金融と保険の融合について

Size: px
Start display at page:

Download "金融と保険の融合について"

Transcription

1 ARTalternative risk transfer ART EVTextreme value theory ARTEVT

2 Bancassurance alternative risk transferart ART Paul - Choudhury Allfinanz

3 extreme value theoryevtevt EVT EVT ART EVT Alternative Risk TransferART ART ART ART ART ARTalternative risk transfer alternativerisk transfe ARTsigma

4 risk retention captive ART ART ART Schanz Schanz ART Alternative Solutions ART CogloneRe

5 Alternative Risk Absorbers ART Alternative Sales Channels ART holistic covers integrated risk managementbalance sheet protection Alternative Sales Channels

6 Swiss Re New Markets ; ; ;; ;; ;; ;; ;; ;; ;; ;; ;;

7 β = λ =

8 D S 1 D ={S 1 12,000 }

9 ILS insurance linked securitiesils ABS MBSILS ARTILS ILS catastrophe risk CAT

10 ILS special purpose vehicle/company ILS ILS ILS

11 PCS PCS ILS ILS Canter, Cole and Sandor

12 time-dependent probability Toyota Motor Credit ILSSchmock 1998Schmock1998Winterthur

13 Swiss Re New Markets abc Chicago Board of TradeISOInsurance Services Office ISO PCSProperty Claims Service 1996 Bermuda Commodities Exchange Guy Carpenter Catastrophe IndexGCCI Guy CarpenterIndexCo

14 PCS PCS Chicago Mercantile Exchange, CME degree days ILS Catastrophe Risk ExchangeCATEX CATEX CATEX OTC Considine CME OTC HDDheating degree-dayscddcooling degree-days CDDdegree days Considine ILSOTC ILSILS

15 Christensen1999 PCS Considine ILS ILS ILS sigma ILS ILS sigma ILS

16 dynamic financial analysis ART ART risk theory collective risk theory

17 Rolski, Schmidli, Schmidt and Teugels Embrechts, Frey and Furrer BühlmannGerber

18 LundbergCramér N ={N (t)} t intensityλ > 0 homogeneous Poisson process N (0) = 0 a.s. N 0 s < t N (t) N (s)s {N (u), u s} N 0 s < t N (t) N (s) s t s λt s Lévy N (t) t k A k A k = inf { t 0 : N (t) k} k 1 k T k T 1 = A 1, T k = A k A k 1, k = 2,3,... N (t) T k / λ k X k F X F (0 ) = 0 t S (t) N(t ) (t )= X k k=1 N = {N(t)} t, t 0 almost surely

19 S (t) compound Poisson process G t (x) P (S (t ) x) = P (N(t )= n)f n* (x), x, t 0 n=0 P (A) A I(t ) t I(t )= ct c t = u 0 U (t ) U (t ) = u + ct S (t ), t 0 T ψ (u, T ) = P (U(t )< 0, 0 t T ) T = Ψ(u) τ (T ) = inf { t : 0 t T, U(t )< 0} τ (T ) = c λµ> 0 u lim Ψ(u) = 0 λµ c net profit F n* (x) F nf n x n F 0* (x) x F 0* (x) x

20 c = (1+ρ) λµ ρsafety loading ρ = c/ λµ 1 Ψ(u) ρ 1 Ψ(u) = (1+ρ) n F n* I (u), u 0 1+ρ n=0 F I F (x) =1 F(x ) 1 x F I (x ) = F (y)dy µ 0 u = 0 Ψ(0) =1/(1+ρ) = λµ /c Ψ(u) Ψ ( u) = 1 ρ exp 1 + ρ µ ( 1+ ρ ) u Ψ(u) v > 0 c λ = exp ( νy ) F ( y ) dy = 0 m X ( ν ) 1 ν m X (v) F v > 0 Lundberg exponent

