Size: px
Start display at page:

Download ""

Transcription

1 maxima Contents maxima 1.. maxima 1.3. maxima maxima maxima Gram-Schmidt

2

3 maxima maxima. maxima maxima MIT( ) Project MAC Macsyma Macsyma MAC s SYmbolic MAnipulator MIT Lisp Project MAC Macsyma Symbolics Inc. Macsyma DOE Macsyma Symbolics Macsyma Symbolics Inc. Macsyma Inc 1999 Texas William Schelter Doe Macsyma GNU Common Lisp 1990 maxima MIT Bill Schelter 001 UCB R.Fateman GPL maxima Asir Maple Mathematica MuPAD Reduce Yacas Maple Mathematica Reduce Macsyma Asir Yacas GPL maxima maxima Asir MuPAD Yacas 1.. maxima. maxima Linux FreeBSD MacOS X Unix OS Common Lisp Windows OS maxima maxima Windows cygwin Unix Unix maxima Windows maxima maxima URL Windows maxima

4 4 maxima 1.3. maxima. Unix Terminal maxima i i i i i i i ooooo o ooooooo ooooo ooooo I I I I I I I o 8 8 I \ + / I \ -+- / ooooo 8oooo o 8 8 o ooooo 8oooooo ooo8ooo ooooo 8 Copyright (c) Bruno Haible, Michael Stoll 199, 1993 Copyright (c) Bruno Haible, Marcus Daniels Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998 Copyright (c) Bruno Haible, Sam Steingold Maxima Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (C1) Unix xmaxima Windows maxima (C1) (C1) ( ) maxima Unix maxima TeXmacs Emacs+imaxima TeXmacs maxima (C1) integrate(1/(1+x^3),x); ş ť (D1) log (x x+1) + arctan x log(x+1) 3 (C) a : (1 + x - 3*y)^5; (D) ( 3y + x + 1) 5 (C3) expand(d); (D3) 43y xy y 4 70x y 3 540xy 3 70y x 3 y + 70x y + 70xy + 90y 15x 4 y 60x 3 y 90x y 60xy 15y + x 5 + 5x x x + 5x + 1 (C4) 10!; (D4) (C5) factor(d4); (D5)

5 maxima 5 (C*) (D*) maxima maxima (C3) expand(d); d (D) (C*) quit(); maxima (C) B:matrix([1,:}); Incorrect syntax: Missing ] B:matrix([1,:}) ^ (C) Incorrect syntax: Premature termination of input at ;. ; ^ (C) B:matrix([1,]); (D) [ 1 ] (C3) A+B; FULLMAP found arguments with incompatible structure. -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) *** - POSITION: :START = 1 should not be greater than :END = 0 The following restarts are available: R1 = Macsyma top-level 1. Break [1]> maxima 1. Break [1]> R1 1. Break [1]> (run) maxima maxima 1. Break [1]> (bye)

6 maxima. maxima (maxima ) factor describe( factor ) (C1) describe("factor"); 0: DONTFACTOR :(maxima.info)definitions for Matrices and Linear Algebra. 1: EXPANDWRT_FACTORED :Definitions for Simplification. : FACTOR :Definitions for Polynomials. 3: FACTORFACSUM :Definitions for Simplification. 4: FACTORFLAG :Definitions for Polynomials. 5: FACTORIAL :Definitions for Number Theory. 6: FACTOROUT :Definitions for Polynomials. 7: FACTORSUM :Definitions for Polynomials. 8: GCFACTOR :Definitions for Polynomials. 9: GFACTOR :Definitions for Polynomials. 10: GFACTORSUM :Definitions for Polynomials. 11: MINFACTORIAL :Definitions for Number Theory. 1: NEXTLAYERFACTOR :Definitions for Simplification. 13: NUMFACTOR :Definitions for Special Functions. 14: SAVEFACTORS :Definitions for Polynomials. 15: SCALEFACTORS :Definitions for Miscellaneous Options. 16: SOLVEFACTORS :Definitions for Equations. Enter n, all, none, or multiple choices eg 1 3 : ( ) Enter n, all, none, or multiple choices eg 1 3 : 5 Info from file /usr/local/info/maxima.info: - Function: FACTORIAL (X) The factorial function. FACTORIAL(X) = X!. See also MINFACTORIAL and FACTCOMB. The factorial operator is!, and the double factorial operator is!!. (D1) FALSE factor maxima tutorial manual info xmaxima Windows maxima, PDF URL Maxima Reference Manual DOE-Maxima Refernce The Maxima Book

7 maxima 7 Maxima Reference Manual (maxima-5.6)

8 8. maxima 1 a 11 a 1 a 1n a A = 1 a a n a m1 a m a mn maxima A : matrix([a 11,, a 1n ],[a 1,, a n ],, [a m1,, a mn ]); 1. (C1) ( A : ) matrix([a, b], [c, d]); a b (D1) c d. (C) ( B : matrix([-1, ), 3], [0, 4, -1]); 1 3 (D) maxima : a ij = a[i, j] maxima A : genmatrix(a, i, j, i1, j1); a i1,j1 a i1,j A =..... a i,j1 a i,j i1=j1= 1 A:genmatrix(a, i, j); 3. (C1) a[i,j] := i + j - 1; (D1) a i,j := i + j 1 (C) A : genmatrix(a, 3, 4); (D) a[i,j] := i,j. 7 3 maxima entermatrix 4. (C1) A : entermatrix(,3); Row 1 Column 1: 1; Row 1 Column : 0;

9 Row 1 Column 3: -1; Row Column 1: 4; Row Column : ; Row Column 3: 8; Matrix( entered. ) (D1) 4 8 maxima 9 5. (C) B : entermatrix(3,3); Is the matrix 1. Diagonal. Symmetric 3. Antisymmetric 4. General Answer 1,, 3 or 4 : 1; Row 1 Column 1: -1; Row Column : ; Row 3 Column 3: 4; Matrix entered. (D) B (C1) ( A : matrix([1, ) ], [3, 4]); 1 (D1) 3 4 (C) ( B : A; ) 1 (D) 3 4 (C3) ( B; ) 1 (D3) 3 4 diagmatrix 6. (C1) A : diagmatrix(4, ); (D1) n ident ident(n); 7. (C1) (D1) ident(3);

10 10 (m, n)- zeromatrix A : zeromatrix(m, n); 8. (C1) C : zeromatrix(3, ); (D1) (i, j)- a (m, n) ematrix(m, n, a, i, j) 9. (C1) D : ematrix(4, 4, -1,, 3); (D1) (m, 1) m m columnvector columnvector load(eigen); 10. (C1) load(eigen); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) /usr/local/share/maxima/5.9.0/share/matrix/eigen.mac (C) a : columnvector([1,, 3]); (D) 1 3 (C3) x : [1,, 3, 4]; (D3) [1,, 3, 4] (C4) b : columnvector(x); 1 (D4) 3 4

11 maxima A, B A + B A + B A, B a 11 a 1 a 1n b 11 b 1 b 1n a 1 a a n b 1 b b n A =, B = a ij b ij a m1 a m a mn b m1 b m b mn a 11 + b 11 a 1 + b 1 a 1n + b 1n a 1 + b 1 a + b a n + b n A + B = a ij + b ij a m1 + b m1 a m + b m a mn + b mn maxima A B C = A + B C : A + B; 11. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( B : matrix([1, ) ], [3, 4]); 1 (D) 3 4 (C3) ( C : A + B; ) a + 1 b + (D3) c + 3 d + 4 A c ca c*a; 1. (C4) ( 3*A; ) 3a 3b (D4) 3c 3d (C5) ( f*a; ) af bf (D5) cf df (C6) ( n*b; ) n n (D6) 3n 4n

12 A = (a i ) (m, l) B = (b ij ) (l, n) A B AB = (c ij ) AB (m, n) c ij (1) () l c ij = a ik b kj k=1 = a i1 b 1j + a i b j + + a il b lj AB BA AB = BA A,B n AB,BA n AB = BA maxima. A B AB maxima A.B AB 13. (C1) ( A : matrix([, ) 3, 4], [-1, 0, ]); 3 4 (D1) 1 0 (C) B : matrix([3, 0], [-1, ], [3, 4]); (D) (C3) ( C : A.B; ) 15 (D3) 3 8 (C4) D : B.A; (D4) (C5) C.D; incompatible dimensions - cannot multiply -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C6) ( E : matrix([a, ) b], [c, d]); a b (D6) c d (C7) ( F : matrix([e, ) f], [g, h]); e f (D7) g h (C8) ( E.F; ) bg + ae bh + af (D8) dg + ce dh + cf (C9) F.E;

13 (D9) ( cf + ae df + be ) ch + ag dh + bg maxima A n A k A k := AA k 1 maxima A A k Aˆˆk k Aˆ k k A k 14. (C1) ( A : ) matrix([, 3], [0, -1]); 3 (D1) 0 1 (C) ( A^^5; ) 3 33 (D) 0 1 (C3) B : matrix([a, b, c], [d, e, f], [g, h, i]); (D3) a b c d e f g h i (C4) B^3; (D4) a3 b 3 c 3 d 3 e 3 f 3 g 3 h 3 i 3 B 3 (C6) B^^3; (D6) [ ] [ g (c i + b f + a c) + d (c h + b e + a b) + a (c g + b d + a ) ] [ ] Col 1 = [ ] [ g (f i + e f + c d) + d (f h + e + b d) + a (f g + d e + a d) ] [ ] [ ] [ g (i + f h + c g) + d (h i + e h + b g) + a (g i + d h + a g) ] [ ] [ h (c i + b f + a c) + e (c h + b e + a b) + b (c g + b d + a ) ] [ ] Col = [ ] [ h (f i + e f + c d) + e (f h + e + b d) + b (f g + d e + a d) ] [ ] [ ] [ h (i + f h + c g) + e (h i + e h + b g) + b (g i + d h + a g) ]

