J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L

Size: px
Start display at page:

Download "J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L"

Transcription

1 Bessel ) Lommel Bessel ( + ) Γ. Γ Γ ( ) Bessel I: 4 3. Bessel J n (z) (n Z) Bessel II: & Fourier-Bessel 3 5. Bessel J ν (z) Fourier-Bessel Reference37 ( + ) Bessel

2 J. Bernoulli 694 Riccti dy dx + ψy + φy + χ = (ψ, φ, χ x ) Leibniz Riccti 73 Leibniz Bessel ( )Bessel. 738 J. Bernoulli. 764 Novi Comm. Acd. Petrop. L. Euler Hist. de l Acd. R. des Sci. de Berlin Lngnge Kepler 4. 8 Mém. de l Acd. des Sci. Fourier (L Théorie nlytique de l chleur) Jour. de École Polytechnique Poisson Bessel Bessel 84 Berliner Abh. Bessel Untersuchung des Theils der plnetrischen Störungen, welcher us der Bewegung der Sonne entsteht. Kepler Bessel systemtic 8 Hnkel, Lommel, Neumnn, Schläfli [W] Bessel 8 Bessel Γ x! Γ [AAR]

3 . Γ C meromorphic function x Z f(x) = x! f(x) x Z (x + n)! x! = (x + )(x + ) (x + n) n!(n + )(n + ) (n + x) = (x + )(x + ) (x + n) n!n x (n + )(n + ) (n + x) = (x + )(x + ) (x + n) n x (n + )(n + ) (n + x) lim n n x = lim x n k= n!n x f(x) = lim n (x + )(x + ) (x + n) ( + k ) = n () x C\Z < k Z > f(k) = k! ( n!n x n (x + )(x + ) (x + n) = n + ) x n j= ( + x ) ( + ) x j j ( + x ) ( + ) x ( ) x(x ) = + + O j j j j 3. ) x C \ Z <. C meromorphic function Γ(z) ( ) n!n x Γ(x) := lim n x(x + )(x + ) (x + n ) n!n x = lim n x(x + )(x + ) (x + n) () Euler Γ(x + ) = xγ(x), (3) Γ(n + ) = n! (n Z ). (4) 3

4 . (3), (4) () Γ(x) x Z Γ(x) Weierstrß. (Weierstrß ) x C {( Γ(x) = xeγx + x ) } e x n n γ = lim n Euler n= ( n k= ) k log n (5) Γ(x) = lim x(x + ) (x + n) n n!n x = lim n x ( + x = lim n xe x(+ + =xe γx n= ) ( + x n log n) n ) ( + x ) x log n e n k= {( + x ) } e x n n {( + x ) } e x k k x C (.3 ) Euler reflection formul. x Z Γ(x)Γ( x) = π sin πx. (6) Weierstrß (5) Γ(x)Γ( x) = ( x)γ(x)γ( x) =xe γx e γx =x =x n= n= {( + x n ) ( x n= n {( + x ) e x n n ) } {( e x n x n sin πx = π 4 } n= ) e x n {( x ) } e x n n }

5 3, (.4 ) dupliction formul.3 x C \ Z Γ(x)Γ(x + ) = π x Γ(x). (7) Weierstrß (5) log Γ(x) = log x + γx + k> { ( log + x ) x } k k C \ Z (.5 ) d dx log Γ(x) = x + γ + { x + k } k k> C \ Z d dx log Γ(x) = k (x + k) F (x) := Γ(x)Γ(x + ) x C \ Z d dx log F (x) = k =4 k = d (x + k) + (x + + k k) (x + k) log Γ(x) dx A, B F (x) = AB x Γ(x) A, B (3) F (x+ ) = Γ(x+ )Γ(x+) = xf (x) F (x + ) = ABx+ Γ(x + ) = B xf (x) B = F (x) = A x Γ(x) F ( ) = Γ( )Γ() = A Γ() A = Γ( ) reflection formul (6) Γ( ) = π 7) Guß.4 (Guß) n Z > x C \ Z n ( Γ(x)Γ x + ) ( Γ x + n ) = (π) n n nx Γ(nx). (8) n n.6 (Hint: Stirling 5

