,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

Size: px
Start display at page:

Download ",,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,"

Transcription

1 14 5 1

2 ,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, ( )

3 3.. CEV (Constant Elasticity of Variance ) SV (Stochastics Volatility ) SV () CEV

4 1,, T > [, T ] 1.1 (Ω, F, P ) 1.1. ( ) F σ- F t, {F t } t, (Ω, F, P, {F t }), {F t } P -, : F t+ϵ = F t ϵ> 1.. ( ) t [, T ], X t, X = {X t } t [,T ], X = (X 1,, X d ) = {(Xt 1,, Xt d )} t [,T ] d, X, ω Ω,, X t (ω) t [, T ] 1.3. ( ) τ : Ω [, ], {τ t} F t (t ) ( ) (Ω, F, P, {F t }) 1. {X t } t [,T ] F t -, t X t F t -. {X t } t [,T ] F t -, X t F t -, t X t, t > s, E[X t F s ] = X s 4

5 , F t -, F t - 3. {X t } t [,T ] F t -, τ n a.s. τ n, n N, {X t τn } t [,T ] F t ( ) X (Ω, F, P ) p F t -, p F t -, (1) p 1, λ >, λ p P ( sup s [,t] () p > 1, E[ sup X s p ] s [,t] X s λ) E[ X t p ]. ( p p 1 ) p E[ X t p ]., X p, t [, T ] E[ X t p ] < 1.5. ( ) (Ω, F, P ) d w = {w t } t [,T ], (Ω, F, P ) d j = 1,,, d, (1) w j (ω) =, ω Ω () = t < t 1 < < t n n N, {w j t i w j t i 1 } 1 i n,, t i t i 1 (3) {w j } 1 j d, 1 (Ω, F, P, {F t }), j = 1,, d w j F t -, s t, w j t w j s F s, d F t (Doob-Mayer ) X F t -, A a >, {X σ a } σ A lim sup E[ X σ a : X σ a > N] = N σ A, F t - M = {M t } A = F t - A = {A t }, X t = M t + A t (t ) M T := {M = {M t } t [,T ] M F t, M = a.s.} 5

6 , Jensen M = {Mt } t [,T ], Doob- Meyer (.1),, F t - A = {A t } t [,T ], M A F t - A t M t, A = M M, M, N M T, M, N t := 1 ( M + N t M t N t ), t [, T ], M, N a.s., MN M, N. M, N M N.. (Hilbert ) M, N M T P (M t = N t = 1 t [, T ]) = 1, (M T, E[, T ]) 1 n L = {f = {f t } t [,T ] f t = F i 1 (ti 1,t i ](t), i=1 = t < < t n = T, F i : F ti 1 } f L F t -,.1. n f L, f t = F i 1 (ti 1,t i ](t) ( = t < < t n = T ), I(f) = {I t (f)} t [,T ] i=1 I t (f) = f u dw u := i=1, f w n F i (w ti t w ti 1 t), t [, T ].1. f, g L, I(f) I(f), I(g) t = f u g u du, t [, T ].. ( ) t [, T ], (s, ω) ([, t] Ω, B([, t]) F t ) f s (ω) (R, B(R)), f F t - B(A) A 6

7 , T L,T := {f = {f t } t [,T ] F t, E[ ft dt] < },f L,T.1. ( ) f L,T, lim f (n) f T = {f (n) } n N L n, f T := E[ T f t dt] f L,T.1, lim n f (n) f T = {f (n) } n N L. f (n), I(f (n) ),.1, I(f (n) ) I(f (m) ), ( 1.1), E[ sup I t (f (n) ) I t (f (m) ) ] 4E[ I T (f (n) ) I T (f (m) ) ] t [,T ] = 4 f (n) f (m) T, {I(f (n) )} n N M T,. M T (a.s. ),, I = {I t (f)} t [,T ], I t (f) = f sdw s, f L,T w, f L,T L.. f, g L,T, I(f) I(f), I(g) t =.3. ( ) f, g L,T, 3 f u g u du, t [, T ] I t (af + bg) = ai t (f) + bi t (g), t L loc := {f = {f t } t [,T ] F t,, f L loc,t, f udu < a.s. t [, T ]} τ n := inf{t f udu n} T 7