21 v > 0 u 0 Ψ (u) exp( vu) xexp (vx)f (x)dx< 0 lim exp ( νu ) Ψ ( u ) = u c λµ λm ( ν ) c X F I 2 1 F I (x) lim = 2 x 1 F I (x) 1 Ψ (u) F I (u), u p F I ε > 0 lim exp(εx) x F I (x) = F F I Ψ (u) Ψ(u,T ) diffusion approximation Grandell1991Appendix A. 4

22 λ>0 A(t )A(0) = 0 N(t )N(t ) N(s) A(t ) A(s) N(t ) inhomogeneous Poisson processa(t ) intensity measure mean value functiona(t ) t A(t) = α (s)ds 0 α(s) α(s) s α(s) s s µα(s) t I(t ) t 0 I(t ) = (1+ ρ)µα (s)ds = (1+ ρ)µa (t) N(t ) U(t ) =u + I (t ) S (t )= u + (1+ ρ)µa (t) X k k=1 A 1 (t ) = sup (s A (s) t ) N (t ) U (t ) U (A -1 (t )) = u + (1+ ρ)µt X k k=1 N (t ) hazard function

23 A 1 operational time scale λ λ mixed Poisson process P (L>0)=1 FN (t )L N N οl (N (Lt)) t 0 s < t N (t ) N (s) k { P ( N () t N () s = k ) = L ( t s)} exp { L ( t s)} df() L k! 0 L f (x) 1 f (x) α ν x ν 1 e αx Γ (ν) Γ (ν) = x ν 1 e x dx 0 N Pólya proces N (t ) doubly stochastic Poisson process λ λ Credit Suisse Financial ProductsCreditRisk + Credit Suisse Financial Products

24 Λ(t) N (t )Λ(t) N = N ο Λ {N(Λ(t))}t Cox process Λ (t) λ (t) t Λ(t) = λs (s)ds 0 λ (t)intensity process s < t N (t ) N (s) ( () ( ) ) ( ) k t 1 t P N t N s = k = E λ u du exp λ ( u ) du k! s s λ (t) = LL renewal proces N (T K ) K 1 T 2 T 3 GNT 1 ordinary renewal process G /λ T 1 G 0 G 0 (x) = λ G (s) ds stationary renewal process x 0 Λ(t) Λ(0) = t > 0Λ(t)< random measure hazard process Rolski, Schmidli, Schmidt and Teugels

25 Delbaen and Haezendonck premium calculation principles S c H c = H(S ) H c = E [S ]net-premium principle expectation principle c = E [S ]+δe [S ] variance principle standard deviation principle c = E [S ]+δvar[s ] c = E [S ]+δ Var[S ] semi-variance principle c = E [S ]+δe [{(S E [S ]) + } 2 ] u (x) u (x) = E [u (x+c S )] u (x) =(1 exp ( δx))/δ Embrechts, Frey and Furrer

26 exponential principle log E [exp(δ S)] c = δ VaR quantile principle c = F (1 δ) S F δ F (y) = inf{x R :F (x) y} δ Esscher principle E [X exp(δ X)] c = E [exp(δ X)] Bühlmann n ΩFPω Ω i X i (ω) ω i Y i (ω) ϕ Price[Y i ] Y i (ω)ϕ (ω)dp (ω)= E [Y i ϕ] ω ω ΩΣ n i=1 Y i (ω)= 0 Y risk exchange i u i i ω Ω u Xi ( ω ) + Yi ( ω ) ω Ω Y i ( ω ) ϕ( ω ) dp( ω ) dp ( ω ) ϕ, Yu i n Z = X i i=1 iy i (ω)

27 e δ Z(ω) ϕ (ω) = E [e δ Z ] X E [Xe δ Z ] E [e δ Z ] X Z X [ Xe δ Z ] δ X [ e δ ( Z E E Xe ] E = X ) δ X E [ Xe ] E [ e = δ ( Z X )] [ Xe = δ X E[ δ Z e ] E [ e δ Xeδ ( Z X ) ] E [ e δ X ] E [ e δ ( Z X )] E [ e X ] δ ] Esscher transform P Q e hx dq(x) = dp(x) E [e hx ] Q S Bachelier S t