6 . Γ Stirling t = te xt Tylor e t. (Bernoulli). n Z B n (x) Bernoulli te xt e t = n= B n (x) tn n! (bout t = ).. Bernoulli B n := B n () Bernoulli.5. B = B k+ = (k Z > ) B =, 6 B 4 =, B 3 6 = 4. B (x) = x, B (x) = x x + 6. k Z > n = ( )k+ k B k k π k (k)! n> (.7 ) Hint x cot x = x + x cot x x cot x = + n= x e x x x n π.6 (Euler-Mclurin) f C s - (s Z > ) n k=m+ f(k) = n m f(x)dx + + ( )s s! s l= n m ( ) l B l l! {f (l ) (n) f (l ) (m)} B s (x [x])f (s) (x)dx. x R [x] x 6 (9)

7 .7 n Z > x R -periodic B n (x). B (x) := x [x],. n > B n(x) = B n (x) B n (x)dx = B n (x) = n! B n(x [x]) x..7 B (x) := G(x, t) := n= B n (x)t n < x < x G x = n= B n(x)t n = n= B n (x)t n = t n= B n (x)t n = tg G(x, t) = A(t)e xt x B n (x)dx = G(x, t) = = A(t) et t text e t = j j+ n= B n (x) tn n! < x < B n.6 s s = m j < n j Z j+ [( d (f(j) + f(j + )) = x j ) ] f(x) dx dx = j f(x)dx + j+ j ( x j ) f (x)dx j = m, m +,, n n k=m+ f(k) + n (f(m) + f(n)) = f(x)dx + m 7 n m ( x [x] ) f (x)dx

8 B = B (x) = x n n n f(k) + B (f(n) f(m)) = f(x)dx + B (x [x])f (x)dx k=m+ m s =.7 B n (x) n n s f(k) = f(x)dx + ( ) l Bl (){f (l ) (n) f (l ) (m)} k=m+ m + ( ) s n m l= B s (x)f (s) (x)dx..7.8 z C \ (, ] ( log Γ(z) = z ) m B j log z z + j(j ) z j () + Γ(z) = lim n log Γ(z) = lim n log π m [ n l= j= l z + l (z ) log(n + ) m B m (x [x]) dx. (x + z) m ( l + l n l= ) x ] log z + l l log brnch, C \ (, ] f(x) := log x + z = log(x + z ) log x x.6 n l= log z + l l = log z + = log z + + m l= n l= n log z + l l {log(x + z ) log x}dx ( ) l B l l! {f (l ) (n) f (l ) ()} + ( )m (m)! 8 n B m (x [x])f (m) (x)dx ()

9 .5 k Z > f (k) (x) = ( ) k (k )![(x + z ) k x k ] n l= log z + l l = log z + + m j= n {log(x + z ) log x}dx B j j(j ) + [log(n + z ) log n log z] + n [ B m (x [x]) m [ (n + z ) j n ] j z + j (x + z ) m x m n (n + z ) log(n + z ) n log n + log n + z n m [ B j + j(j ) (n + z ) ] j n j j= ] dx. (z ) log(n + ) n () ( log Γ(x) = z ) m ( ) B j log z z + + j(j ) z j j= [ B m (x [x]) m (x + z ) ] () dx. m x m [ ( lim log Γ(z) z ) ] Γ(z) log z + z = lim log z z z z e z () m :=.5.7 [ ( lim log Γ(z) z ) ] log z + z = z + B (x [x]) x dx = + B (x [x]) x dx (7) lim z Γ(z) Γ(z) = lim z z e z z (z) z e =(π) =(π) lim z { lim z = (π) z Γ(z) z z e z Γ(z) z z e z z z lim Γ(z + ) (z + )z e z } Γ(z)Γ(z + ) (z) z e z e ( + z ) z 9

10 [ ( lim log Γ(z) z ) ] log z + z = log π z () z m j= B j j(j ) + m B m (x [x]) dx = log π x m ().8 Rex (.8 ( ) B m (x [x]) dx = O (x + z) m x m.9 (Stirling-de Moivre) m Z > Γ(z) =(π) z z e z+ P m j= (π) (z ) z e (z )+ P m j= B j j(j ) z (j ) +O(z (m+) ) B j j(j ) z (j ) +O(z (m+)). rg z = π δ δ > Γ(z) (π) (z ) z e (z ) Stirling z.3 ( ) s R > Γ Γ(s) Γ(s) := e x x s dx x () Res > s C well-defined Γ C \ Z Euler () s R > n Z > ( x ) n e x x n n