8 inf ϕ T = T f (n) t := f t 1 t τn, m n, τ m τ n, τ n T a.s.(n ), f udw u ( f u dw u )1 t τn := ( f u (n) dw u )1 t τn, n N, f (n) L,T,, m n ( f (n) u dw u )1 t τm = ( f u (m) dw u )1 t τm, w (Ω, F, P ) d F t -, f L loc,t w i (i = 1,, d) I i (f) = f tdwt i.4. d, f, g L,T, I i (f), I j (g) t =, t [, T ], (i j),., E[I i t(f)i j t (g)] = δ ij E[ f u g u du], t [, T ],.3. ( ) M d M, M d F t -, M i, M j t = δ ijt 1 i, j d, t. X X t = X + M t + A t, (, X R, M t := ϕ u dw u, A t := ψ u du, ϕ L loc,t, ψ L loc 1,T ).4. ( ) f C 1, ([, T ] R; R), X., {f(t, X t )} t [,T ], f(t, X t ) = f(, X ) + + f x (u, X u )ϕ u dw u f u (u, X u ) + f x (u, X u )ψ u + 1 f xx(u, X u )ϕ udu 8

9 .3 σ : [, T ] R Ω R b : [, T ] R Ω R, B([, T ]) B(R) F t -, σ(, x, ), b(, x, ) F t -, x R, dx t (ω) = σ(t, X t (ω), ω)dw t (ω) + b(t, X t (ω), ω)dt, X = x X ω Ω.3. ( ) X = {X t } t [,T ] 1. X, X F F t. {σ(t, X t )} t [,T ] L loc,t, {b(t, X t )} t [,T ] L loc 3. X t = X + σ(s, X s )dw s + 1,T. b(s, X s )ds a.s. t [, T ].5. ( )., T >, 1. σ(t, x) σ(t, y) + b(t, x) b(t, y) L T x y ( t [, T ], x, y R). E[ T ( σ(t, ) + b(t, ) )dt] <. L T >, ( X, X, P (X t = X t, t ) = 1.).1. ( ) a t L loc,t, b t L loc 1,T, dx t = X t (a t dw t + b t dt), X > (1),.5, X t = X e a udw u + (b u 1/a u )du () () (1),, 9

10 X, Y (1), X (),, d(y t /X t ) = Y t ( dy t dx t dx t dy t X t Y t X t X t Y t, X t = Y t (a.s. ) + dx t dx t Xt ) =, σ, b ω Ω, X Z := {E( θdw) t } t [,T ] (, θ L loc,t ), 1,, E(X) t := e X t 1/ X t, (Ω, F T ) P Q θ Q θ : F T A Q θ (A) := E[E(, θdw) T 1 A ] [, 1] (3).6. ( ) Z, (3) Q θ,, w θ t := w t (Ω, F T, Q θ ) F t - θ u du, t [, T ] 1

11 3 w (Ω, F, P ), F t = σ(w u ; u [, t]) N,F = F T, N := {A Ω B F B A, P (B) = } S = {S t } t [,T ], S B = {B t } t [,T ] 3.1. ( ) P (Ω, F T ), S,,, Q 3.. ( ) S = {S t } t [,T ], S Q Strict, Strict, S, 3.1 ( ) S, σ L loc,t, µ Lloc 1,T. ds t = S t (σ t dw t + µ t dt), S > ( S t = S exp σ u dw u +, µ u 1 ) σ udu [1] P (σ t t [, T ] ) = 1. [] λ t := σt 1 µ t, λ = {λ t } t [,T ] 11

12 3.1. ( ) Q, Q(A) := E[E( λdw) T 1 A ], A F T,, w Q t := w t + λ u du, t [, T ] Q (Q- ). [3] Q 3.1 T F, F F T F L 1 (Ω, F T, P ), t x F t : = E Q [F F t ], K t C t (K), P t (K), C t (K) := E Q [(S T K) + F t ] P t (K) := E Q [(K S T ) + F t ] 3.. ( ) S Q, C t (K) P t (K) = S t K 1

