi-square distributions. According to the volume-of-tube method, the mixing probabilities are obtained through the evaluation of the volumes of boundaries of the closed convex cone K consisting of quadratic positive polynomials and its dual K. We introduce the parameterizations of the boundaries of K and K, and then provide expressions for the mixing probabilities. We demonstrate that the symmetric cone programming is useful for obtaining numerically the test statistics. Key words: chi-bar square distribution, moment cone, positive polynomial cone, repeated measurements, symmetric cone programming, Tchebycheff system. Corresponding author address: nkato@ism.ac.jp Received June 15, 2011; Received in final form October 11, 2011; Accepted October 15,

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Vol. 29, No. 2, 125 139 (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Information Systems and Mathematical Sciences, Faculty

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

dvi

dvi 2017 65 2 185 200 2017 1 2 2016 12 28 2017 5 17 5 24 PITCHf/x PITCHf/x PITCHf/x MLB 2014 PITCHf/x 1. 1 223 8522 3 14 1 2 223 8522 3 14 1 186 65 2 2017 PITCHf/x 1.1 PITCHf/x PITCHf/x SPORTVISION MLB 30

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a + 1 1 22 1 x 3 (mod ) 2 2.1 ( )., b, m Z b m b (mod m) b m 2.2 (Z/mZ). = {x x (mod m)} Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} + b = + b, b = b Z/mZ 1 1 Z Q R Z/Z 2.3 ( ). m {x 0, x 1,..., x m 1 } modm 2.4

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate School of Economics and Institute of Economic Research

More information

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO , 3, 2012 9 STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO 1 950-2181 2 8050 2 950-2181 2 8050 Numerical computation of river flows

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

カテゴリ変数と独立性の検定

カテゴリ変数と独立性の検定 II L04(2015-05-01 Fri) : Time-stamp: 2015-05-01 Fri 22:28 JST hig 2, Excel 2, χ 2,. http://hig3.net () L04 II(2015) 1 / 20 : L03-S1 Quiz : 1 2 7 3 12 (x = 2) 12 (y = 3) P (X = x) = 5 12 (x = 3), P (Y =

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

1 n 1 1 2 2 3 3 3.1............................ 3 3.2............................. 6 3.2.1.............. 6 3.2.2................. 7 3.2.3........................... 10 4 11 4.1..........................

More information

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ Mindlin -Rissnr δ εσd δ ubd+ δ utd Γ Γ εσ (.) ε σ u b t σ ε. u { σ σ σ z τ τ z τz} { ε ε εz γ γ z γ z} { u u uz} { b b bz} b t { t t tz}. ε u u u u z u u u z u u z ε + + + (.) z z z (.) u u NU (.) N U

More information

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

日本統計学会誌, 第44巻, 第2号, 251頁-270頁 44, 2, 205 3 25 270 Multiple Comparison Procedures for Checking Differences among Sequence of Normal Means with Ordered Restriction Tsunehisa Imada Lee and Spurrier (995) Lee and Spurrier (995) (204) (2006)

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

…p…^†[…fiflF”¯ Pattern Recognition

…p…^†[…fiflF”¯   Pattern Recognition Pattern Recognition Shin ichi Satoh National Institute of Informatics June 11, 2019 (Support Vector Machines) (Support Vector Machines: SVM) SVM Vladimir N. Vapnik and Alexey Ya. Chervonenkis 1963 SVM

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1

318 T. SICE Vol.52 No.6 June 2016 (a) (b) (c) (a) (c) ) 11) (1) (2) 1 5) 6) 7), 8) 5) 20 11) (1 Vol.52, No.6, 317/329 2016 Mathematical Model and Analysis on Human s Handwork and Their Application to Brush Motion and Junkatsu of Japanese Calligraphy Tadamichi Mawatari and Kensuke Tsuchiya There is

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

Powered by TCPDF (  Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解 Powered by TCPDF (www.tcpdf.org) Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 018 Jtitle コペンハーゲン解釈 ; 量子哲学 (018. 3),p.381-390 Abstract Notes 慶應義塾大学理工学部大学院講義ノート

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ

Autumn II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 分析に用いるデータ 212 Vol. 44 No. 2 I はじめに 2008 1 2 Autumn 08 213 II III Zon and Muysken 2005 Zon and Muysken 2005 IV II 障害者への所得移転の経済効果 17 18 1 分析に用いるデータ 1 2005 10 12 200 2 2006 9 12 1 1 2 129 35 113 3 1 2 6 1 2 3 4 4 1

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

n-jas09.dvi

n-jas09.dvi Vol. 9 (2009 12 ), No. 03-091211 JASCOME CREEP ANALYSIS DISCONTINUOUS ROCK MASS AROUND UNDERGROUND CAVERN 1) 2) 3) Takakuni TATSUMI, Hidenori YOSHIDA and Masumi FUJIWARA 1) ( 761-0396 2217-20, E-mail:

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 1 2 1 Department of Clinical Pharmacotherapy, Hiroshima

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 1105402 2008 2 4 2,, i Abstract Systematization of Problem Solving Strategy in High School

More information