11 n Γ(s) = lim n ( x n) n x s dx (3) (3) z = nx n ( x ) n x s dx =n s ( z) n z s dz n =n s B(n +, s) s Γ(n + )Γ(s) =n Γ(n + + s) n s n! = s(s + )(s + ) (s + n) (3) (3) Euler () B(p.q) Euler Bet Rep > Req > B(p, q) = ( x) p x q dx (4) B(p, q) = Γ(p)Γ(q) Γ(p + q).9 (5) p, q R > (5). e x y x p y q (x, y) R > ( ). Fubini Γ(p)Γ(q) = = e x x p dx e y y q dy e x y x p y q dxdy x = X, y = Y 3. X = R cos θ, Y = R sin θ x = sin θ, y = R () e x x s x = Res > Γ s C \ Z () s C \ Z e x x s Γ

12 . s C \ Z Γ(s) = e z z s dz e π s C z (6) () C Hnkel rg z = rg z = π : C Res > () e z z s C \ {} Cuchy C ε C rg z = C rg z = π C 3 C :=C C C 3, C =C 3 := (ε, ], C := {z C z = ε}, ε R > e z z s dz = e z z s dz C C e z z s dz = C e z z s dz = C 3 ε ε e z z s dz, e z (e π z) s dz = e π s z = εe θ e z z s dz = π e θ(εe εe θ ) s dθ C ε e z z s dz

13 ε θ π e εe θ(εe θ ) s ε Res e ε+π Ims limit (. ) C e z z s dz e z z s dz (e π s ) e z z s dz C C 3 e z z s dz = lim e z z s dz = (e π s ) C ε C Γ(s) e z z s dz. s C \ Z Γ(s) Γ(s) = π e z z s dz. (7) C C Hnkel rg z = π rg z = π : C Hnkel ( 6) s Γ(s) = eπ e π s C = sin πs reflection formul ( 6) Γ(s) = Γ(s)Γ( s) π C e z (e π z) s dz z C e z (e π z) s dz z. e z (e π z) s dz z w = e π z Γ( s) = π e w w s dw γ s s 3

14 . w = e π z w = e π z. Bet B(p, q) p, q Z B(p, q) = z p ( z) q dz. ( e π p )( e π q ) c c A A rg z = rg( z) = brnch Pochhmmer 3 Bessel I: n Z n Bessel J n (z) [W] 3. Bessel J n (z) (n Z) z C t C e z(t t ) t = Lurent e zt t e z t t 3. n Z J n (z) e z(t t ) = n Z J n (z)t n (8) J n (z) n Bessel t t (8) e z(t t ) = J n (z)( t ) n n Z = J n (z)( t) n n Z n Z J n (z) = ( ) n J n (z) (9) 4

15 J n (z) J n (z) = π e z(t t ) t n dt. () ζ 3. ζ C () t = e θ J n (z) = π e (z sin θ nθ) dθ = π cos(z sin θ nθ)dθ. () π π π 3. cos J n (z) = π π {cos(z sin θ) cos nθ + sin(z sin θ) sin nθ}dθ θ π θ π cos(z sin θ) cos nθdθ π J n (z) = π sin(z sin θ) sin nθdθ π n : even, n : odd, [, π] [ π, π] J n (z) = π π π π cos(z sin θ) cos nθdθ sin(z sin θ) sin nθdθ n : even, n : odd, J n (z) e zt e zt () e z(t t ) = ( z) r t r r= r! m= ( z) m t m m! n Z t n ( z) n+m ( z) m, (n + m)! m! m= n Z J n (z) = ( ) ( m z) n+m, (3) m!(n + m)! m= 5

16 n Z < Γ J n (z) = m= ( ) m ( z) n+m m!γ(n + m + ), (4) n Z 3.3 (4) (9) n Z (3) J n (z) order z C n J n (z) z z m m!(n + m)! m= z n z m n! m!(n + ) m m= J n (z) z n ( ) 4 exp z n! n + z n ( ) exp n! 4 z (5) 3. {J n (z)} (8) Bessel J n (z) ide 3. n Z J n (z) + J n+ (z) = n z J n(z), J n (z) J n+ (z) = J n(z), (6) (8) t z ( 3.4 (6) zj n(z) + nj n (z) = zj n (z), zj n(z) nj n (z) = zj n+ (z), d dz {zn J n (z)} = z n J n (z), d dz {z n J n (z)} = z n J n+ (z). 6