14 14 [ ] [ i (c i + b f + a c) + f (c h + b e + a b) + c (c g + b d + a ) ] [ ] Col 3 = [ ] [ i (f i + e f + c d) + f (f h + e + b d) + c (f g + d e + a d) ] [ ] [ ] [ i (i + f h + c g) + f (h i + e h + b g) + c (g i + d h + a g) ]

15 maxima A AX = XA = I A X A A 1 I ( E ) maxima A A 1 maxima Aˆˆ(-1); invert(a); 15. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( A^^(-1); ) d b (D) ad bc ad bc c a ad bc ad bc (C3) ( B : matrix([1, ) ], [, 1]); 1 (D3) 1 (C4) ( B^^(-1); ) 1 (D4) 3 3 (C5) (D5) ( invert(b); ) = ad bc = 0 A 1 maxima Cramer Cramer Cramer maxima expand(adjoint(a))/expand(determinant(a)) A Cramer adjoint(a) A determinant(a) A expand 16. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( expand(adjoint(a))/expand(determinant(a)); ) d b (D) ad bc ad bc c a ad bc ad bc (C3) C : matrix([a, b, c], [d, e, f], [g, h, i]); (D3) a b c d e f g h i (C4) ratsimp( invert(c) - expand(adjoint(c))/expand(determinant(c)) );

16 16 (D6) ratsimp

17 maxima n x 1, x,..., x n m a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + + a n x n = b (3) a m1 x 1 + a m x + + a mn x n = b m maxima (3) solve solve ( ) (C1) solve([,,..., m], [,,..., n]); eq1 : solve([eq1, eq,..., eq], [x, y,..., z]); 17. (C1) eq1 : a*x + b*y = 0; (D1) by + ax = 0 (C) eq : c*x + d*y = 0; (D) dy + cx = 0 (C3) solve([eq1, eq], [x, y]); (D3) [[x = 0, y = 0]] (C4) eq3 : a*x + b*y = e; (D4) by + ax = e (C5) eq4 : c*x + d*y = f; (D5) dy + cx = f (C6) solve([eq3, eq4], [x, y]); (D6) [[ x = de bf, y = ]] ce af bc ad bc ad (C7) solve([3*x-*y+z=3, x+y-3*z=7, y+z=9], [x, y, z]); (D7) [[ x = 6, y = 36, z = ]] (C8) solve([3*x-*y+z=3, x+y-3*z=7], [x, y]); (D8) [[ ]] x = 5z+17, y = 10z (C9) solve([3*x - *y = 3, x + y = 7, x - y = 9], [x, y]); Inconsistent equations: (3) -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C8) z (C9) maxima 5... (3)

18 18 a 11 a 1 a 1n x 1 b 1 a A = 1 a a n......, x = x., b = b. a m1 a m a mn x n b m (3) (4) Ax = b (3) A (3) a 11 a 1 a 1n b 1 a (A b) := 1 a a n b a m1 a m a mn b m (3) maxima x, y,..., z eq1, eq,..., eqm (C1) A : coefmatrix([eq1, eq,..., eqm], [x, y,..., z]); A (C1) Ab : augcoefmatrix([eq1, eq,..., eqm], [x, y,..., z]); Ab 3. maxima augcoefmatrix (A b) (A b) solve a 11 a 1 a 1n a A = 1 a a n......, a m1 a m a mn (1) () (3) 3 A A A =

19 maxima 19 A A A A A rank(a) (3) rank(a) = rank(a b) maxima echelon echelon(a); rank rank(a); 18. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) rank(a); (D) (C3) ( echelon(a); ) 1 b (D3) a 0 1 (C4) B : matrix([1,, 3], [4, 5, 6], [7, 8, 9]); (D4) (C5) rank(b); (D5) (C6) echelon(b); (D6) (C7) C : matrix([1,, 3], [4, 5, 6], [7, 8, 0]); (D7) (C8) rank(c); (D8) 3 (C9) echelon(c); (D9) (C9) 19. (C1) eq1 : 3*x - *y = 3; (D1) 3x y = 3 (C) eq : x + y = 7; (D) y + x = 7 (C3) eq3 : x - y = 9;

20 0 (D3) x y = 9 (C4) A : coefmatrix([eq1, eq, eq3], [x, y]); (D4) (C5) Ab : augcoefmatrix([eq1, eq, eq3], [x, y]); 3 3 (D5) (C6) rank(a); (D6) (C7) rank(ab); (D7) 3 (C8) echelon(a); (D8) (C9) (D9) echelon(ab); solve

21 maxima (4) b = 0 Ax = 0 rank(a) = rank(a 0) (4) n rank(a) n = rank(a) x 1 = x = = x n = 0 (4) m = n A n n = rank(a) det(a) 0 A det(a) det(a) 0 (4) x = A 1 b 0. (C1) A : matrix([1,, 3], [4, 5, 6], [7, 8, 9]); (D1) (C) rank(a); (D) (C3) solve([x+*y+3*z=0, 4*x+5*y+6*z=0, 7*x+8*y+9*z=0], [x,y,z]); Dependent equations eliminated: (3) (D3) [[x = %R1, y = %R1, z = %R1]] (C4) eq1 : x + *y + 3*z = 0; (D4) 3z + y + x = 0 (C5) eq : 4*x + 5*y + 6*z = 0; (D5) 6z + 5y + 4x = 0 (C6) eq3 : 6*x + 7*y = 0; (D6) 7y + 6x = 0 (C7) B : coefmatrix([eq1, eq, eq3], [x, y, z]); (D7) (C8) rank(b); (D8) 3 (C9) solve([eq1, eq, eq3], [x, y, z]); (D9) [[x = 0, y = 0, z = 0]] (C10) eq4 : x + *y + 3*z = 10; (D10) 3z + y + x = 10 (C11) eq5 : 4*x + 5*y + 6*z = 11; (D11) 6z + 5y + 4x = 11 (C1) eq6 : 7*x + 8*y = 1; (D1) 8y + 7x = 1 (C13) C : coefmatrix([eq4, eq5, eq6], [x, y, z]);

22 (D13) (C14) Cb : augcoefmatrix([eq4, eq5, eq6], [x, y, z]); (D14) (C15) rank(c) - rank(cb); (D15) 0 (C16) bb : matrix([10], [11], [1]); (D16) (C17) xx : C^^(-1). bb; (D17) (C18) solve([eq4, eq5, eq6], [x, y, z]); (D18) [[ x = 8, y = 9, z = 0]] 3 3 (C19) determinant(a); (D19) 0 (C0) determinant(b); (D0) 4 (C1) determinant(c); (D1) 7 4. x = A 1 b solve

23 maxima A n A (n, n) a 11 a 1 a 1n a A = 1 a a n a n1 a n a nn A det(a) det(a) := sgn(σ)a 1σ(1) a σ() a nσ(n) σ S n S n n maxima determinant (1),(3) maxima triangularize maxima triangularize () 1. (C1) A : matrix([1,, 3], [4, 5, 6], [7, 8, 9]); (D1) (C) B : triangularize(a); (D) (C3) determinant(a); (D3) 0 (C4) determinant(b); (D4) 0 (C5) C : matrix([1,, 3], [4, 5, 6], [7, 8, 0]); (D5) (C6) D : triangularize(c); (D6) (C7) determinant(c); (D7) 7 (C8) determinant(d); (D8) 567 (C9) F : matrix([a, b, c], [d, e, f], [g, h, i]);

24 4 (D9) a b c d e f g h i (C10) determinant(f); (D10) a (ei fh) b (di fg) + c (dh eg) (C11) G : triangularize(f); (D11) a b c 0 ae bd af cd 0 0 (ae bd) i + (cd af) h + (bf ce) g (C1) ratsimp( determinant(f) - col(row(g, 3), 3) ); (D1) ( 0 ) col row col( row(m, i), j) M (i, j) maxima A mattrace mattrace(a); load( nchrpl ). (C1) load("nchrpl"); (D1) /usr/local/share/maxima/5.9.0/share/matrix/nchrpl.mac (C) ( A : matrix([a, ) b], [c, d]); a b (D) c d (C3) mattrace(a); (D3) d + a (C4) B : matrix([a, b, c], [d, e, f], [g, h, i]); (D4) a b c d e f g h i (C5) mattrace(b); (D5) i + e + a (C6) sum(col(row(b, i), i), i, 1, 3); (D6) ( i + e + a ) Caylay-Hamilton maxima ( ) a b A = c d A tr(a)a + det(a)i = O 3. (C7) ( I :) diagmatrix(, 1); 1 0 (D7) 0 1 (C8) A^^ - mattrace(a)*a + determinant(a)*i;