13 ., (x K) + (K x) + = (x K), C t (K) P t (K) = E Q [(S T K) + F t ] E Q [(K S T ) + F t ] = E Q [S T F t ] K S Q, E Q [S T F t ] = S t 3.1.1, σ : [, T ] R,, t [, T ], S, ds t = S t σ t dw Q t, S > (4), (4) ( S t = S exp σ u dwu Q 1 ) σudu, F, f : R ++ R, F = f(s T ) S,, V (t, x) := E Q [f(s (t,x) T t )] V (t, S t ) = E Q [F F t ] (5) 13

14 , S (t,x) t, x, ( u S u (t,x) = x exp σ t+s dws Q 1 u ) σ t+sds, u [, T t], x F t = V (t, S t ) (6), Q, u σ t+sdw Q s,, δ u := u σ t+sds, E Q [S T F t ] = E Q [S (t,s t) T t ( ] δ = x exp T t ( δ ) = x exp T t = S t ) E Q [e T t σ t+s dw Q s ] x=st R 1 πδt t, S Q, (5), (6) ( ) 1 exp δt (y δt t) dy exp t ( δ ) T t x=s t (7) x F t = V (t, S t ) = E Q [f(s (t,x) T t )] x=s t ( ( δ = f x exp T t R )) + y 1 πδt t ( ) y exp δt dy x=st t,, [ ] C t (K) : = V (t, S t ) = = = = x R R ( x exp ( ) ) + y δ T t 1 K ( ( x exp δ T t z δ T t c(t,x) d(t,x) ) K ( ( x exp δ T t z δ T t 1 π exp ( u ) du K = S t Φ( d(t, S t )) KΦ( c(t, S t )). 14 πδ T t ) + 1 π exp ) ) 1 K exp π c(t,x) ( ) y exp δt dy x=st t ( z 1 π exp ( z ) dz x=st ) dz x=st ( z ) dz x=st

15 [ ] P t (K) = R ( ( )) + ( ) K x exp y δ T t 1 y exp πδt δt dy x=st t t = KΦ(c(t, S t )) S t Φ(d(t, S t ))., c(t, x) := 1 ( log K δ T t x + 1 ) δ T t, d(t, x) := c(t, x) δ T t, C t (K) P t (K) = S t Φ( d(t, S t )) KΦ( c(t, S t )) KΦ(c(t, S t )) + S t Φ(d(t, S t )) = S t (Φ( d(t, S t )) + Φ(d(t, S t ))) K(Φ( c(t, S t )) + Φ(c(t, S t ))) = S t K, x R ξ L loc,t, W (x.ξ) W (x,ξ) t := x + ξ u ds u, t [, T ] ( dw t = ξ t ds t + (W t ξ t S t )dt, W = x, Self-finanncing ) A T := {ξ : [, T ] Ω R F t, σξ L loc,t, lim kq( inf W (x,ξ) t < k) =, x R} k t [,T ] 3.1. x R ξ A T W (x,ξ) Q. x = W = W (,ξ),q, τ n := inf{t > W t > n} T ρ k := inf{t > W t < k} T 15

16 , τ n T a.s., Fatou {W t τn } t [,T ], s t,, E[W t ρk F s ] lim inf E[W t τ n ρ n k F s ] = lim inf W s τ n n ρ k = W s ρk E[W t ρk : A] E[W s ρk : A], A F s (8), E[W t ρk : A] = E[W t ρk : A {ρ k t}] + E[W t ρk : A {ρ k < t}], k,,,, (8),, = E[W t : A {ρ k t}] kq(a {ρ k < t}) E[W t : A {ρ k t}] E[W t : A], kq(a {ρ k < t}) kq({ρ k < t}) kq( inf u T W u < k) E[W t ρk : A] E[W t : A], (k ) E[W s ρk : A] E[W s : A], (k ) E[W t : A] E[W s : A], A F s, x F : = sup{x R ξ A T F + W x,ξ T } x F : = inf{x R ξ A T F + W x,ξ T } 3.3. ( ) 16

17 1 x F = x F = x F F, F = W xf,ξf T ξ F A T, (x F, ξ F ) 3 x F. [3] F t - R = {R t } t [,T ] W xf,ξf t = E Q [F F t ] E Q [ sup R t ] < t [,T ] T 3.4. ( ) U := sup E Q [R t ] t [,T ],, U o, U. [3] 17