17 n n d dz {zn J n (z)} = z n J n (z), d dz {z n J n (z)} = z n J n (z), J n (z) [ d z n d ] dz dz {zn J n (z)} = z n J n (z) 3. n Bessel J n (z) z d w dz + z dw dz + (z n )w =. (7) (7) J n (z) n n J n (z) (9) (8) e x(t t ) e y(t t ) = e (x+y)(t t ) r Z J r (x)t r m Z J m (y)t m = n Z J n (x + y)t n t n 3.3 n Z J n (x + y) = m Z J n m (x)j m (y). (8) 3.5 e z(t t ) e z( t+ t ) = J (z) + J r (z) =. r= 7

18 3.3 Poisson 83 Jour. Éc. Polytech. Bessl J n (z) n Z n Z ( J n (z) = z) n π Γ(n + )Γ( ) cos(z cos θ) sin n θdθ (9) Poisson cos(z cos θ) ( z) n Γ(n + )Γ( ) π r= ( ) r (r)! (z cos θ)r sin n θdθ ( 3.6 ) ( z) n Γ(n + )Γ( ) r= (9) π (3) Γ(r + ) ( Γ( ) = r ) cos r θ sin n θdθ = ( ) r π (r)! zr cos r θ sin n θdθ π cos r θ sin n θdθ =B(r +, n + ) = Γ(r + )Γ(n + ) Γ(r + n + ) ( ) n z ( ) r Γ(r + ) z r (r)! Γ( ) Γ(r + n + ) r= ( r 3 ) (r )(r 3) = = (r)! r r r! (9) (4) (9) ( J n (z) = z) n π Γ(n + )Γ( ) e z cos θ sin n θdθ θ π θ ( 3.7 ) t = cos θ ( J n (z) = z) n Γ(n + )Γ( ) e zt ( t ) n dt (3) 8

19 (9) () n Z () θ π θ J n (z) = ( ) n π π cos(z cos θ) cos nθdθ 3. π 3.8 cos nθ = π cos(z cos θ) sin n θdθ = = π cos(z cos θ) sin n θdθ cos(z sin θ) cos n θdθ n ( ) m 4n {4n } {4n (m ) } sin m θ (m)! m= 3.9 (9) J n (z) = ( ) n π n ( ) m 4n {4n } {4n (m ) } (m)! m= (3) (6) Γ(m + )Γ( ) π(m)! ( z) m = ( m ) ( ) m 3 (m)! ( z) m (m )(m 3) 3 = (m)!z m = m m!z m Lommel 868 Mth. Ann. J n (z) = ( ) n n m= Γ(m + )Γ( ) ( z) m J m (z) ( ) m 4n {4n } {4n (m ) } J m (z) m m! z m 4 Bessel II: ν C Bessel J ν (z) 9

20 4. (7) z d w dz + z dw dz + (z ν )w =. (3) w(z) = z ρ k= c k z k c (3) z d w dz = zρ (ρ + k)(ρ + k )c k z k, z dw dz = zρ k= (ρ + k)c k z k, k= (z ν )w = z ρ (c k ν c k )z k, c = c = z ρ+k (k =,,, ) k= {(ρ + k) ν }c k = c k (3) c ρ ν = ρ = ±ν ρ = ν ν C (3) k = c = c k+ = (k Z ) k k = l Z > (3) c l = = (ν + l) ν (ν + 4) ν (ν + ) ν c ( ) l l l!(ν + l) (ν + )(ν + ) c c l = c := ν Γ(ν + ) ( ) l ν+l l!γ(ν + l + ) ρ = ν ν ν (3) ( ) ν z ( ) ( ) k k ( ) ν k!γ(ν + k + ) z, z ( ) ( ) k k k!γ( ν + k + ) z k= k=

21 C ν C ν Bessel J ν (z) J ν (z) := C ( ) ν z ( ) ( ) k k k!γ(ν + k + ) z. k= n Z (4) 3 J ν (z) J ν (z) ν Z (9) ν C \ Z Wronskin J ν (z) J ν (z) W (J ν (z), J ν (z)) = J ν(z) J ν(z). = d z dz (3) d dz W (J J ν(z), J ν (z)) = ν(z) J ν(z) J ν(z) J ν(z) + J ν (z) J ν (z) J ν (z) J ν(z) W (J ν (z), J ν (z)) = z W (J ν(z), J ν (z)), dw dz = z W, ( ) Wronskin W (J ν (z), J ν (z)) = C (33) z C C 4. Bessel J ν (z) J ν(z) z = ( ) ν [ ] J ν (z) = z Γ(ν + ) + O(z ), J ν(z) = ( ) ν [ ] z Γ(ν) + O(z ).