25 (D8) (C9) (D9) maxima 5 ( ) a (d + a) + ad + a b (d + a) + bd + ab c (d + a) + cd + ac d d (d + a) + ad ( ratsimp(d8); ) A det(a) tr(a) G A (det(g) 0) det(g 1 AG) = det(a), tr(g 1 AG) = tr(a) A B det(ab) = det(a) det(b) tr(a + B) = tr(a) + tr(b) tr(ab) = tr(ba) maxima 4. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( G : matrix([s, ) t], [u, v]); s t (D) u v (C3) ( determinant(a) -) ( determinant(g^^(-1) ) (. A. G); (D3) s(du+cs) u(bu+as) v(bv+at) t(dv+ct) (bu+as)v sv tu sv tu sv tu sv tu sv tu ad bc (C4) ratsimp(d3); (D4) 0 (C5) B : matrix([a, b, c], [d, e, f], [g, h, i]); (D5) a b c d e f g h i (C6) (D6) F : matrix([o, p, q], [r, s, t], [u, v, w]); o p q r s t u v w t(du+cs) sv tu ) ( s(dv+ct) sv tu (C7) ratsimp( determinant(b) - determinant(f^^(-1). B. F) ); (D7) 0 (C8) load("nchrpl"); (D8) /usr/local/share/maxima/5.9.0/share/matrix/nchrpl.mac (C9) ratsimp(mattrace(a) - mattrace(g^^(-1). A. G)); (D9) 0 (C10) ratsimp(mattrace(b) - mattrace(f^^(-1). B. F)); (D10) 0 ) u(bv+at) + sv tu

26 6 5. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( B : matrix([s, ) t], [u, v]); s t (D) u v (C3) ratsimp(determinant(a. B) - determinant(a) * determinant(b)); (D3) 0 (C4) C : matrix([a,b,c],[d,e,f],[g,h,i]); (D4) a b c d e f g h i (C5) D : matrix([o,p,q],[r,s,t],[u,v,w]); (D5) o p q r s t u v w (C6) ratsimp(determinant(c. D) - determinant(c) * determinant(d)); (D6) 0 6. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( B : matrix([s, ) t], [u, v]); s t (D) u v (C3) load("nchrpl"); (D3) /usr/local/share/maxima/5.9.0/share/matrix/nchrpl.mac (C4) mattrace(a. B); (D4) dv + bu + ct + as (C5) mattrace(b. A); (D5) dv + bu + ct + as (C6) mattrace(a. B) - mattrace(b. A); (D6) 0 (C7) C : matrix([a, b, c], [d, e, f], [g, h, i]); (D7) a b c d e f g h i (C8) D : matrix([o, p, q], [r, s, t], [u, v, w]); (D9) o p q r s t u v w (C10) mattrace(c. D); (D10) iw + fv + cu + ht + es + br + gq + dp + ao (C11) mattrace(d. C); (D11) iw + fv + cu + ht + es + br + gq + dp + ao (C1) mattrace(c. D) - mattrace(d. C);

27 (D1) 0 maxima 7 1. A newdet newdet determinant determinant newdet 6... A A t A maxima A transpose 7. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( At : transpose(a); ) a c (D) b d (C3) B : matrix([a, b, c], [d, e, f], [g, h, i]); (D3) a b c d e f g h i (C4) Bt : transpose(b); (D4) a d g b e h c f i (C5) ( C : matrix([1, ), 3, 4], [5, 6, 7, 8]); (D5) (C6) Ct : transpose(c); 1 5 (D6) A A = t A A A A = t A A A B = A + t A, C = A t A B C A A = B + C maxima maxima 8. (C1) symm(x) := (1/)*(X + transpose(x)); (D1) symm (X) := 1 (X + TRANSPOSE (X)) (C) ( A : matrix([1, ) ], [3, 4]); 1 (D) 3 4

28 8 (C3) (D3) ( symm(a); ) (C4) B : matrix([3, -1, ], [4, -, 1], [9, 9, 5]); (D4) (C5) symm(b); (D5) (C6) altm(x) := (1/)*(X - transpose(x)); (D6) altm (X) := 1 (X TRANSPOSE (X)) (C7) ( altm(a); ) 0 1 (D7) 1 (C8) 0 altm(b); (D8) (C9) ( A - (symm(a) ) + altm(a)); 0 0 (D9) 0 0 (C10) B - (symm(b) + altm(b)); (D10) (C1) symm (C6) altm A A A maxima conjugate conjugate load(eigen); 9. (C1) load(eigen); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) /usr/local/share/maxima/5.9.0/share/matrix/eigen.mac (C) ( A : matrix([1) - %I, + 3*%I], [%I, 4]); 1 i 3i + (D) i 4 (C3) ( conjugate(a); ) i + 1 3i (D3) i 4

29 maxima 9 A A = t A A A A = t A A A A = Re + Im Re A Re + Im = A = t A = t Re t Im Re Im A Re + Im = A = t A = t Re + t Im Re Im A B = Re + t Re C = Re t Re + Im t Im, + Im + t Im, B C A = B + C B C 30. (C1) load("nchrpl"); (D1) /usr/local/share/maxima/5.9.0/share/matrix/nchrpl.mac (C) load(eigen); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D) /usr/local/share/maxima/5.9.0/share/matrix/eigen.mac (C3) symm(x) := (1/)*(X + transpose(x)); (D3) symm (X) := 1 (X + TRANSPOSE (X)) (C4) altm(x) := (1/)*(X - transpose(x)); (D4) altm (X) := 1 (X TRANSPOSE (X)) (C5) ream(x) := (1/)*(X + conjugate(x)); (D5) ream (X) := 1 (X + CONJUGATE (X)) (C6) imgm(x) := (1/)*(X - conjugate(x)); (D6) imgm (X) := 1 (X CONJUGATE (X)) (C7) herm(x) := symm(ream(x)) + altm(imgm(x)); (D7) herm (X) := symm (ream (X)) + altm (imgm (X)) (C8) skew(x) := altm(ream(x)) + symm(imgm(x)); (D8) skew (X) := altm (ream (X)) + symm (imgm (X)) (C9) ( A : matrix([1 ) + %I, - 3*%I], [, 4*%I]); i + 1 3i (D9) 4i (C10) ( herm(a); ) 1 3i (D10) 3i + 0 (C11) ( skew(a); ) i 3i (D11) 3i 4i (C1) A - (herm(a) + skew(a));

30 30 (D1) ( ) 5. maxima (maxima Lisp ) (,,...) :=... ; block (,,...) := block([ ],...,...,... N);... N

31 maxima maxima maxima maxima [a, b,..., z] [ ] maxima 31. (C1) a : [1,, 3]; (D1) [1,, 3] (C) a; (D) [1,, 3] (array) a[i, j,..., n] i, j,..., k 5 n n 3. (C3) b[i] := i; (D3) b i := i (C4) b; (D4) b (C5) b[5]; (D5) 5 (C6) c[i,j] := i*j; (D6) c i,j := ij (C7) c; (D7) c (C8) c[3,4]; (D8) 1 maxima 31 a 3 a[i] 33. (C9) a[1]; (D9) 1 (C10) a[]; (D10) (C11) a[3]; (D11) 3 (C1) listp(a); (D13) true (C14) listp(b); (D14) false

32 3 listp listp(a); a true false 34. (C1) a : [ [1,, 3], [4, 5, 6], [7, 8, 9] ]; (D1) [[1,, 3], [4, 5, 6], [7, 8, 9]] (C) a[1]; (D) [1,, 3] (C3) a[]; (D3) [4, 5, 6] (C4) a[3]; (D4) [7, 8, 9] (C5) a[1][1]; (D5) 1 (C6) a[1][]; (D6) (C7) a[1][3]; (D7) 3 (C8) a[][1]; (D8) 4 (C9) a[][]; (D9) 5 (C10) a[][3]; (D10) 6 (C11) a[3][1]; (D11) 7 (C1) a[3][]; (D1) 8 (C13) a[3][3]; (D13) 9 (C14) a[,3]; Wrong number of indices: [, 3] -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) a[i][j] (a[i])[j] 35. (C1) A : matrix([a, b, c, d], [e, f, g, h], [i, j, k, l]);

33 (D1) a b c d e f g h i j k l (C) A[1]; (D) [a, b, c, d] maxima 33 (C3) A[]; (D3) [e, f, g, h] (C4) A[3]; (D4) [i, j, k, l] (C5) A[][3]; (D5) g (C6) A[,3]; (D6) g (C7) matrixp(a); (D7) true (C8) listp(a); (D8) false (C9) matrixp(a[1]); (D9) false (C10) listp(a[1]); (D10) true (C11) B : [[a,b,c,d],[e,f,g,h],[i,j,k,l]]; (D11) [[a, b, c, d], [e, f, g, h], [i, j, k, l]] (C1) B[1]; (D1) [a, b, c, d] (C13) B[]; (D13) [e, f, g, h] (C14) B[3]; (D14) [i, j, k, l] (C15) B[][3]; (D15) g (C16) B[,3]; Wrong number of indices: [, 3] -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C17) matrixp(b); (D17) false (C18) listp(b); (D18) true (C19) matrixp(b[1]); (D19) false (C0) listp(b[1]); (D0) true