18 3.,, (Ω, F, Q), w, E Q [ ] E[ ] 3..1 S = s >. ds t = S t T t dw t, t [, T ), S T = 1 t X t : = (T s) ds + 1 dw s, t [, T ), X = T s f(x) : = se x f(x u ) = s +, = s + f(x s )dx s + 1 f(x s ) T s dw s. f(x s )dx s dx s S t = f(x t ) (9), A t := log(1 t T ) = 1 T sds [4] c(t, ω) >, β t : = c (s, ω)ds, Y t :=, w c(s, ω)dw s Y t = w βt, t [, T ] 18

19 , c(t) = 1 T s ds,, (9) 1 T s dw s = w At S t = se w A t 1 A t, S t (t T ), [, T ] S S, S = E[S T ] = S = s >, S Strict 3.. CEV (Constant Elasticity of Variance ) S = s > ds t = St dw t, t [, T ].., X t := 1 S t, dx t = 1 St ds t + 1 S 3 t = dw t + 1 X t dt ds t ds t = d w t + 1 X t dt. (, w := w ), w w = x R 3, x = 1 s 3,, d( w t ) = = 3 i=1 3 i=1,.3 dŵ t :=, w i t w t d wi t i=1 w i t w t d wi t + 1 w t dt 3 i=1 (δ ij 1 w t wi t w j t w t )δ ijdt w t i w t dwi t, ŵ d( w t ) = dŵ t + 1 w t dt. 19

20 , X t = w t, S t = 1 w t,, E[St 1 ] = E[ w t ] = = 1 z (πt) 1 1 tu + x (π) R 3 1 R E[S t ]. (t ) z x e t 3/ dz u e 3/ du, E[S t ]. (t ), E[S T ] < s T >, S, E[S t ] = S = s,, S Strict, 3..3 SV (Stochastics Volatility ) ds t = S t V t dw S t, dv t = ηv t dw V t + µv t dt, S = V = s >. (, η, µ >, w S Q, w Q w S, ρ ( 1, 1), w V := ρw S + 1 ρ w ) SV(Stochastics Volatility) S, dp = S T S dq P, P Q, -, S T /S = exp{ V ssws S 1/ V s ds}, w S,P t := w S t P 3.. V s ds, t [, T ] w P t := ρw S,P t + 1 ρ w t, t [, T ] w P = {w P t } t [,T ] P

21 . Q, w S w, d(w t S t ) = S t dw t + w t ds t + dw t ds t = S t dw t + w t ds t (7) d(((w t ) t)s t ) = S t d((w t ) t) + ((w t ) t)ds t + d((w t ) t) ds t = S t w t dw t + ((w t ) t)ds t (8) d(wt (w S,P t S t )) = w S,P t S t dwt + wt d(w S,P t S t ) + dwt d(w S,P t S t ) = w S,P t S t dwt + S t (1 + wt S.P V t )dwt S (9), {wt S t }, {((wt ) t)s t }, {wt (w S,P t S t )} Q,, A F s, E P [wt : A] = 1 E Q [wt S T : A] S = 1 E Q [wt S t : A] S = 1 E Q [ws S s : A] ( (7) ) S = E P [ws : A], w P, E P [(w t ) t : A] = 1 S E Q [{(w t ) t}s t : A] = 1 S E Q [{(w s ) s}s s : A] ( (8) ) = E P [(w s ) s : A], w P, E P [w S,P t w t : A] = 1 S E Q [w S,P t w t S t : A] = 1 E Q [ws S,P ws S s : A] ( (9) ) S = E P [w S,P s w s : A], P, w, w S,P t =, w P w S,P, dwt P dwt P = (ρdw S,P t = dt + 1 ρ dw t ) (ρdw S,P t + 1 ρ dw t ), w P P 1

22 , V, dv t = ηv t dw P t + (µv t + ηρv t )dt. (1) 1 ([5]) 3.5. I := (l, r), l r, σ, b C 1, dx t = σ(x t )dw t + b(x t )dt, X = x X, P x e e(x) := inf{t > X t = l or X t = r} e X c (l, r),, κ(x) := x c e y c b(z) y σ dz (z) c 1 σ (z) e z b(w) c σ dw (w) dzdy s(x) := x c e y c b(z) σ (z) dz dy P x (e < ) = 1, x I κ s (1)κ(r ) <, κ(l+) < ()κ(r ) <, s(l+) = (3)s(r ) =, κ(l+) < κ(x) = x c y s 1 (y) c σ (z) s (z) 1 dzdy, l =, r =, σ(x) = ηx, b(x) = µx + ηρx c (, ), α := η µ > 1, D := e η µ log c+ η ρc >, s (x) = Dx α e βx κ(x) = 1 x y η y α e βy 1 z zα e βz dzdy c c