22 Wronskin Gmm reflection formul 6) [ ] W (J ν (z), J ν (z)) =z Γ(ν + ) Γ( ν) Γ( ν + ) Γ(ν) + O(z ) sin νπ = + O(z) πz (33) sin νπ W (J ν (z), J ν (z)) = πz ν Z 4. ν C \ Z {J ν (z), J ν (z)} (3) ν Z 4. ν C Y ν (z) := cos νπj ν(z) J ν (z) sin νπ ν Neumnn Bessel ν C \ Z well-defined ν = n Z 9) (34) Y n (z) := lim ν n Y ν(z) (34) W (J ν (z), Y ν (z)) = πz 4. ν C {J ν (z), Y ν (z)} (3) ν = n Z Y ν (z) n Z [ { lim Y ν(z) = π sin νπj ν (z) + cos νπ J ν(z) J }] ν(z) ν n π cos νπ ν ν ν=n = [ ] [ ] Jν (z) + ( )n Jν (z) π ν π ν ν=n ν= n ψ(z) := d log Γ(z) dz ψ

23 3. Weierstrß (5) ψ(z) = z γ + n= ( n ) n + z k Z ψ(k + ) = k γ 4. J ν (z) = ( ) ν z ( ) ( ) k k k!γ(ν + k + ) z k= J ν (z) ν = J ν (z) log z ( z ) ν k= ( ) k ψ(ν + k + ) k!γ(ν + k + ) ( ) k z J ν (z) ν J ν (z) ν = J n (z) log z ν=n k= = J n (z) log z ν= n k= ( ) k ψ(n + k + ) k!(n + k)! ( ) k ψ( n + k + ) k!γ( n + k + ) ( ) n+k z, ( ) n+k z, n k= + k=n N Z > ψ( N) Γ( N) = d dt Γ(t) = ( ) N+ N! t= N (3) Γ(t) = t(t + ) (t + N) Γ(t + N + ) ( 3. ) (9) J ν (z) ν =( ) n J n (z) log z ν= n n (n k )! ( )n k! k= ( ) ( ) n ( ) k n+k ψ(k + ) k!(k + n)! z k= 3 ( ) k n z

24 4.3 n Z Y n (z) = π J n(z) log z ( ) k {ψ(k + ) + ψ(n + k + )} k!(n + k)! k= n ( ) n+k (n k)! k! z. k= ( ) n+k z 3.3 ν Z < Y ν (z) n Z Y n (z) = ( ) n Y n (z) (35) Bessel 3.4 ( ) ( ) J (z) = sin z, J (z) = cos z. πz πz 4. & Bessel 3. nïve 4.4 ν C J ν (z) + J ν+ (z) = ν z J ν(z), J ν (z) J ν+ (z) = J ν(z). d dz {zν J ν (z)} = z ν J ν (z), d dz {z ν J ν (z)} = z ν J ν+ (z). (36) ν C Y ν (z) + Y ν+ (z) = ν z Y ν(z), Y ν (z) Y ν+ (z) = Y ν(z) 4

25 4.4 J ν (z) = ν [ zj ] ν+(z) J ν (z) z νj ν (z) J ν (z) J ν (z) = z ν z J ν ν+(z) J ν (z) Bessel degree m + z J ν (z) J ν (z) = ν z 4ν(ν+) z 4(ν+m )(ν+m) z 4(ν+)(ν+) z (ν+m) J ν+m+(z) J ν+m (z). (37) 3.6 J ν (z) J ν (z) = ν z (ν+) z (ν+) z (ν+m) z J ν+m+ (z) J ν+m (z). (38) ν C t > z J ν (t + z) = m= J ν m (t)j m (z). r, R, R > r < R < z r, R t 3.7 [W] 4.4 ( t ) J ν m (t)j m (z) = {J z ν m(t)j m (z) J ν m (t)j m(z)} m= m= = {J ν m (t) J ν m+ (t)}j m (z) 5 m= m= J ν m (t){j m (z) J m+ (z)}