34 34 matrixp listp(a); a true false maxima 3 n P(i,j,n), Q(a,i,n), R(a,i,j,n), (i j) (n, k) M (1) i j P(i,j,n) M (n, k) M () i a Q(a,i,n) M (n, k) M (3) i j a R(a,i,j,n) M em.mac /* em.mac */ P(i, j, n) := block([i, A], I : ident(n), A : zeromatrix(n, n), A[i][i] : -1, A[j][j] : -1, A[i][j] : 1, A[j][i] : 1, I + A )$ Q(a, i, n) := block([a], A : ident(n), A[i][i] : a, A )$ R(a, i, j, n) := block([i,a], I : ident(n), A : zeromatrix(n,n), A[i][j] : a, I + A )$ 36. (C1) load("./em.mac")$ (C) M : matrix([1,,3],[4,5,6],[7,8,9]); (D) (C3) M1 : R(-4,, 1, 3). M; (D3) (C4) M : R(-7, 3, 1, 3). M1; (D4)

35 maxima 35 (C5) M3 : R(-, 3,, 3). M; (D5) (C6) M4 : Q((-1/3),, 3). M3; (D6) (C7) echelon(m); (D7) (C8) P(,3,5); (D8) (C9) P(,4,5); (D10) (C11) Q(3,,5); (D11) (C1) R(3,,4,5); (D1) (C13) determinant(p(,4,5)); (D13) 1 (C14) determinant(q(3,,5)); (D14) 3 (C15) determinant(r(3,,4,5)); (D15) maxima maxima row col A row(a, i); A i col(a, j);

36 36 A j row col (m, 1) (1, n) 37. (C1) (D1) A : matrix([a, b, c], [d, e, f], [g, h, i]); a b c d e f g h i (C) col(a, 1); (D) a d g (C3) matrixp(col(a, 1)); (D3) true (C4) listp(col(a, 1)); (D4) false (C5) row(a, 1); (D5) ( a b c ) (C6) matrixp(row(a, 1)); (D6) true (C7) listp(row(a, 1)); (D7) false (C8) col(a,1)[1]; (D8) [a] (C9) col(a,1)[1][1]; (D9) a (C10) col(a,1)[][1]; (D10) d (C11) col(a,1)[3][1]; (D11) g (C1) row(a,1)[1]; (D1) [a, b, c] (C13) row(a,1)[1][]; (D13) b (C14) row(a,1)[1][3]; (D14) c A[i]; A i 1 row(a, i); A[i]; transpose 1 (m, 1) transpose(a[i]); 38. (C15) A[1]; (D15) [a, b, c] (C16) matrixp(a[1]); (D16) false (C17) listp(a[1]); (D17) true

37 (C18) transpose(a[1]); maxima 37 (D18) a b c (C19) matrixp(transpose(a[1])); (D19) true col A j transpose(transpose(a)[j]); 39. (C0) (D0) a d g transpose(transpose(a)[1]); maxima matblock matreplace matblock(a, i1, i, j1, j); a 1,1 a 1,j1 a 1,j a 1,n.... a i1,1 a i1,j1 a i1,j a i1,n A =.... a i,1 a i,j1 a i,j a i,n.... a m,1 a m,j1 a m,j a m,n a i1,j1 a i1,j.. a i,1 a i,j1 matreplace(a, B, i1, i, j1, j) A b 1,j j1+1 a 1,j j1+1 B =.. a i i1+1,1 a i i1+1,j j1+1 matblock matreplace matblock.mac /* matblock.mac */ matblock(mat,i1,i,j1,j) := block([_a, _m, _n, _i, _j],

38 38 )$ _m : i - i1, _n : j - j1, _A : zeromatrix(_m + 1, _n + 1), for _i : 1 thru _m + 1 do for _j : 1 thru _n + 1 do _A[_i][_j] : Mat[i1 + _i - 1][j1 + _j - 1], _A matreplace(mat1,mat,i1,i,j1,j) := block([_a, _m, _n, _i, _j], _m : i - i1, _n : j - j1, _A : copymatrix(mat1), for _i : 1 thru _m + 1 do for _j : 1 thru _n + 1 do _A[i1 + _i - 1][j1 + _j - 1] : Mat[_i][_j], _A )$ load( matblock.mac ); 40. (C1) A : matrix([q,w,e,r,t],[y,u,i,o,p],[a,s,d,f,g],[h,i,j,k,l],[z,x,c,v,b]); q w e r t y u i o p (D1) a s d f g h i j k l z x c v b (C) load("./matblock.mac"); (D)./matblock.mac (C3) matblock(a,,4,,4); (D3) u i o s d f i j k (C4) matblock(a,,,,); (D4) ( u ) (C5) matblock(a,,5,3,4); i o (D5) d f j k c v (C6) B : matrix([1,,3],[4,5,6],[7,8,9]); (D6) (C7) ( C : matrix([1,],[3,4]); ) 1 (D7) 3 4

39 maxima 39 (C8) (D8) (C9) (D9) matreplace(a,b,,4,,4); q w e r t y 1 3 p a g h l z x c v b matreplace(a,c,1,,1,); 1 e r t 3 4 i o p a s d f g h i j k l z x c v b matreplace matreplace P(i,j,n), Q(a,i,n), R(a,i,j,n) (k,n) M (1) i 1j P(i,j,n) M () i a Q(a,i,n) M (3) i j a R(a,j,i,n) M 41. (C1) load("./em.mac"); (D1)./em.mac (C) M : matrix([1,,3],[4,5,6],[7,8,9]); (D) (C3) M1 : M. R(-, 1,, 3); (D3) (C4) M : M1. R(-3, 1, 3, 3); (D4) (C5) M3 : M. R(-,, 3, 3); (D5) (C6) M4 : M3. Q((-1/3),, 3); (D6) (C7) M. P(1, 3, 3);

40 40 (D7) addrow addcol addrow addrow(m, L1, L,...); M (m, n) L1, L,... n (l, n) M addrow addcol addcol(m, L1, L,...); M L1, L,... m (m, l) transpose(l1), transpose(l),... M addcol 4. (C1) (D1) A : matrix([a,b,c],[d,e,f],[g,h,i],[j,k,l]); a b c d e f g h i j k l (C) ( B : matrix([1,,3],[4,5,6]); ) 1 3 (D) (C3) C : matrix([1,],[3,4],[5,6],[7,8]); 1 (D3) (C4) addrow(a, C); Incompatible structure - ADDROW//ADDCOL -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C6) addrow(a, B); a b c d e f g h i (D6) j k l (C7) (D7) addcol(a, C); a b c 1 d e f 3 4 g h i 5 6 j k l 7 8 (C8) addrow(a, [1,, 3], [4, 5, 6]); a b c d e f g h i (D8) j k l

41 maxima 41 (C9) addcol(a, [1, 3, 5, 7], [, 4, 6, 8]); a b c 1 (D9) d e f 3 4 g h i 5 6 j k l 7 8 matblock matreplace addrow addcol A ( ) R S A = O T A,R T O det(a) = det(r) det(s) 43. (C1) ( R :) matrix([a, b], [c, d]); a b (D1) c d (C) T : matrix([r, s, t], [u, v, w], [x, y, z]); (D) r s t u v w x y z (C3) ( S : matrix([h, ) i, j], [k, l, m]); h i j (D3) k l m (C4) O : zeromatrix(3, ); (D4) (C5) A : addrow( addcol(r, S), addcol(o, T) ); a b h i j c d k l m (D5) 0 0 r s t 0 0 u v w 0 0 x y z (C6) determinant(r); (D6) ad bc (C7) determinant(t); (D7) r (vz wy) s (uz wx) + t (uy vx) (C8) ratsimp(determinant(r)*determinant(t)); (D8) ((ad bc) rv + (bc ad) su) z+((bc ad) rw + (ad bc) tu) y+((ad bc) sw + (bc ad) tv) x (C9) determinant(a); (D9) ad (r (vz wy) s (uz wx) + t (uy vx)) bc (r (vz wy) s (uz wx) + t (uy vx))

42 4 (C10) ratsimp(d8 - D9); (D10) 0 A (i, j) a ij A i,j maxima minor minor(a,i,j); B = (b ij ), b ij := ( 1) i+j det(a ji ), i, j A A adjoint adjoint(a); 44. (C1) (D1) (C) (D) (C3) (D3) A : matrix([a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]); a b c d e f g h i j k l m n o p minor(a,1,1); f g h j k l n o p minor(a,,3); a b d i j l m n p 45. (C1) ( A :) matrix([a, b], [c, d]); a b (D1) c d (C) ( B : zeromatrix(, ) ); 0 0 (D) 0 0 (C3) B[1][1] : (-1)^(1+1)*determinant(minor(A,1,1)); (D3) d (C4) B[1][] : (-1)^(1+)*determinant(minor(A,,1)); (D4) b (C5) B[][1] : (-1)^(+1)*determinant(minor(A,1,)); (D5) c (C6) B[][] : (-1)^(+)*determinant(minor(A,,)); (D6) a (C7) ( B; ) d b (D7) c a (C8) ( adjoint(a); ) d b (D8) c a (C9) ( B - adjoint(a); ) 0 0 (D9) 0 0