23 (). s(+) < x < c, s(x) = c x Dy α e βy dy,, c c y α e βy dy > e βc y α dy x x s(x) = D c c y α e βy dy < De βc y α dy (x +) x x, s(+) =, (), < c < x, κ( ) α y 1 z zα e βz dz = [ 1 β zα e βz ] y c 1 β y c (α )z α 3 e βz dzdy = 1 β yα e βy 1 β cα e βc α β y c e βz z α 3 dz y 1 z zα e βz dz = 1 β yα e βy 1 β cα e βc α y e βz z α 3 dz β c 1 β yα e βy, κ(x) x η y α e βy 1 β eβy y α dy = η 1 β, κ( ) < x c y dy η 1 β c 1 dy <. y 1 < α < y 1 z zα e βz dz = 1 β yα e βy 1 β cα e βc + α β 1 β yα e βy + α y β eβy z α 3 dz = 1 β yα e βy + 1 β eβy (c α y α ) = 1 β eβy c α c y c e βz z α 3 dz 3

24 , κ(x) x η y α e βy 1 β eβy c α dy = η 1 β cα, κ( ) < x, () c y α dy η 1 β c 1 dy <. yα 3.3, (1) V P Q, V dv t = ηv t dwt V + µv t dt.,, P Q, S S Strict, 3..4 SV () X = {X} t [,T ], f t (X) :=, λ >, η, λe λr log(x t /X t r )dr, (X t r := X t r ) V t (X) := η(f t (X)), ds t = S t V t (S)dw t, S = s >. f t (S), f t (S) = log S t λe λr log S r dr, f t (S), ( ) 3.4. ([6])Lemmma3.1 Z t := log S t, (Z t =, t < ) Y t := f t (S) = λe λr (Z t Z t r )dr 4

25 , dy t = dz t λy t dt. t [, T ] f(t, x) := e λt x,, e λt Y t = d(e λt Y t ) = e λt dy t + λe λt Y t dt + 1 dy t dy t = e λt dy t + λe λt Y t dt (11) λe λ(t r) dr = Z t λe λl dl λe λl Z l dl, H(t) := λeλl dl, F (t) := λeλl Z l d, g(t, x) := xh(t) F (t),, (11), (1),, 3.4 d(e λt Y t ) = H(t)dZ t + (Z t H (t) F (t))dt = H(t)dZ t (1) H(t)dZ t = e λt dy t + λe λt Y t dt dy t = e λt H(t)dZ t λy t dt = dz t λy t dt dy t = d(log S t ) λy t dt = 1 ds t 1 S t St ds t ds t λy t dt = V t dw t 1 V t dt λy t dt ( = η(y t )dw t λy t + 1 ) η (Y t ) dt (13) 5

26 , S, dp = S T S dq, Q P -, dw P := dw t V t dt, t [, T ] w P = {w P t } t [,T ] P, dy t = η(y t )dw P t, η (x) := 1 + x ( λy t 1 ) η (Y t ) dt (14) a, b I, a < x < b, τ := inf{t > X t [a, b]},., P x (X τ = a) = τ s(x t τ ) = s(x) + = s(x) + s(b) s(x) s(b) s(a), P s(x) s(a) x(x τ = b) = s(b) s(a) τ s (X s )dx s + 1 s (X s )σ(x s )dw t τ {s(x t τ )} t, s(x) = E[s(X t τ )] s(x) = E[ lim t s(x t τ )] = E[s(X τ )] = P x (X τ = a)s(a) + P x (X τ = b)s(b), P x (X τ = a) + P x (X τ = b) = 1 s (X s )dx s dx s 3.5 (13) σ (x) = 1 + x, b(x) = {λx + 1 (1 + x )}, D := e λ log(1+c ) c,, c < x, s(x) = x c D(1 + y ) λ e y dy s(x) D x c e y dy = D(e x e c ).(x ) 6