26 ( 3.8 ( t ) J ν m (t)j m (z) = z m= z < t t + z z = (9) (3) J ν (t) 4.3 Bessel J ν (z) (7) ( ) ( ) n ν+n J ν (z) = n!γ(ν + n + ) z n= = ( ) ν π z C ( ) ( n z) n e t t ν n dt n! n= ( ) ( n z) n ( ) z t n exp n! 4 t n= J ν (z) = ( ) ν π z e t t ν C n! n= = ( ) ν π z t ν exp C ( z {t z 4t ) n dt 4t } dt (39) Schläfli rg z < π t = zu { ( J ν (z) = π u ν exp C z u )} du (4) u Sonine ν Z () (3) ν C ν := z d dz + z d dz + z ν (3) Hint b z ν e zt T dt. (4) 6

27 T t { b } ν z ν e b zt T dt =z [ν(ν )z ν e zt T dt + b νz ν te zt T dt b ] z ν t e b zt T dt + z [νz ν e zt T dt + b ] z ν te b zt T dt + (z ν )z ν e zt T dt b =z ν+ ( t )e zt T dt + (ν + ) b z ν+ te zt T dt { b } ν z ν e zt T dt = [ z ν+ e ] b zt T (t ) + b [ z ν+ e zt (ν + )T t d ] dt {T (t )} dt (4) (3) d dt {T (t )} = (ν + )T t, [ e ] b zt T (t ) =. (4) T = (t ) ν Re(ν + ) > =, b = γ A A γ 3: γ, γ 7

28 A rg(t ± ) = 4.7 Poisson (3). ν + Z >. ν + Z > Rez > J ν (z) = Γ( ν) ( z) ν π Γ( ) e zt (t ) ν dt. γ J ν (z) = Γ( ν ( ν)eπ z) ν π Γ( ) e zt (t ) ν dt. γ Hnkel γ e zt Tylor e zt = z ν e zt (t ) ν dt = z ν γ ( z) m m= m! z m ( z) m z m t m (t ) ν dt m! γ m= t m (t ) ν m z ν e zt (t ) ν ( ) m z ν+m dt = t m (t ) ν dt γ (m)! γ m= ( 3.9 ) γ A u = t z ν e zt (t ) ν ( ) m z ν+m dt = γ (m)! m= u m γ (u ) ν du 8

29 u A rg(u ) = ( 3. justify ) evlute Re(ν + ) > (u ) ν du ={e π ν e π ν } u m ( u) ν du γ u m = cos νπ Γ(m + )Γ(ν + ) Γ(ν + m + ) ( 3. ) ν C ν C z ν e zt (t ) ν γ dt = cos νπγ(ν + ) m= ( ) m Γ(m + ) (m)!γ(ν + m + ) zν+m Γ(m + ) =(m )(m 3 ) Γ( (m )(m 3) ) = Γ( m ) = (m)! m m! Γ( ) z ν e zt (t ) ν dt = cos νπγ(ν + γ )Γ( )zν m= = ν+ cos νπγ(ν + )Γ( )J ν(z) ( ) ( ) m m m!γ(ν + m + ) z reflection formul (6) cos νπγ(ν+ ) = π Γ( ν) ν+ Z > (ν + Z > cos νπγ(ν + ) = ) γ t > 3π < rg t < π ( ) m (ν m ) (t ) ν = t ν ( ) ν ( t ) m m m= =( ) m m! (ν )(ν 3 ) (ν m + ) = m! ( ν + m) (3 ν)( ν) = Γ( ν + m) m!γ( ν) 9

30 (t ) ν Γ( ν + m) = m!γ( tν m ν) m= t > z ν e zt (t ) ν z ν Γ( ν + m) dt = γ m!γ( ν) e zt t ν m dt γ m= 3. justify zt = e π u e zt t ν m dt =e u (e π z u) ν m z e π du =( ) m+ e π ν z m ν e u ( u) ν m du e zt t ν m dt = ( ) m+ e π ν z m ν γ γ e u ( u) ν m du γ z essentil Hnkel (7) e u ( u) ν m π du = Γ(m ν + ) ( 3.3 ) γ z ν e zt (t ) ν π dt = γ Γ( ν)e π dupliction formul (7) ν m= Γ( ν + m) Γ(m ν + ) = ν m Γ( ) Γ( ν + m + ) ( ) m Γ( ν + m) m!γ(m ν + ) zm ν z ν e zt (t ) ν ν+ π Γ( ν dt = )e π γ Γ( ν) J ν (z) ν + Z > 3