43 maxima 43 A 1 = A A maxima adjoint invert Lisp maxima 46. /* the following routines compute inverses and adjoints of matrices */ /* if ratmx is false [the default] then the elements will not be converted to cre-form */ adjoint(mat):= block([adj,n], n:length(mat), adj:ident(n), if n#1 then for i thru n do for j thru n do adj[i,j]:(-1)^(i+j)*determinant(minor(mat,j,i)), adj)$ invert(mat):= block([adj,ans], adj:adjoint(mat), ans:block([scalarmatrixp:true], adj/(row(mat,1).col(adj,1))), if scalarmatrixp=true and length(mat)=1 /* row(mat,1).col(adj,1) = determinant(mat) */ then ans[1,1] else ans)$ submatrix M m1, m,... n1, n,... submatrix(m1, m,..., M, n1, n,...); 47. (C1) A : matrix([a,b,c,d,e],[f,g,h,i,j],[k,l,m,n,p],[p,q,r,s,t],[u,v,w,x,y]); a b c d e f g h i j (D1) k l m n p p q r s t u v w x y (C) B : submatrix(,4,a,,3); (D) a d e k n p u x y A (i, j) a ij A[i][j]; A[i,j]; row col col(row(a, i), j); a ij (1, 1) (a ij ) col(row(a, i), j)[1][1]; col(row(a, i), j)[1,1]; 48. (C1) A : matrix([a, b, c, d], [e, f, g, h], [i, j, k, l]);

44 44 (D1) a b c d e f g h i j k l (C) A[][3]; (D) g (C3) A[,3]; (D3) g (C4) col(row(a, ), 3); (D4) ( g ) (C5) col(row(a, ), 3)[1][1]; (D5) g (C6) col(row(a, ), 3)[1,1]; (D6) g A (i, j) a ij A[i][j] : a; A[i,j] : a; A A A matreplace D : matrix([a]); matreplace(a, D, i, i, j, j); 49. (C1) (D1) A : matrix([a, b, c, d], [e, f, g, h], [i, j, k, l]); a b c d e f g h i j k l (C) A[][3] : -3; (D) 3 (C3) A; (D3) a b c d e f 3 h i j k l (C4) B : A; (D4) a b c d e f 3 h i j k l (C5) B[][3] : x; (D5) x (C6) B; (D6) (C7) A; (D7) (C8) a b c d e f x h i j k l a b c d e f x h i j k l C : copymatrix(a);

45 (D8) a b c d e f x h i j k l (C9) C[][3] : g; (D9) g (C10) C; (D10) (C11) A; a b c d e f g h i j k l maxima 45 (D11) a b c d e f x h i j k l (C1) load("./matblock.mac"); (D1)./matblock.mac (C13) D : matrix([g]); (D13) ( g ) (C14) matreplace(a, D,,, 3, 3); (D14) a b c d e f g h i j k l (C15) A; (D15) a b c d e f x h i j k l 6. (C4) (D7) B : A; B A A B A A B B A copymatrix setelmx M setelmx(a, i, j, M); M (i, j) a M M 50. (C1) (D1) (C) (D) M : matrix([a,b,c,d],[e,f,g,h],[i,j,k,l]); a b c d e f g h i j k l setelmx(x,, 3, M); a b c d e f x h i j k l

46 n K K n K n K n 1 K n K m x K n y K m x 1 x =., y =. x n y m y x y 1 = a 11 x 1 + a 1 x + + a 1n x n y = a 1 x 1 + a x + + a n x n y m = a m1 x 1 + a m x + + a mn x n x, y f y = f(x) A Mat(m, n; K)(K m n ) a 11 a 1 a 1n a A = 1 a a n a m1 a m a mn y = f(x) = Ax A f A Mat(m, n; K) K n K m f A f K n K m X Y X Y f X K n Y K m f X Y K n K m f f K n V K V + (1) v + w = w + v, v, w V () (u + v) + w = u + (v + w), u, v, w V y 1

47 maxima 47 (3) 1 0: v + 0 = 0 + v = v, v V (4) v V, 1 v V : v + ( v) = ( v) + v = 0 (5) α (β v) = (αβ) v, α, β K, v V (6) (α + β) v = α v + β v, α, β K, v V (7) α (v + w) = α v + α w, α K, v, w V (8) 1 v = v, v V (9) 0 v = 0, v V (3) 0 (4) v v ( 1)v = v V (n ) A = (a 1, a,..., a n ) v V v 1 v 1 v A =. Kn : v = v 1 a 1 + v a + + v n a n v n v 1 v = (a 1,..., a n ). = Av A v n V n A V v A a A n n K n n E = (e 1, e,..., e n ) v K n v 1 v v =. = v 1e 1 + v e + + v n e n = Ev v n K n v = v E ( ) ( )

48 48 V K n W K m f V W f(αv + βw) = αf(v) + βf(w), α, β K, v, w V V W V W V A = (a 1,..., a n ) W B = (b 1,..., b m ) f (f(a 1 ),..., f(a n )) W n v V A = (a 1,..., a n ) v = v 1 a 1 + v n a n = Av A f f(v) = v 1 f(a 1 ) + + v n f(a n ) f(a) = (f(a 1 ),..., f(a n )) f(v) = f(a)v A f(a i ) W B = (b 1,..., b m ) f(a 1 ) = a 11 a 1 + a 1 a + a m1 b m f(a ) = a 1 a 1 + a a + a m b m f(a n ) = a 1n a 1 + a n a + a mn b m A Mat(m, n; K) a 11 a 1 a 1n a A = 1 a a n a m1 a m a mn A f (A, B) f(a) = BA f(v) = BAv A f(v) B w B (f(v) = Bw B ) w B = Av A V K n W K m (A, B) f A A f (A, B) f

49 maxima V W W V ( ) v, w W αv + βw W, α, β K ( : αv + βw V ) V {0} V V S S V S S V S = {v v = α 1 v α k v k, α 1,..., α k K, v 1,..., v k S, k N} S V S S S = S V A = (a 1,..., a n ) V = {a 1,..., a n } n dim V = n dim K V = n V W dim W dim V V = W V W dim V = n dim W = m f : V W V W V Ker f := {v V f(v) = 0} f (Kernel) W Im f := {f(v) v V } f (Image) Im f Im f f V W v, w Ker f f(αv + βw) = αf(v) + βf(w) = 0 αv + βw Ker f αf(v) + βf(w) = f(αv + βw) Im f K n K m A = (a 1,..., a n ) V B = (b 1,..., b m ) W A Mat(m, n; K) f (A, B) v = Av A, v A K n v Ker f Av A = 0 v A v A Ax = 0 Ker f ( ) 5

50 V = K 3, W = K f : V W f 1 ( 0 =, f 3) 0 ( ) 1 0 =, f 0 ( 0 = 1 ) f A ( ) 0 A = 3 1 Ker f = {v K 3 Av = 0} maxima Ker f (C1) ( A : matrix([, ) 0, ],[3, -1, -]); 0 (D1) 3 1 (C) v : matrix([s],[t],[u]); (D) s t u (C3) ( o : ) matrix([0],[0]); 0 (D3) 0 (C4) eq1 : (A. v)[1][1] = o[1][1]; (D4) u + s = 0 (C5) eq : (A. v)[][1] = o[][1]; (D5) u t + 3s = 0 (C6) solve([eq1, eq],[s, t, u]); (D6) [[s = %R1, t = 5%R1, u = %R1]] Ker f = r 5r r r K = dim Ker f = 1 Im f Im f = {f(a 1 ),..., f(a n )} f(a i ) B w B,i Im f K m {w B,1,..., w B,n } a i = Aa A,i, a A,i K n, i {1,..., n} a A,i = e i, i {1,..., n}

51 maxima 51 w B,i = Aa A,i = Ae i, i {1,..., n} f i = Ae i A i A = (f 1,..., f n ) = (w B,1,..., w B,n ) Im f {f 1,..., f n } Im f A rank A A dim Im f = rank A f rank f rank f := dim Im f = rank A. 5. V 3 A = (a 1, a, a 3 ) W B = (b 1, b ) f V W f(a 1 ) = 3b 1 + b f(a ) = b 1 + b f(a 3 ) = 6b 1 4b f (A, B) A ( ) 3 6 A = 1 4 f (C1) ( A : matrix([3, ) -, 6], [, 1, -4]); 3 6 (D1) 1 4 (C) eq1 : 3*s - *t + 6*v = 0; (D) 6v t + 3s = 0 (C3) eq : *s + t - 4*v = 0; (D3) 4v + t + s = 0 (C4) solve([eq1, eq], [s, t, v]); (D4) [[ s = %R1, t = 4%R1, v = %R1 ]] 7 7 (C5) rank(a); (D5) { r Ker f = 7 a 1 + 4r } 7 a + ra 3 r K = { 7 a 1 + 4r } 7 a + a 3

52 5 dim Ker f = 1 dim Im f = rank f = rank A = Im f = W w W Im f w Im f v V w = f(v) w B = Av A Ax = w B w Im f w f(a 1 ),..., f(a n ) w B f 1,..., f n Ax = w B A (A, w B ) w Im f rank A = rank(a, w B ). 53. V = K 3 W = K 3 f : V W f(v) = Av, v V a = 1, b = 1 W 4 3 Im f (C1) A : matrix([1,, 3], [4, 5, 6], [7, 8, 9]); (D1) (C) a : transpose(matrix([-, 1, 4])); (D) 1 4 (C3) b : transpose(matrix([-, 1, 3])); (D3) 1 3 (C4) rank(a); (D4) (C5) rank(addcol(a,a)); (D5) (C6) rank(addcol(a,b)); (D6) 3 (C7) addcol(a,a);