27 , x < c,, s(x) = c x D(1 + y ) λ e y dy s(x) D c x e y dy = D(e c e x ) De c <.(x ), τ := inf{t > Y t [, ]}, 3.5, Q(Y τ = ) = 1 (15), 3.5 (14) b(x) = {λx 1 (1 + x )}, P (Y τ = ) = 1 (16), (15) (16), P Q S Strict, 3..5., v(x, r) := n ) 3.6. ds t = S t dw t, S = s > x n (n)! h(n) (r), h(r) := e 1/r (, h (n) h n ( ) v xx = v r, (x, t) : = x 1/ e (T t)/8 v(log x, (T t)/) Y t : = (S t, t) (17) 7

28 ,, dy t = x (S t, t)ds t, Y, Y Q Y T =, Y >, Y, 3.6, v xx = n 1 x n (n )! h(n) (r), v r = n, x n (n)! h(n+1) (r) = n 1 x n (n )! h(n) (r) h n, P n (y),, P n, a n k P n y n k, h (n) (r) = P n (1/r)e 1/r h (n+1) (r) = P n(1/r) 1 r e 1/r + P n (1/r) 1 r e 1/r P n+1 (y) = P n(y)( y ) + P n (y)y (18) n 1 P n (y) = y n + a n ky n k (19) k=1 8

29 , (18), P n+1 (y) = y (P n (y) P n(y)), n 1 n 1 = y (n+1) + a n ky (n+1) k ny n+1 a n l (n l)y n l+1 k=1 n 1 n 1 = y (n+1) + a n ky (n+1) k ny (n+1) 1 a n l (n l)y (n+1) (l+1) k=1 = y (n+1) + {a n 1 y (n+1) 1 ny (n+1) 1 } n 1 +{ k= n 1 a n ky (n+1) k k= = y (n+1) + (a n 1 n)y (n+1) 1 n 1 + l=1 l=1 a n k 1(n k + 1)y (n+1) k } a n n 1(n + 1)y (n+1)+1 {a n k a n k 1(n k + 1)}y (n+1) k a n n 1(n + 1)y (n+1)+1 k=, (), (), (1), (3) a n+1 1 = a n 1 n () a n+1 k = a n k (n k + 1)a n k 1, k n 1 (1) a n+1 n = (n + 1)a n n 1 () a n 1 = n(1 n) (3) a n n 1 = ( 1) n n(n 1) 3a 1 = ( 1) n 1 n! (4) a n a n 1 = (n 3)a n 1 1 = (n 3)(n 1)( n) n a n = a 3 + (k 3)(k 1)( k) = O(n 4 ) l=3, k n a n k = a k+1 k + = O(n k ) n (n 1 k)a l k 1 l=1 9

30 , (1), (4),, a n n + (n + 1)a n 1 n 3 = an 1 n = ( 1)n (n 1)! a n 1 n 3 + nan n 4 = an n 3 = ( 1)n 3 (n )! : a 4 + 5a 3 1 = a 3 = ( 1) 3! n 3 a n n = ( 1) n (n + 1)! (n + l)! (n l)! + ( 1)n 3 (n + 1)n 5a 3 1 l=1,, k n,,,, a n n = O((n + 1)!) a n k = O((n k 1)!) a n k O(n n ), ( k n/) a n k O((3n/)!), (n/ 1 k n ) P n = O((3n/)!) n! ( n ) n πn e C n = hn (r) (n)! ( ( 3πn 3n e O 4πn( n = O ( ( e e 3/,, 3 ) 3n/ e )n ) ) n ( ) (3n) 3/ n ) 4n

31 ( ) (3n) 3/ Cn O n 4n ( ) 1 = O n, (n ), R = lim n =, 1 n Cn 31

32 F = F T, (Ω, F, Q, {F t }) Q- S H = H(S T ) t V t (H) V t (H) = E t [H(S T )] := E[H(S T ) F t ], K, C t (K) := V t ((S T K) + ) P t (K) := V t ((S T K) ) 4.1. S, (5) E t [S T ] < S t (5) C t (K) P t (K) < S t K, (6) lim (P t(k) K + S t ) >. (7) K. S, S E t [S T ] S t (8) S, S Strict, (8) E t [S T ] < S t,(5) (6),(7) C t (K) P t (K) = E t [S T ] K (9) 3