31 [O] [W] ν C m Z (ν) m := ν(ν + ) (ν + m ), (ν, m) := ( ) m ( ν) m ( + ν) m m! = Γ(ν + m + ) m!γ(ν m + ), 869 Mth. Ann. Hnkel 4.8 z C rg z < π z p ( ) J ν (z) cos(z πz νπ 4 π) ( ) m (ν, m) (z) m m= p + sin(z νπ 4 π) m= ( ) m (ν, m ) + O(z p ) p Z (z) m >. 5 Fourier-Bessel Fourier-Bessel 5. Bessel J ν (z) J ν (z) Bessel J ν (z) (ν R ) relity 5. Bessel J ν (z) z = (simple zero) ν Leibniz rule ( ) n ( d d ν =z dz dz + nz ) n+ ( d + (n + )z dz ( ) n d + n(n ) dz n z C J ν (z) z=z = d dz J ν(z) = z=z ) n+ ( d + (z ν + n ) dz ( ) n d dz ) n 3

32 n Z d n dz J ν(z) n = z=z Tylor J ν (z) z ν J ν (z) ±j ν,, ±j ν,, Rej ν, Rej ν, Rej ν,n = imginy prt imginry prt A, B R > D C ±A ± B 4 J ν (z) ±j ν,n ( n m) π D z J ν+ (w) w(w z) J ν (w) dw z D \ {±j ν,n ( n m)} pole w = z, ±j ν,,, ±j ν,m 5. pole 5. w, w = z residue J ν+ (z) J ν (z) w = ±j ν,n residue (36) ± z j ν,n j ν,n π z J ν+ (w) D w(w z) J ν (w) dw = J ν+(z) m { + + } m + J ν (z) z j ν,n j ν,n n= n= { z + j ν,n j ν,n }. J ν+(z) J ν(z) 4.8 J ν+(z) J ν(z) Rez A, B z J ν+ (w) dw w(w z) J ν (w) π ( 5. ), J ν+(z) J ν (z) = n= D { + } + z j ν,n j ν,n 3 n= { }. z + j ν,n j ν,n

33 { z } J ν+ (t) exp J ν (t) dt = n= (36) {( z ) ( z exp j ν,n j ν,n )} n= {( + z ) ( exp z )} j ν,n j ν,n J ν+(z) J ν (z) = z ν J ν+ (z) z ν J ν (z) = d dz log{z ν J ν (z)} { z } ( ) ν J ν+ (t) exp J ν (t) dt = Γ(ν + ) z J ν (z) ( 5.3 ) 5. ν C \ Z < J ν (z) = ( z) ν Γ(ν + ) { z m= j ν,n }. ν = Euler 78 Bessel Bessel relity α, β C µ, ν C J µ (αz), J ν (βz) 3) ) d u du (α µ u =, (43) dz + z dz + z d v dz + dv (β z dz + ν z ) v =. (44) (z(v (43) u (44)) ), [ { d z v du }] ] dz dz udv + [(α β )z + ν µ uv =. (45) dz z µ = ν (45) [, b] (, b R s.t. < b) b zj ν (αz)j ν (βz)dz = α β [z {βj ν(αz)j ν(βz) αj ν(αz)j ν (βz)}] b. (46) α = β β = α + ε ε ( 5.4 ) b z{j ν (αz)} dz = { ) }] b [z {J ν(αz)} + ( ν {J α z ν (αz)}. (47) 33

34 ν R α β J ν (α) = J ν (β) = (46) zj ν (αz)j ν (βz)dz = (48) α = β 47) (36) z{j ν (αz)} dz = {J ν(α)} = {J ν+(α)}. (49) (48) Lommel 5.3 ν R Bessel J ν (z) α C J ν (z) α R α R m= ( ) m ( α)m m!γ(ν + m + ) summnd ν α J ν (z) (46) x t J ν (αt) dt = x = x α α tj ν (αt)j ν (αt)dt α α [ J ν (αx) d dx J ν(αx) J ν (αx) d dx J ν(αx) t J ν (αt) dt = Bessel J ν (z) j, j, (48) (49) 5.4 ν R zj ν (j m z)j ν (j n z)dz = { m n, {J ν+(j m )} m = n. ] 5. Fourier-Bessel Beesel 99 Proc. London Mth.Soc. Hobson [W] 34