53 maxima 53 (D7) (C8) addcol(a,b); (D8) rank A = rank(a, a) a Im f rank A rank(a, b) b / Im f f : V W Ker f dim V = dim Ker f + dim Im f. dim Ker f = dim V rank f = dim V rank A Ker f Ax = V = K 3, W = K 3 f : V W A = f(v) = Av, v V (C1) A : matrix([1,, 3], [4, 5, 6], [7, 8, 9]); (D1) (C) v : transpose(matrix([s, t, u])); (D) s t u (C3) AV : A. v; 3u + t + s (D3) 6u + 5t + 4s 9u + 8t + 7s (C4) eq1 : AV[1][1]; (D4) 3u + t + s (C5) eq : AV[][1]; (D5) 6u + 5t + 4s (C6) eq3 : AV[3][1]; (D6) 9u + 8t + 7s (C7) solve([eq1, eq, eq3], [s, t, u]); Dependent equations eliminated: (3) (D7) [[s = %R1, t = %R1, u = %R1]]

54 54 (C8) rank(a); (D8) (C9) A; (D9) (C10) load("./em.mac"); (D10)./em.mac (C11) A1 : A. R(-, 1,, 3); (D11) (C1) A : A1. R(-3, 1, 3, 3); (D1) (C13) A3 : A. R(-,, 3, 3); (D13) (C14) A4 : A3. Q((-1/3),, 3); (D14) Ker f = r r r R = 1 r 1 dim Ker f = 1 dim Im f = rank f = rank A = Im f = 1 4, 5, 3 6 = 1 4, = 1 + dim V = dim Ker f + dim Im f V n W m f V W V A = (a 1,..., a n ) A = (a 1,..., a n)

55 maxima 55 A A a i V a 1,..., a n a 1 = p 11 a 1 + p 1 a + + p n1 a n a = p 1 a 1 + p a + + p n a n a n = p 1n a 1 + p n a + + p nn a n P Mat(n, n; K) p 11 p 1 p 1n p P := 1 p p n p n1 p n p nn A = A P P A A ι: V V (A, A ) rank ι = rank P = n P V v Av A = A v A (= v) A P v A = A v A v A = P v A A A V = K n A A n n P P = A 1 A 55. V = R 3 V A = (a 1, a, a ) a 1 =, a = 3 0, a 1 = V A = (a 1, a, a ) a 1 = 1 1, a = 3 1, a 1 =

56 56 A = , A = A A P P = (A ) 1 A (C1) A1 : matrix([, 3, 1], [-, 0, 1], [1, -1, ]); (D1) (C) A : matrix([1, 3, 1], [1, 1, -], [0, 3, 4]); (D) (C3) P : A^^(-1). A1; (D3) (C4) A1 - (A. P); (D4) P = v = A A v v A v A v A = A 1 v, (C5) v : transpose(matrix([-1, 3, 6])); (D5) (C6) v1 : A1^^(-1). v; (D6) (C7) v : A^^(-1). v; v A = A 1 v

57 (D7) (C8) P. v1; (D8) (C9) v -P. v1; maxima 57 (D9) v A = , v A = v A = P v A W B B B B Q Mat(n, n; K) B = B Q Q f : V W (A, B) (A, B ) A A f(a) = BA, f(a ) = B A f A = Q 1 A P, B QA = BA = f(a) = f(a P ) = f(a )P = B A P QA = A P A = QAP 1 rank A = rank A

58 W = K W B = (b 1, b ) B = (b 1, b ) ( ) ( ( ( ) b 1 =, b =, b 1) 1 =, b 1) = B B ( ) ( ) B =, B 1 = 1 B B Q Q = B 1 B f : V W (A, B) ( ) 0 1 F = f (A, B ) F (C1) A1 : matrix([, 3, 1], [-, 0, 1], [1, -1, ]); (D1) (C) A :matrix([1, 3, 1], [1, 1, -], [0, 3, 4]); (D) (C3) P : A^^(-1). A1; (D3) (C4) ( B1 : matrix([-1, ) 3], [, 1]); 1 3 (D4) 1 (C5) ( B : matrix([1, ) ], [1, -]); 1 (D5) 1 (C6) ( Q : B^^(-1). B1; 1 ) (D6) (C7) ( F1 : matrix([, ) 0, -1], [4, 1, -5]); 0 1 (D7) (C8) ( F : Q. F1. (P^^(-1)); ) 3 (D8) (C9) ( Q^^(-1). F ). P; 0 1 (D9) 4 1 5

59 maxima 59 ( 1 ) Q = 3 4 ( F = QF P 1 3 = )

60 a b a b a b θ a b a b := a b cos θ a = (a 1, a, a 3 ) b = (b 1, b, b 3 ) a b = a 1 b 1 + a b + a 3 c 3 V V V K g a 1, a, b 1, b V α 1, α, β 1, β K g(α 1 a 1 +α a, β 1 b 1 +β b ) = α 1 β 1 g(a 1, b 1 )+α 1 β g(a 1, b )+α β 1 g(a, b 1 )+α β g(a, b ) a, b V g(a, b) = g(b, a) g(a, a) 0 a = 0 maxima K C R V n V A = {a 1, a,, a n } a V a = α 1 a 1 + α a + + α n a n α 1 α a A =. K α n

61 maxima 61 a A V a b V A α 1 α a A =., b β A =. α n β n g(a, b) g(a, b) = α 1 β 1 g(a 1, a 1 ) + α 1 β g(a 1, a ) + + α n β n g(a n, a n ) n n = α i β j g(a i, a j ) i=1 j=1 β 1 g ij := g(a i, a j ), i, j {1,,..., n} g i,j g 11 g 1 g 1n g G := 1 g g n g n1 g n g nn g A G G g A g G g 11 g 1 g 1n β 1 g g(a, b) = (α 1, α,..., α n ) 1 g g n β g n1 g n g nn β n = t a A Gb A. g(a, b) = g(b, a), a, b V g ij = g ji, i, j {1,,..., n} G = t G K = C G K = R G V = K n V E = (e 1, e,..., e n ) a V a = a E E n G g(a, b) := t agb, a, b V ( ) g : V V K G g maxima metrics.mac

62 6 /* metrics.mac */ load(eigen)$ geom(a, b, G) := block([ta], ta : conjugate(transpose(a)), ratsimp(ta. G. b) )$ geom G 57. (C1) load("metrics.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) metrics.mac (C) ( G : matrix([1, ) - %i], [ + %i, 3]); 1 i (D) i + 3 (C3) ( a :) matrix([s], [t]); s (D4) t (C5) ( b : ) matrix([x], [y]); x (D5) y (C6) geom(a, b, G); (D6) (3t + ( i) s) y + ((i + ) t + s) x (C7) geom(b, a, G); (D7) (3t + (i + ) s) y + (( i) t + s) x (C8) geom(a, a, G); (D8) 3t + 4st + s (C9) geom(b, b, G); (D9) 3y + 4xy + x (C10) kill(a,b); (D10) DONE (C11) ( a : ) matrix([1], []); 1 (D11) (C1) ( b : matrix([ ) - 3 * %i], [3 + %i]); 3i (D1) i + 3 (C13) geom(a, b, G); (D13) 41 6i (C14) geom(b, a, G); (D14) 6i + 41 (C15) geom(a, a, G); (D15) 1

63 (C16) geom(b, b, G); (D16) 77 maxima 63 G I : G = I =......, g ij = δ ij = { 1 (i = j) 0 (i j) g K n K = C C n K = R R n maxima innerproduct inprod 58. (C1) load("metrics.mac") Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) metrics.mac (C) a : transpose(matrix([s, t, u])); (D) (C3) s t u b : transpose(matrix([x, y, z])); (D5) x y z (C6) inprod(a, b); (D6) uz + ty + sx (C7) I : ident(3); (D7) (C8) geom(a, b, I); (D8) uz + ty + sx (C9) kill(a, b) (D9) DONE (C10) a : matrix([s, t, u]); (D10) ( s t u ) (C11) b : matrix([x, y, z]); (D11) ( x y z )

64 64 (C1) inprod(a, b); (D1) uz + ty + sx (C13) geom(a, b, I); (D13) uz + ty + sx (C14) kill(a, b); (D14) DONE (C15) a : [s, t, u]; (D18) [s, t, u] (C19) b : [x, y, z]; (D16) [x, y, z] (C17) inprod(a, b); (D19) uz + ty + sx (C0) geom(a, b, I); (D0) uz + ty + sx inprod load(eigen) g g(a, b) a, b := g(a, b) K n a a ( ) a a := a, a K = R R n a, b a b θ (0 θ π) cos θ := a, b a b V V V g a := g(a, b), cos θ := g(a, b) a b g V = K n G g absolute cosine anglcos metrics.mac absolute(a, G) := ratsimp(sqrt(geom(a, a, G)))$ anglcos(a, b, G) := block([denom], denom : absolute(a, G) * absolute(a, G),