33 , (5) (6), (9),,(5) (7), P t (K) K + S t = C t (K) E t [S T ] + S t lim C t(k) = K, , S, S T =, C t (K) =, P t (K) = K, C t (K) P t (K) < S t K, 4.1. CEV CEV, S, w = x R 3, x = 1 s 3 w S t = 1 w t 4.1. S,. Q(S T dz) = s z 3 1 πt (e 1 T (1/z 1/s) e 1 T (1/z+1/s) ) 33

34 [3] dr t = dw t + δ 1 R t dt, R = s R = {R t } δ, R t p ν BES (t, s, y),, Γ, p ν BES(t, s, y) = 1 t y ν+1 s ν e 1 t (s +y ) ( sy I ν t ( z ) ν (z/) n I ν (z) : = n!γ(ν + n + 1) ν : = δ/ 1 n ) 1 y δ = 3,, Γ(ν + n + 1) = Γ(n + 3/) ( ) n+1 1 = (n + 1)(n 1) 5 3 π ( z 1/ (z/) I 1/ (z) = ) n n!γ(n + 3/) n = 1 ( z 1/ z 1 π ) z n+1 (n + 1)! n = 1 π z 1/ (e z e z ), p 1/ 1 y BES (t, s, y) = (e 1 t (s y) e 1 (s+y)) t πt s, S T = 1 w T p CEV, w 3, ( p CEV T, 1 ) ( s, z = p 1/ BES T, 1 s, 1 ) 1 z z = s 1 ( z 3 e 1 T (1/z 1/s) e 1 (1/z+1/s)) T πt 34

35 4.1, C t (K) P t (K) = E t [S T K] = z s 1 ( z 3 e π(t t) = (Φ(θ(S t )) 1) S t K < S t K 1 (T t) (1/z 1/s) e 1, (, Φ( ), θ(s) := 1 s T t ) (T t) (1/z+1/s)) dz s=st K 35

36 5 T H = H(S T ), T, ; W (x,ξ) T H(S T ) (x, ξ) R A T,,,, t G(S t ), t G(S t ) G S, G, H G S, H(S T ) (x, ξ) R A T, W (x,ξ) t E Q t [W (x,ξ) T ] ( 3.1 W ) E Q t [H(S T )] ( W (x,ξ) T H(S T )) E Q t [G(S T )] G(E Q t [S T ]) ( G Jensen ) = G(S t ) ( S ) (3), S, t [, T ] G(S t ), H G(S t ), S, (3), 5.1. H G t V t (H, G), V t (H, G) : = min{x R ξ A T, W (x,ξ) T H(S T ), W (x,ξ) u G(S u ) u [t, T )}, R = {R t } t [,T ] R t = J(S t, t) := H(S t )1 t=t + G(S t )1 t<t 36

37 , V t (H, G) R = {R t } t [,T ] t, G(x) 5.1. G β := lim sup x x, H G, V t (H, G) = sup E t [J(S u, u)] u [t,t ] > V t (H, G) = E t [H(S T )] + β(s t E t [S T ]) 5.1, Q S, S, S, V t (H, G) = E t [H(S T )], 5.1 T = 1 (T ) x >, t (, 1),, H x : = inf{u > S u x} 1 H x θ t : = inf{u > t S u x} 1 S(H x θ t ) = {S u Hx θ t } u [,1],, t < 1,,, S t = E t [S Hx θ t ] = E t [S t 1 Hx θ t =t] + E t [x1 t<hx θ t <1] + E t [S 1 1 Hx θ t =1] = S t E t [1 St >x] + xq t ({t < H x θ t < 1}) + E t [S 1 1 Hx θ t =1] S t E t [S 1 1 Hx θ t =1] = S t E t [1 St >x] + xq t ({t < H x θ t < 1}) γ t : = S t E t [S 1 ] = lim (S t E t [S 1 1 Hx θ t =1]) x = lim (S te t [1 St >x] + xq t ({t < H x θ t < 1})) x = lim xq t({t < H x θ t < 1}) x = lim xq t({ sup S u x}) (31) x u [t,1) 37