35 5.4 Fourier f(x) Bessel {J ν (j m x)} m= f(x) = b m J ν (j m x) m= 5.4 b m b m = J ν+ (j m+ ) tf(t)j ν (j m t)dt. < x, < t T n (x, t) T n (t, x) := n m= J ν (j m x)j ν (j m t) J ν+ (j m ). Riemnn-Lebesgue 5.5, b R < < b < f(x) b t f(t)dt x [, ) (b, ] b tf(t)t n (t, x)dt = o() n >> [W] 5. Riemnn Lebesgue R [, b] Lebesgue f(x) b lim n f(x) sin nxdx =. 5.6 f(t) [, ] t f(t) [, ] Lebesgue ν R m := J ν+ (j m ) tf(t)j ν (j m t)dt 35

36 < < b <, b R f(x) [, b] x [, b] m J ν (j m x) m= {f(x + ) + f(x )} Fourier-Bessel 5.4 n m J ν (j m x) = m= tf(t)t n (t, x)dt {f(x + ) + f(x )} = lim n x ν f(x ) x + lim n x ν f(x + ) t ν+ T n (t, x)dt x t ν+ T n (t, x)dt lim n x lim n S n (x) := x t ν+ T n (t, x)dt = x ν, ( < x < ) t ν+ T n (t, x)dt = xν, ( < x < ) x + t ν+ {t ν f(t) x ν f(x )}T n (t, x)dt x t ν+ {t ν f(t) x ν f(x + )}T n (t, x)dt lim S n(x) = n t ν+ {t ν f(t) x ν f(x + )}T n (t, x)dt t ν f(t) x ν f(x + ) [x, b] [x, b] χ (t), χ (t) t ν f(t) x ν f(x + ) = χ (t) χ (t) 36

37 χ (x + ) = χ (x + ) = ε > δ > δ < b x x t x + δ t = x χ (t) < ε, χ (t) < ε t ν+ {t ν f(t) x ν f(x + )}T n (t, x)dt x+δ x+δ + x t ν+ {t ν f(t) x ν f(x + )}T n (t, x)dt t ν+ χ (t)t n (t, x)dt x+δ x t ν+ χ (t)t n (t, x)dt 5.5 n ε < ξ < δ ξ R x+δ x x+δ t ν+ χ (t)t n (t, x)dt = χ (x + δ) t ν+ T n (t, x)dt x+ξ n Uε ( U > ) 3 Uε S n (x) x dt n m= m J ν (j m x) {f(x ) + f(x + )} (4U + )ε [AAR] [I] [O] [W] Andrews G. E., Askey R. nd Roy R., Specil Functions, Encycl. Mth. nd its Appl. 7, Cmbridge, Frnk W. J. Olver, Asymptotics nd Specil Functions, AKP Clssics, A K Peters, 997. Wtson G.N., A Tretise on the theory of Bessel Functions, Cmbridge Mth. Librry, nd. ed., Cmbridge,

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2 IA September 5, 7 I [, b], f x I < < < m b I prtition S, f x w I k I k k k S, f x I k I k [ k, k ] I I I m I k I j m inf f x w I k x I k k m k sup f x w I k x I k inf f x w I S, f x S, f x sup f x w I

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ A S1-20 http://www2.mth.kyushu-u.c.jp/ hr/lectures/lectures-j.html 1 1 1.1 ϵ-n 1 ϵ-n lim n n = α n n α 2 lim n = 0 1 n k n n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n n = α ϵ N(ϵ) n > N(ϵ) n α < ϵ (1.1.1)

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess Bessel 5 3 11 ( 6/11/1) Bessel 1 ( ) 1.1, 1,..., n n J (x), J 1 (x),..., J n (x) I (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bessel (6 ) ( ) [1] n n d j J n (x), d j I n (x) Deuflhard j= j=.1

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1 III http://www2.mth.kyushu-u.c.jp/~hr/lectures/lectures-j.html 1 1 1.1 ϵ-n ϵ-n lim n = α n n α 1 lim n = 0 1 n k n k=1 0 1.1.7 ϵ-n 1.1.1 n α n n α lim n = α ϵ Nϵ n > Nϵ n α < ϵ 1.1.1 ϵ n > Nϵ n α < ϵ 1.1.2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

4 14 4 14 4 1 1 4 1.1................................................ 4 1............................................. 4 1.3................................................ 5 1.4 1............................................

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information