65 maxima 65 )$ ratsimp(geom(a, b, G) / denom) 59. (C1) load("metrics.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) metrics.mac (C) I : ident(4); (D) (C3) len(a) := absolute(a, I); (D3) len (a) := absolute (a, I) (C4) ancos(a, b) := anglcos(a, b, I); (D4) ancos (a, b) := anglcos (a, b, I) (C5) a : transpose(matrix([1, -, 0, -1])); 1 (D5) 0 1 (C6) b : transpose(matrix([, 1, 3, -1])); (D6) (C7) len(a); (D7) 6 (C8) len(b); (D8) 15 (C9) (D9) (C10) (D10) ancos(a, b); inprod(a, b)/ (len(a) * len(b)); (C11) kill(a,b); (D11) DONE (C1) a : transpose(matrix([s, t, u, v])); s (D1) t u v (C13) b : transpose(matrix([w, x, y, z]));

66 66 (D13) w x y z (C14) len(a); (D14) v + u + t + s (C15) len(b); (D15) z + y + x + w (C16) inprod(a, b); (D16) vz + uy + tx + sw (C17) ancos(a, b); (D17) vz+uy+tx+sw v +u +t +s z +y +x +w V (K n ) V A B a b A a A b A a b B a B b B g A G A B G B g(a, b) t a A G A b A = t a B G B b B (= g(a, b)) A B P a B = P a A, A = BP b B = P b A t a B G B b B = t a At P G B P b A = t a A G A b A a b t P G B P = G A t P 1 G A P 1 = G B V g V g (V, g) (C n,, ) (R n,, ) R n E 1 O 1 M =... O 1

67 maxima 67 R n η (1, n 1) R 4 (1, 3) (R 4, η) R 1,3 a R 1,3 η η(a, a) η(a, a) < 0 a η(a, a) = 0 a η(a, a) > 0 a ( ) η(a, a) a := 0 η(a, a) a 1 a a, b R 1,3 b a a b µ cosh µ := η(a, b) a b maxima MinkMatrix mink tminknorm sminknorm minknorm hyperbolic cosine hypangcos MinkMatrix : ematrix(4, 4,, 1, 1) - ident(4)$ mink(a, b) := geom(a, b, MinkMatrix)$ tminknorm(a) := sqrt(mink(a,a))$ sminknorm(a) := sqrt(-mink(a,a))$ minknorm(a) := block( if mink(a, a) < 0 then sqrt(-mink(a, a)) else sqrt(mink(a, a)) )$ hypangcos(a, b) := ratsimp(mink(a, b) / (tminknorm(a) * tminknorm(b)))$ metrics.mac

68 (C1) load("metrics.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) metrics.mac (C) MinkMatrix; (D) (C3) a : transpose(matrix([s, t, u, v])); s (D3) t u v (C4) b : transpose(matrix([w, x, y, z])); w (D4) x y z (C5) mink(a, b); (D5) vz uy tx + sw (C6) tminknorm(a); (D6) v u t + s (C7) sminknorm(a); (D7) v + u + t s (C8) hypangcos(a, b); (D8) vz+uy+tx sw v u t +s z y x +w (C9) minknorm(a); MACSYMA was unable to evaluate the predicate: ERREXP 1 # 0: minknorm(a=matrix([s],[t],[u],[v]))(metrics.mac line 10) -- an error. Quitting. To debug this try DEBUGMODE(TRUE);) (C10) kill(a, b); (D10) DONE (C11) a : transpose(matrix([5, 1, 0, -])); 5 (D11) 1 0 (C1) b : transpose(matrix([6,, -1, ])); 6 (D1) 1

69 (C13) mink(a, b); (D13) 3 (C14) mink(a, a); (D14) 0 (C15) mink(b, b); (D15) 7 (C16) minknorm(a); (D16) 5 (C17) minknorm(b); (D17) 3 3 (C18) hypangcos(a, b); (D18) maxima 69 (C19) c : transpose(matrix([1,, -1, 3])); 1 (D19) 1 3 (C0) mink(c, c); (D0) 13 (C1) sminknorm(c); (D1) 13 (C) minknorm(c); (D) Gram-Schmidt. (V, g) (a 1,..., a k ) (a 1,..., a k ) Gram- Schmidt (a 1,..., a k ) { g(a i, a i) 0 i {1,..., k} g(a i, a j) = 0 i j {1,..., k} g(v, w) = 0 v w (g ) v w (a 1,..., a k ) (a 1,..., a k ) {a 1,..., a k } = {a 1,..., a k} {a 1,..., a k } α 1 a α k a k = 0 i {1,..., k} a i g α i g(a i, a i) = 0

70 70 g(a i, a i) 0 α i = 0, i (a 1,..., a k ) {a 1,..., a k } {a 1,..., a k } (V, g) n (a 1,..., a k ) (k n) V k (g(a i, a i ) 0, i) (a 1,..., a k ) a 1 := a 1 (a 1,..., a l ) (l k 1) a l+1 a l+1 := a l+1 g(a l+1, a 1) g(a 1, a 1) a 1 g(a l+1, a l ) g(a l, a l ) a l i {1,..., l} g(a l+1, a i) = g(a l+1, a i) g(a l+1, a i) g(a i, a i ) g(a i, a i) = 0 {a 1,..., a l, a l+1} g(a l+1, a l+1 ) 0 (a 1,..., a l+1 ) (a 1,..., a k ) (a 1,..., a k ) (a 1,..., a k ) Gram-Schmidt g (a a i := 1 g(a i, a i )a i, i {1,..., k} 1,..., a k ) { g(a i, a i ) = 1 i {1,..., k} g(a i, a j ) = 0 i j {1,..., k} (a 1,..., a k ) (a 1,..., a k ) Gram-Schmidt R n C n Gram-Schmidt maxima maxima gramschmidt maxima gramschmidt load(eigeni);

71 maxima (C1) load(eigeni); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) /usr/local/share/maxima/5.9.0/share/matrix/eigeni.mac (C) gramschmidt([[,3],[1,-]]); (D) [ [, 3], [ 37, ]] (C3) a1 : [1,, 3]; (D3) [1,, 3] (C4) a : [4, 5, 6]; (D4) [4, 5, 6] (C5) a3 : [7, 8, -1]; (D5) [7, 8, 1] (C6) [ gramschmidt([a1, [ ] a, a3]); (D6) [1,, 3], 3, 3, 3, [ 5, 5, ] ] (C7) A : matrix([1,, 3], [4, 5, 6], [7, 8, -1]); (D7) (C8) [ gramschmidt(a); [ ] (D8) [1,, 3], 3, 3, 3, [ 5, 5, ] ] maxima gson.mac /* gson.mac */ load(eigeni)$ gso(a) := block([m,n,i,b,c,d], m : length(a), B : transpose(a), n : length(b), C : gramschmidt(b), D : zeromatrix(n, m), for i:1 thru n do D[i] : C[i], transpose(d) )$ gson(a) := block([m,n,i,b,c,d], m : length(a),

72 7 B : transpose(a), n : length(b), C : gramschmidt(b), D : zeromatrix(n, m), for i:1 thru n do D[i] : unitvector(c[i]), transpose(d) )$ gso gson gso Gram-Schmidt gson Gram-Schmidt maxima unitvector ( ) 6. (C1) load("gson.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) gson.mac (C) ( A : transpose(matrix([, ) -1], [-1, ])); 1 (D) 1 (C3) ( ratsimp(gso(a)); ) 3 (D3) 5 (C4) (D4) ratsimp(gson(a)); ) ( ] 5 (C5) [ a[1] : transpose(d4)[1]; (D5) 5, 1 (C6) [ a[] : transpose(d4)[]; 5 ] (D6) (C7) inprod(a[1], a[]); (D7) 0 (C8) A : transpose(matrix([1,, 3], [4, 5, 6], [7, 8, -1])); (D8) (C9) ratsimp(gso(a)); (D9) (C10) ratsimp(gson(a));

73 (D10) maxima (C11) B : transpose(matrix([1, 0, -, 1], [, 3, 3, -1], [0, 1, -1, -1])); (D11) (C1) rank(b); (D1) 3 (C13) ratsimp(gso(b)); (D13) (C14) (D14) ratsimp(gson(b)); gson A = (a 1,..., a n ) A = (a 1,..., a n) = gson(a) t A A = t A = t a 1a 1 t a a 1 t a 1. t a n t a 1a t a a t a t a.... 1a n a n.. t a na 1 t a na t a na n i, j {1,..., n} t a i a j = a i, a j = { 1 (i = j) 0 (i j) t A A = I n t A = (A ) 1 K = R A K = C A

74 (C1) load("gson.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) gson.mac (C) ( A : matrix([1, ) ], [3, 4]); 1 (D) 3 4 (C3) AA : ratsimp(gson(a)); ) (D3) (C4) (D4) (C5) (D5) ( transpose(aa); ) ( AA^^(-1); ( ) (C6) ( ratsimp(aa^^(-1) ) - transpose(aa)); 0 0 (D6) 0 0 (C7) ( ratsimp(transpose(aa) ). AA); 1 0 (D7) 0 1 (C8) B : matrix([1+%i,, -%i], [0, -%i, 1-*%i], [0, 0, +3*%i]); (D8) i + 1 i 0 i 1 i 0 0 3i + (C9) (D9) 3 (C10) (D10) (C11) (D11) (C1) (D1) (C13) rank(b); BB : ratsimp(gson(b)); i i 5 0 3i conjugate(transpose(bb)); 1 i i i 13 BB^^(-1); 0 0 i i i+ ratsimp(conjugate(transpose(bb)) - BB^^(-1));