38 , G, ϵ >, G(x n ) x n > β ϵ, n N x n.(n ) {x n } n N, H n := H xn θ t, S t < x n n, sup E t [J(S u, u)] E t [J(S Hn, H n )] u [t,1], (31), = E t [H(S 1 )1 Hn =1] + E t [G(S Hn )1 Hn <1] = E t [H(S 1 )1 Hn =1] + G(x n) x n Q t ({H n < 1}) x n E t [H(S 1 )1 Hn =1] + (β ϵ)x n Q t ({ sup S u x n }) u [t,1] E t [H(S 1 )1 Hn =1] + βx n Q t ({ sup S u x n }) u [t,1] sup E t [J(S u, u)] lim E t[h(s 1 )1 Hn =1] + β lim x nq t ({ sup S u x n }) u [t,1] n n u [t,1], t u < 1,, G β = E t [H(S 1 )] + βγ t (3) Y H u := E u [H(S 1 )], Y G u := E u [G(S 1 )], u [t, 1] G β (x) := βx G(x), lim inf x G β (x) x =. E u [βs 1 G(S 1 )] = E u [G β (S 1 )] G(E u [S 1 ]) ( Jensen ) G β (S u ) ( S ) = βs u G(S u ) 38

39 , βe t [S 1 ] Y G u βs u G(S u ), G(S u ) βγ u + Y G u, u [t, 1), t u < 1, J(S u, u) = G(S u )1 u<1 + H(S u )1 u=1 = G(S u ) ( t u < 1) βγ u + Y G u βγ u + Y H u ( H G) J(S u, u) βγ u + Y H u, u [t, 1) (33) (33), u = 1, (33) u [t, 1], E t [J(S u, u)] E t [βγ u + Y H u ], (3) (34) 5.1. K, α (, 1], = β(e t [S u ] E t [S 1 ]) + E t [E u [H(S 1 )]] βγ t + E t [H(S 1 )] ( S ) sup E t [J(S u, u)] βγ t + E t [H(S 1 )] (34) u [t,1] G α (x) : = α(x K) + H(x) : = (x K) +, H G α t V t (H, G α ), V t (H, G α ) = (1 α)c E t (K) + αc A t (K) (, C E, C A.) 39

40 ., 5.1, H(x) = G(x) = (x k) +, Ct A (K) = Ct E (K) + (S t E t [S T ]), Ct E (K) + α(s t E t [S T ]) = (1 α)ct E (K) + αct A (K) 5.1, H, G α, V t (H, G α ) = E t [(S T K) + ] + α(s t E t [S T ]) = Ct E (K) + α(s t E t [S T ]) = (1 α)ct E (K) + αct A (K) 4

41 [1] A.M.G.Cox, D.G.Hobson. : Local martingales bubbles and option prices. Finance Stochast 9, (5) [] : (6) [3] : (7) [4] B. : ( ). (1) [5] S.Watanabe, N.Ikeda : Stochastics Differential Equations and Diffusion Processes. North Holland (1989) [6] D.G.Hobson, L.C.G.Rogers : Complete models with stochastics volatility. Math. Finance 8, 7 48(1998) [7] Heston.S, Loewenstein.M, Willard.G.A. : Options and Bubbles. The review of financial studies, (7) 41

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

, Brown,, dn(t = a(tn(t, N( = N (1 dt N(t t, a(t t, Malthus {N(t} t, (1 a(t,, a(t = r(t + ( r(t,,,, Brown,,,,, Brown, Itô Calculus,,,,,, Kalman-Bucy,, (1, s t N(s Z(s, N(s, Z(s = N(s + (2 i {Z(s} s t {Z(s}

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Black-Scholes 1 ( )

Black-Scholes 1 ( ) Black-Scholes Takaoka[T] Black- Scholes B S α B t = e rt S α t = S e αrt exp σw t + Ct } 2 σ2 t λdσ λ Λ 2 :=,, B, σ 2 λdσ < } W t } Ω, F, P; F t T > t [, T ], α R, r C, S F - S α dst α = αr+cφtst α dt+φtst

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63) 211 12 1 19 2.9 F 32 32: rot F d = F d l (63) F rot F d = 2.9.1 (63) rot F rot F F (63) 12 2 F F F (63) 33 33: (63) rot 2.9.2 (63) I = [, 1] [, 1] 12 3 34: = 1 2 1 2 1 1 = C 1 + C C 2 2 2 = C 2 + ( C )

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information