28 ds t = µ S t dt + σ S t dw t W t no-arbitrage viable predictable self-financingφ t V t (φ ) 0 t TV 0 (φ ) = 0 V T (φ ) 0P (V T (φ ) >0)>0 complete replicable P P P previsiblelamberton and Lapeyre1996 Harrison and Pliskaadmissible Harrison and Pliska1981attainable PQP(A)> Q(A)> A F

29 P PP P TOPIX TOPIX

30 jump-diffusion model stochastic volatility model superreplicationsuperhedging quantile hedging Föllmer and LeukertVaR Sekine Föllmer and Leukert efficient hedge Schweizer

31 Delbaen and HaezendonckSondermann Delbaen and Haezendonck T t X t t X T X t p t t S t = p t +X t S t Q Meister Gerber and Shiu Bühlmann, Delbaen, Embrechts and Shiryaev Credit Suisse Financial Products CreditRisk + SBC UBSACRAActuarial Credit Risk Accounting

32 extreme value theoryevt EVT EVT EVT EVT a F nx 1, X 2,, X n M n = max (X 1, X 2,, X n ) x P (M n x ) = P (X 1 x, X 2 x,, X n x ) {F(x )} n right endpoint x F sup{x R :F (x) < 1} Embrechts, Resnick and SamorodnitskyEVT Embrechts, Klüppelberg and Mikosch Research Conference on Risk Measurement and Systemic RiskLuncheon Address FRB Work that characterizes the statistical distribution of extreme events would be useful iidindependent and identically distributed

33 x F x F = 0 x < x P(M F n x ) n 1 x x F M n M n x F a.s., n (M n d n ) / c n EVT n S n ( = X 1 + X 2 + +X n )S n n S n /n n X n

34 Marcinkiewicz Zygmund p (0, 2) a S n an 0, a.s. n n 1/p E [ X p ] < a 0 a = µ p (0, 1 ) p [ 1, 2 ) E [ X] p an n 1/p p=2 ( S n nµ )/(σ n ) stable distribution F Xn S n S n = d n 1/α X+ γ n αγ n FG α characteristic exponentx c n n 1/α α α αα domain of attraction S n a n d G α, n b n d = Feller

35 a n Rb n >0FG α F DA(G α )F DA(G α ) α F DA(G ) F DA(G )EX 2 σ S n µ n d Φ, n nσ ΦEX 2 a n R Lx S n a n d G α, n n 1/α L(n) EVT Embrechts, Klüppelberg and Mikosch EVTResnick d fxslowly varyinglim f(tx) / f x (x)= t a n Embrechts, Klüppelberg and Mikosch

36 M n Hc n >0 d n R M n d n d H, n c n H extreme value distributions 0, x 0 Fréchet Φ α (x)= α > 0 exp ( x α ), x> 0 exp( ( x ) α ), x 0 Weibull Ψ α (x)= α > 0 1, x> 0 Gumbel Λ (x ) = exp{ exp( x )}, x R c n normalizing constantd n centering constant norming constant generalized extreme value distributiongev H ξ; µσ µσh ξ 1 ξ H ( x ) x µ ξ; µ, σ = exp 1 + ξ, x R σ + µσξ ξ = 0 ξ0 H ; / ( x ) x µ = exp, x R µ, σ exp 0 σ ξ > 0 α =1/ξ, µ=1, σ =1/α Φ α ξ = 0 µ =0, σ=1 Λ (50) ξ < 0 α = 1/ξ, µ=1, σ = 1/α Ψ α FGa >0b R x G ( x )=F { ( x b )/a} location parameterscale parameter