75 (D17) maxima 75 (D13) (C14) ratsimp(conjugate(transpose(bb)). BB); (D14) (C15) ( C : matrix([1+%i, ) -%i], [3+*%i, 4*%i]); i + 1 i (D15) i + 3 4i (C16) rank(c); (D16) (C17) ( CC : ratsimp(gson(c)); i i 10 ) i+3 5 5i (C18) ( ratsimp(conjugate(transpose(cc)) ) - CC^^(-1)); 0 0 (D18) 0 0 (C19) ( ratsimp(conjugate(transpose(cc)) ). CC); 1 0 (D19) V V V V g (V, g) V (V, g) f : V V V f g g(f(a), f(b)) = g(a, b), a, b V f g V A f (A, A) F g A G V a b A a A, b A K n n = dim V f g A t (F a A )G(Ab A ) = t a A ( t F GA)b A = t a A Gb A a A b A t F GF = G F G V = K n, E

76 76 I n f (E, E) F I n t F I n F = t F F = I n K = R t F F = I n F K = C t F F = I n F K n f K = R K = C (V, g) V A = (a 1,..., a n ) { 1 (i = j) g(a i, a j ) = 0 (i j) V B = (b 1,... b n ) v V A B v A v B A B P v B = P v A P K R C e i, e j = g(a i, a j ) = g(b i, b j ), i, j P v A, P w A = v B, w B = g(v, w) = v A, w A v, w V t P P = I n 64. (C1) load("gson.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) gson.mac (C) A : ratsimp(gson(matrix([1,,3],[4,5,6],[7,8,0]))); (D) (C3) B : ratsimp(gson(matrix([1,0,1],[0,1,],[1,3,-1])));

77 (D3) maxima (C4) P : A^^(-1). B; (D4) (C5) (D5) (C6) (D6) (C7) (D7) (C8) (D8) (C9) (D9) (C10) (D10) ratsimp(transpose(p). P); ratsimp(transpose(a). A); ratsimp(transpose(b). B); ( C : ratsimp(gson(matrix([1+%i, ], [-%i, 3+*%i]))); i i 13 ) i 10 7i D : ratsimp(gson(matrix([1, ) %i], [1-%i, -%i]))); ( 1 3 3i i 1 3 3i Q : ratsimp(c. D); ( )i ( )i ( )i ( )i (C11) ( ratsimp(conjugate(transpose(q)) ). Q); 1 0 (D11) 0 1 (C1) ( ratsimp(conjugate(transpose(c)) ). C); 1 0 (D1) 0 1 (C13) ( ratsimp(conjugate(transpose(d)) ). D); 1 0 (D13) 0 1 A, B, P C, D, Q A t A A = t AA = I n = 1.

78 78 A 1 A A = t A A = t AA = I n = 1 A = ± (C1) load("gson.mac"); Warning - you are redefining the MACSYMA function EIGENVALUES Warning - you are redefining the MACSYMA function EIGENVECTORS (D1) gson.mac (C) A : ratsimp(gson(matrix([1,,3],[4,5,6],[7,8,0]))); (D) ratsimp(determinant(a)^); (C3) (D3) 1 (C4) B : ratsimp(gson(matrix([1,%i,-%i],[3+%i, 4*%i, ],[-1+%i, -3*%i, %i]))); (D4) (C5) (D5) 7i (C6) i i i i i i i i detb : ratsimp(determinant(b)); ratsimp(conjugate(detb)*detb); (D6) 1 ( ) a b A = c d t AA = I ( ) ( ) a c a b b d c d = ( ) a + c ab + cd ba + dc b + d = ( ) ( ) ( ) cos θ sin θ cos η sin η A = sin θ cos θ sin η cos η 1 1 θ ( )

79 maxima (C1) ( A : matrix([cos(th), ) -sin(th)], [sin(th), cos(th)]); cos th sin th (D1) sin th cos th (C) ( transpose(a). A; ) sin (D) th + cos th 0 0 sin th + cos th (C3) ( trigsimp(d); ) 1 0 (D3) 0 1 (C4) trigsimp(determinant(a)); (D4) 1 (C5) ( B : matrix([cos(phi), ) sin(phi)], [sin(phi), -cos(phi)]); cos ϕ sin ϕ (D5) sin ϕ cos ϕ (C6) ( transpose(b). B; ) sin (D6) ϕ + cos ϕ 0 0 sin ϕ + cos ϕ (C7) ( trigsimp(d6); ) 1 0 (D7) 0 1 (C8) trigsimp(determinant(b)); (D8) 1 (C9) ( T : matrix([0, ) 1], [1, 0]); 0 1 (D9) 1 0 (C10) ( C : B. T; ) sin ϕ cos ϕ (D10) cos ϕ sin ϕ (C11) ( trigsimp(transpose(c) ). C); 1 0 (D11) 0 1 (C1) trigsimp(determinant(c)); (D1) 1 maxima trigsimp R n η R 1,n 1 = (R n, η) (n = 4 ) η E J J =

80 80 R 1,n 1 f η f (E, E) F F t F JF = J (E, E) R 1,n 1 R 1,n 1 A = (a 1,..., a n ) 1 (i = j = 1) η(a i, a j ) = 1 (i = j 1) 0 (i j) A R 1,n 1 R 1,n 1 A = (a 1,..., a n ) B = (b 1,..., b n ) A B P t P JP = J P v B = P v A F F J = t F J F = t F JF = J J = 0 F = 1 F = ±1 ( ) a b A = c d ( ) ( ) ( ) ( ) a c 1 0 a b 1 0 = b d 0 1 c d 0 1 ( ) a c ab cd ab cd b d = A ( ) ( ) cosh µ sinh µ cosh µ sinh µ,, sinh µ cosh µ sinh µ cosh µ ( ) ( cosh µ sinh µ sinh µ cosh µ v = tanh µ 1 cosh µ =, sinh µ = v 1 v 1 v ), ( cosh µ sinh µ ) sinh µ cosh µ

maxima matrix (%i1 (%o1 (%i2 (%o2 matrix([1,2,3],[4,5,6],[7,8,9]; ( matrix([a,b,c,d],[e,f,g,h]; a b c d e f g h matrix [ ] ma

maxima matrix (%i1 (%o1 (%i2 (%o2 matrix([1,2,3],[4,5,6],[7,8,9]; ( matrix([a,b,c,d],[e,f,g,h]; a b c d e f g h matrix [ ] ma maxima Contents 1. 2 1.1. 2 1.2. 2 1.3. ( 2 1.4. 3 1.5. 3 1.6. 3 1.7. 4 1.8. 4 1.9. 5 1.10. 5 1.11. 5 1.12. 6 1.13. 6 2. 7 2.1. 7 2.2. 8 2.3. 9 2.4. 9 2.5. 10 3. 12 Date: 2005/10/5. 1 2 1. 1.1.. maxima

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

空き容量一覧表(154kV以上)

空き容量一覧表(154kV以上) 1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし 1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

いつでも どこでも スマホで数学! サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行当時のものです.

いつでも どこでも スマホで数学! サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行当時のものです. いつでも どこでも スマホで数学! サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/001201 このサンプルページの内容は, 初版 1 刷発行当時のものです. 0 i Maxima on Android SNS Web Maxima Android Linux, Windows, MacOS

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ B A C D E F K I M L J H G N O Q P Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01 00 00 60 01 00 BE EF 03 06 00 19 D3 02 00

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

limit&derivative

limit&derivative - - 7 )................................................................................ 5.................................. 7.. e ).......................... 9 )..........................................

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】 B A C E D 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 H G I F J M N L K Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C LAN RS-232C LAN LAN BE EF 03 06 00 2A D3 01 00 00 60 00 00 BE EF 03 06 00 BA D2 01

More information

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1 (, Goo Ishikawa, Go-o Ishikawa) ( ) 1 ( ) ( ) ( ) G7( ) ( ) ( ) () ( ) BD = 1 DC CE EA AF FB 0 0 BD DC CE EA AF FB =1 ( ) 2 (geometry) ( ) ( ) 3 (?) (Topology) ( ) DNA ( ) 4 ( ) ( ) 5 ( ) H. 1 : 1+ 5 2

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語 A B C D E F G H I 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 K L J Y CB/PB CR/PR COMPONENT VIDEO OUT RS-232C RS-232C RS-232C Cable (cross) LAN cable (CAT-5 or greater) LAN LAN LAN LAN RS-232C BE

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l ABCDEF a = AB, b = a b (1) AC (3) CD (2) AD (4) CE AF B C a A D b F E (1) AC = AB + BC = AB + AO = AB + ( AB + AF) = a + ( a + b) = 2 a + b (2) AD = 2 AO = 2( AB + AF) = 2( a + b) (3) CD = AF = b (4) CE

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc + .1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

行列代数2010A

行列代数2010A (,) A (,) B C = AB a 11 a 1 a 1 b 11 b 1 b 1 c 11 c 1 c a A = 1 a a, B = b 1 b b, C = AB = c 1 c c a 1 a a b 1 b b c 1 c c i j ij a i1 a i a i b 1j b j b j c ij = a ik b kj b 1j b j AB = a i1 a i a ik

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information