37 x GEV H maximum domain of attractionf MDAH F MDAψ α x F Φ α Λ Ψα

38 EVT regularly varying f(x) t f (tx) lim = t α f (x) x αf R α RV α α = t α t t α F MDAΨ α F MDAΨ α x F < F (x F 1 /x) R α d n = x F c n = x F F (1 1 /n) F (t) quantile function F (t) inf{x R :F (x) t}, 0<t<1 F [] x F =1 < t lim x F ( xf 1 / ( tx )) 1/ ( tx ) 1 = = t F ( xf 1/ ( x )) 1 / x F MDAΨ 1 d n d n x F c n F (1 1 /n) n c n x F x F F MDAΦ α t =

39 F MDAΦ α F (x) R α d n = 0 c n = F (1 1 /n) F (x) = 1 (a /x) b ab lim x F ( tx ) F ( x ) { a/ ( tx )} = lim = t b x ( a/ x ) b F MDA b b c n F (1 1 /n) c n d n = 0 c n n F MDAΛ F MDAΛz x F z x x F F( x ) = c ( x ) exp c (x) g(x) lim c (x) = c 1 >0 lim g(x) =1 x x F x x F a (x) lim a (x) = 0 x x F d n = F (1 1 /n)c n = a(d n ) z x g () t dt a() t cgaa x F ( ) F () t a x F = dt, ( x ) x x < x F F

40 d n c n a (x) a( x )= x 1 2π 1 2π x t exp ( k 2 / 2 ) dk 2 exp ( k / 2 ) dk ϕ ( x ) dt = x + Φ ( x ) ϕ Φ c n d n c n M n c n Λd n n= n c n d n c n d n n

41 F(x)=P(M n x) F(x)=P(M n x) M 5 EVD M 10 EVD x x F(x)=P(M n x) F(x)=P(M n x) M 50 EVD M 100 EVD x x u x F F X u x F F (x +u ) F (u ) F u (x) P (X u x X>u) =, u x x F 1 F (u ) u X excess distribution function e (u) = E (X u X>u) mean excess function

42 F u excess-liferesidual lifetime excess-of-loss 1 e ( u) = ( x u ) df ( x ) = F ( u) u x F x 1 F F ( x ) dx F ( u) X (F (x) = exp ( λx))e (u) =1/λ u X F u u x F F u Pickands - Balkema - de Haan generalized Pareto distributiongpd GPDGPDG ξ ; β (x) u 1 (1 + ξ x /β) 1 /ξ G ξ ; β (x) = 1 exp ( x /β) ξ 0 ξ = 0 β> 0 ξ 0 x ξ <0 x 1/ξ GPDGEV ξ= 0 ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ x x

43 β= 1 ξ GPD ξ 0 ξ< 0 GPD Pickands - Balkema - de Haan FF MDAH ξ β (u) lim sup F u (x) G ξ, β (u) ( x ) =0 x x F 0< x<x F u u F u GPD ξ β (x) ξ= 0 ξ= 0 F MDAax ξ 0ξ > 0 F (x) F( x ) = c ( x ) exp z x 1 dt a() t, z < x < z ac lim c (x ) = c (0, )lim a (x ) /x = ξ 1 x x a (x ) β (x ) ξ < 0 F (x F 1/x) a (x ) β (x ) u GPD GPD F ξ= 0 β (x ) Embrechts, Klüppelberg and MikoschA

44 u=gpd u PD u x u + x F (u + x) Fu F (u + x) = F (u ) F u(x) F (u ) u N u NN u / N u uf u (x) Fu(x)=P(X u x X>u) F 0.5 (x) GPD Fu(x)=P(X u x X>u) F 1.0 (x) GPD x x Fu(x)=P(X u x X>u) F 1.5 (x) GPD Fu(x)=P(X u x X>u) F 2.0 (x) GPD x x

45 GEVGPDξ GPD u u GEV Hill estimator HillF MDAΦ α GPD POTpeaks-over-threshold POT EVT POT TOPIX EVT VaRDanielsson and de Vries POTEmbrechts, Klüppelberg and Mikosch McNeil AR AR AR TOPIX EVT iidiidevt Embrechts, Klüppelberg and Mikosch1997McNeil and Frey

46 u mean excess plotu e( u) 1 Ν en(u) = ( X i u) + N u i =1 X i i GPDξ e( u) TOPIX u GPD

47 e(u) e(u) e(u) u u u e(u) e(u) u u n x n x n, e 2,000 x n

48 GPD u GPDPOT u ξ β u POT rξ β Y N u 1 ξ ( ξ, β ; Y ) = n ln( β ) + 1 ln 1 + β ξ i = 1 Y i Y = ( Y 1, Y 2,, Y Nu ) Y = ( TOPIX i ) u i τ = ξ / β rξ β Y ξ Ν u 1 ξ= ln( 1 τy i ) N i =1 τ 1 τ + 1 N u ˆ ξ N u i = 1 Y 1 i τy i = 0 ξ u N u GPD ξ / ξ ξ u u ξ =β =N u = Embrechts, Küppelberg and Mikosch

49 ξ ξ F (u) N u / N u F F F GPD u ξ β u u

50 x POT heteroscedasticity n x n Nx n, n/(n+1))

51 EVTiid EVT EVT EVT EVT excess-of-loss cover EVT McNeil EVTRootzén and Tajvidi windstorm insurance ARTWinterthur Schmock EVT EVT VaR Artzner, Delbaen, Eber and Heath sub-additivityhomogeneitymonotonicity risk-free condition VaR Embrechts, Klüppelberg and MikoschE X X >x p xp Artzner, Delbaen, Eber and Heath x pevt VaR anielsson and de Vries1997McNeil and Frey Phoa Cruz, Coleman and Salkin

52 MTEC ART Alternative Risk Transfer Artzner, P., F. Delbaen, J.M. Eber and D. Heath, Thinking Coherently, Risk, Vol. 10 No.11, November 1997, pp Bühlmann, H., Mathematical Methods in Risk Theory, Springer-Verlag, 1970., An Economic Premium Principle, ASTIN Bulletin 11, 1980, pp , F. Delbaen, P. Embrechts and A. Shiryaev, No-Arbitrage, Change of Measure and Conditional Esscher Transforms, mimeo, ETH Zürich, Canter, M., J. Cole and R. Sandor, Insurance Derivatives: A New Asset Class for the Capital Markets and a New Hedging Tool for the Insurance Industry, The Journal of Derivatives, Winter, 1996, pp Christensen, C. V., A New Model for Pricing catastrophe Insurance Derivatives, mimeo, University of Aarhus, Considine, G., Introduction to Weather Derivatives, Weather Derivatives Group, Aquila Energy, Credit Suisse Financial Products, CreditRisk+ - A Credit Risk Management Framework, Cruz, M., R. Coleman and G. Salkin, Modeling and Measuring Operational Risk, Journal of Risk, Fall 1998, pp Danielsson, J. and C.G. de Vries, Value-at-Risk and Extreme Returns, LSE Financial Markets Group Discussion Paper, 273, London School of Economics, Delbaen, F. and J. Haezendonck, A Martingale Approach to Premium Calculation Principles in an Arbitrage Free Market, Insurance: Mathematics and Economics 8, 1989, pp Embrechts, P., R. Frey and H. Furrer, Stochastic Processes in Insurance and Finance, mimeo, ETH Zürich, 1998., C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer-Verlag, 1997., S. Resnick and G. Samorodnitsky, Extreme Value Theory as a Risk Management Tool, mimeo, ETH Zürich, Feller, W, An Introduction to Probability Theory and Its Applications, Volume 2, John Wiley and Sons, 1966.

53 Föllmer, H. and P. Leukert, Efficient Hedging: Cost versus Shortfall Risk, mimeo, Humboldt- Universität, and, Quantile Hedging, Finance and Stochastics, Vol.3, No.3, 1999, pp Gerber, H, An Introduction to Mathematical Risk Theory, S. S. Huebner Foundation Monograph Series No.8, and E. Shiu, Option Pricing by Esscher Transforms, Transactions of the Society of Actuaries XLVI, 1994, pp Grandell, J., Aspects of Risk Theory, Springer-Verlag, Harrison, J. M. and S. Pliska, Martingales and Stochastic Integrals in the Theory of Continuous Trading, Stochastic Processes and their Applications 11, 1981, pp Hill, B, A Simple General approach to Inference about the Tail of a Distribution, The Annals of Statistics, Vol. 3, No. 5, 1975, pp Lamberton, D. and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall, McNeil, A., Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory, ASTIN Bulletin, Vol. 27, No. 1, 1997, pp , Extreme Value Theory for Risk Managers, working paper, ETH Zürich, and R. Frey, Estimation of Tail-Related Risk Measures for Hetero-scedastic Financial Time Series: an Extreme Value Approach, mimeo, ETH Zürich, Meister, S., Contributions to the Mathematics of Catastrophe Insurance Futures, Diplomarbeit, ETH Zürich, Paul-Choudhury, S., Getting Down to Business, Insurance Risk Special Report, Risk July 1998, pp. 1. Phoa, W., Estimating Credit Spread Risk Using Extreme Value Theory, The Journal of Portfolio Management, Spring 1999, pp Resnick, S., Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, Rootzén, H. and N. Tajvidi, Extreme Value Statistics and Wind Storm Losses: a Case Study, Scandinavian Actuarial Journal, 1, 1997: pp Rolski, T., H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance, John Wiley & Sons, Schanz, K. U., The Convergence of Re insurance and Capital Markets - the Financial Services Industry Reinventing Itself,, Schmock, U., Estimating the Value of the WINCAT Coupons of the Winterthur Insurance Convertible Bond: a Study of the Model Risk, Discussion paper, ETH Zürich, Schweizer, M., Option Hedging for Semimartingales, Stochastic Processes and their Applications 37, 1991, pp Sekine, J., Quantile Hedging for Defaultable Securities in an Incomplete Market, mimeo, Graduate School of Engineering Science Osaka University, 1999.

54 sigma, Insurance Derivatives and Securitization: New Hedging Perspectives for the US Catastrophe Insurance Markets? No. 5, 1996, Swiss Re, Zürichhttp://www. swissre.com., Too Little Reinsurance of Natural Disasters in Many Markets, No. 7, 1997, Swiss Re, Zürich Alternative Risk Transfer ART for Corporations: A Passing Fashion or Risk Management for the 21st Century?, No.2, 1999, Swiss Re, Zürichhttp:// Sondermann, D., Reinsurance in Arbitrage-Free Markets, Insurance: Mathematics and Economics 10, 1991, pp Swiss Re New Markets, Integrated Risk Management Solutions - Beyond Traditional Reinsurance and Financial Hedging, Swiss Re Publications, 1998.

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

(m/s)

(m/s) ( ) r-taka@maritime.kobe-u.ac.jp IBIS2009 15 20 25 30 1900 1920 1940 1960 1980 2000 (m/s) 1900 1999 -2-1 0 1 715900 716000 716100 716200 Daily returns of the S&P 500 index. 1960 Gilli & Këllezi (2006).

More information

バリュー・アット・リスクのリスク指標としての妥当性について ― 理論的サーベイによる期待ショートフォールとの比較分析―

バリュー・アット・リスクのリスク指標としての妥当性について ― 理論的サーベイによる期待ショートフォールとの比較分析― aaaab aabab VaR VaRArtzner et al. VaR VaR VaR Artzner et al.var VaR VaR VaR ρ XY ρ (X+Y ) ρ(x) + ρ(y ) XY ρ VaRArtzner et al.1999basak and Shapiro1999Danielsson2000Rootzén and Klüppelberg VaR VaR VaRVaR

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

CDOのプライシング・モデルとそれを用いたCDOの特性等の考察: CDOの商品性、国内市場の概説とともに

CDOのプライシング・モデルとそれを用いたCDOの特性等の考察: CDOの商品性、国内市場の概説とともに CDO CDO CDO CDO CDO CDO E-mail: kiyotaka_komiya@btm.co.jp CDOcollateralized debt obligation CDO CDO CDO CDO CDOCDO CDO CDO CDO CDOCDO CDO CDO CDO CDO CDO CDOABSasset backed securities CBOcollateralized

More information

’fl−wfiÁŁÊ“u‰`†i„»‚ãŁÛ„¯…−…X…NŠšŸ_†j - ‚æ5›ñ†FGerber-Shiu›ð’͇Ƈ»‡Ì›žŠp

’fl−wfiÁŁÊ“u‰`†i„»‚ãŁÛ„¯…−…X…NŠšŸ_†j - ‚æ5›ñ†FGerber-Shiu›ð’͇Ƈ»‡Ì›žŠp 5 Gerber-Shiu 2016 1 4 8 ( ) Modern Actuarial Risk Theory 4 1 / 44 Part I ( ) Modern Actuarial Risk Theory 4 2 / 44 (Risk Theory, ) ( ) : Q. NO Q. NO? ( ) Modern Actuarial Risk Theory 4 3 / 44 Risk theory

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応 VaR VaR VaR VaR GARCH E-mail : yoshitaka.andou@boj.or.jp VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR VaR VaR VaR VaR VaR VaR

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

24 [11] [4, 8, 10, 20, 21] CreditMetrics [8] CreditMetrics CreditMetrics CreditMetrics [13] [1, 12, 16, 17] [12] [1] Conditional Value-at-Risk C

24 [11] [4, 8, 10, 20, 21] CreditMetrics [8] CreditMetrics CreditMetrics CreditMetrics [13] [1, 12, 16, 17] [12] [1] Conditional Value-at-Risk C Transactions of the Operations Research Society of Japan Vol. 54, 2011, pp. 23 42 c CVaR 1 FT ( 2009 2 12 ; 2010 10 26 ) Conditional Value-at-Risk 10 7 50 35 : Conditional Value-at-Risk 1. BIS [3] structuralreduced

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr 1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-French (FF) 3 [5] (Capital Asset Pricing Model; CAPM

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { ( 5 5.1 [ ] ) d f(t) + a d f(t) + bf(t) : f(t) 1 dt dt ) u(x, t) c u(x, t) : u(x, t) t x : ( ) ) 1 : y + ay, : y + ay + by : ( ) 1 ) : y + ay, : yy + ay 3 ( ): ( ) ) : y + ay, : y + ay b [],,, [ ] au xx

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1 (3.5 3.8) 03032s 2006.7.0 n (n = 0,,...) n n = δ nn n n = I n=0 ψ = n C n n () C n = n ψ α = e 2 α 2 n=0 α, β α n n (2) β α = e 2 α 2 2 β 2 n=0 =0 = e 2 α 2 β n α 2 β 2 n=0 = e 2 α 2 2 β 2 +β α β n α!

More information

yasi10.dvi

yasi10.dvi 2002 50 2 259 278 c 2002 1 2 2002 2 14 2002 6 17 73 PML 1. 1997 1998 Swiss Re 2001 Canabarro et al. 1998 2001 1 : 651 0073 1 5 1 IHD 3 2 110 0015 3 3 3 260 50 2 2002, 2. 1 1 2 10 1 1. 261 1. 3. 3.1 2 1

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 2, 3, 5 I- HML-FL 1 Fama-French

More information

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1

2016 B S option) call option) put option) Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 1 206 B S option) call option) put option) 7 973 Chicago Board Option Exchange;CBOE) F.Black M.Scholes Option Pricing Model;OPM) B S 997 Robert Merton A 20 00 30 00 50 00 50 30 20 S, max(0, S-) C max(0,s

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information