RP HASA

Size: px
Start display at page:

Download "RP HASA"

Transcription

1

2 RP HASA RP RP 59 i

3 4.3.3 SSTO RP RP SSTO A 97 B 105 C Proof of Concept 19 ii

4

5 ( ISS:International Space Station) ISS km ISS ISS Fig1.1 ISS( NASA) Fig1. Space Shuttle( NASA) - -

6 X-Prize (TSTO Two Stage to Orbit) SSTO(Single Stage to Orbit) SSTO TSTO X-33(SSTO) (TSTO)Fig Fig1.3 X-33( NASA) Fig1.4 Saenger( Deutsche Aerospace ) 1.1. (RP:Rocket Plane) RP Rocket Plane RP RP RP RP - 3 -

7 RP (POC:Proof of Concept) Fig1.5 RP POC RP Vehicle Design Trajectory Optimization Top down verification Concept of RP System Bottom up verification POC Fig1.5 Methodology for RP system feasibility evaluation - 4 -

8 1. RP 1 RP 3 RP Hypersonic Aerospace Sizing Analysis(HASA) [1] DATCOM [] (SQP :Sequential Quadratic Programming) [3][4] SQP POC 1 3 RP HASA DATCOM RP SQP - 5 -

9

10 .1 RP (TSTO :Two Stage to Orbit) Rocket Plane RP...1 ISS ISS - 7 -

11 RP Fig.1 Fig.1 Vertical take-off and Horizontal take-off T L D m g TSTO SSTO TSTO TSTO TSTO SSTO SSTO SSTO SSTO - 8 -

12 NASA X-33 SSTO Stage type Propulsion type T/O type SSTO TSTO Pure Rocket RBCC ABE+Rocket HTHL VTHL VTVL Fig. Category of Space plane RBCC:Rocket Based Combined Cycle ABE:Air Breathing Engine HTHL VTHL VTVL VTVL DC-X RP HTHL HTHL TSTO[Saenger ] SSTO SSTO ( ) - 9 -

13 SSTO[X-33 ] ( ).. RP..1 RP RP RP RP RP RP RP RP TSTO SSTO RP ISS RP V ef V Mb + Ml V = Vef ln V Mb + Ml + Mp Mb + Ml = Vef ln V M 0 loss loss (.1) V ef =Ispg 0 Isp

14 g 0 V loss Mb Ml Mp M 0 M 0 = Mb + Ml + Mp (.) RP 3ton (.1) Fig.3 Fig.5 u1=14.4% Fig.3 Ideal V of SSTO u 1 M 0 Isp 445sec.1 ISS 8000m/s 000m/s H- Fig.4 [5]

15 Fig.4 Loss of Velocity of H- Rocket H- 1 H- 300ton RP ~3 RP H- 14.4% RP m/s RP ISS m/s Fig m/s 1/3 Fig.5-1 -

16 M0=70ton u1=14.4% Fig.5 Ideal V of RP system Fig % 70ton 9000m/s RP SSTO RP SSTO SSTO RP 3 4 RP RP 3 RP Fig

17 Fig.6 Oblique wing ( NASA) RP Isp 340sec Isp 450sec 71kg/m 3 RP Isp 340sec (.1) RP (IP:Interface Point) RP H- LE-7 GX RD-180 RP

18 Table.1 Engine performance Fig.7 LE-7,LE-7A( NASDA) Fig.8RD-180( Lockeed Martin) RP (1) () (1) 5% RP () () (1)

19 () (Ekranoplan) (3) Fig.9 Fig.9 Ekranoplan (1) HOTOL () m 0 5 [6] 375ton ton (3) RP 100km/s RP 00km/s 300km/s [7] RP

20 RP Fig.10 Return wing Stabilizer RD-180 Main wing LE-7 Fig.10 RP Image

21 RP RP RP RD-180 ( ) LE-7 ( ) M<0.5 Run M=0.5 take-off nd phase (LE-7) 1st phase (RD-180) Drop main wing Change engine Fig.11 Flight concept

22 .3 RP RP (1) () (3) (4) (5) (6) (7)SSTO (8) RP (1) () (3) (4) (5)

23

24 3 3.1 RP POC 3 f ( ) minimize x (3.1) Subject to; ( x) = 0 ( = 1,, ) p i n (3.) i ( x) 0 ( = 1,, ) q j m (3.3) j (3.) (3.3) f(x) x SQP SQP RP 3.3 HASA DATCOM HASA,, DATCOM,

25 RP Table3.1 Table 3.1 Vehicle design variables - -

26 RP Table3.1 Table RP RP RP HASA HASA 0HASA RP IP IP IP IP RP 3 HASA DATCOM RP RP IP ( ) ( )

27 HASA RP RP RP t/c 1 RP 3 x/c 0.5 RP x/c=0.5 [rad -1 ](0.1093[deg -1 ]) (Fig3.1 [8] ) t/c= [deg -1 ] Fig 3.1 Airfoil lift coefficient - 4 -

28 H- 4.0m R/t=1000 [9].0m 0.00m 0.5m 4.5m 1m 100km/h(7.8m/s) 400ton 300km/h(83.3m/s) [7] 400 /h(111m/s) 400ton 0.5(170m/s) ton 000ton [5] RP 83m/s170m/s C L =

29 S=300m S=550m Fig 3. V 0 vs S U=0.46 U=0.4 U1=0.18 U1= V 0 vs u 1 and u u1 u 400ton

30 Fig3. 83m/s m 170m/s m m/s RP RP m/s 7800m/s 8000m/s 300km/h, 10deg 3ton ISS 50kPa, m/s,1500m/s,000m/s 5deg,7deg,10deg,1deg,15deg,17deg,0deg,deg - 7 -

31 3.3 HASA DATCOM Mb M 0, u 1,, Mb= u1 M0 (3.4) M w b, u,, M w = u Mb (3.5) M final, M = Mb M (3.6) final w Mp M 0 =Mp+Mb+Ml,, Mp = M Mp Ml (3.7) 0 M LE7, Mach IP V f km,,, a 0 Mach IP, M 0 v= Vef ln + v0 (3.8) M,M,M 0,v 0, v V ef - 8 -

32 Vef = Isp g (3.9) 0 Isp, M LE7 V Isp g M + M a Mach V final LE7 f _ able = LE7 0ln + 0 IP loss _ after M final (3.10) (3.10) M LE7, M M V a Mach + V M f 0 IP loss_ after LE7 = final exp final IspLE7 g0 (3.11) V loss_after 000m/s RP m/s Vloss 5, Vloss Vloss _ after = ( 5 MachIP ) (3.1) 5 (3.11), M RD180, Mp, M RD180 RD-180 M = Mp M (3.13) RD180 LE7 M RP1 RD RP-1 LOX RP-1 1 MRP 1 = MRD 180 (3.14) 3.7 M LH - 9 -

33 LE-7 6, 1 MLH = MLE7 (3.15) 7 M LOX RD-180,LE-7,.7 6 MLOX = MRD MLE7 (3.16) V RP1,V LH,V LOX RP-1,,, 807kg/m 3, 71kg/m 3,1149kg/m 3, V / 807 RP1 = MRP 1 (3.17a) V /71 LH = MLH (3.17b) V = M /1149 (3.17c) LOX LOX 3.3. S need1 RP-1 Table.1 Fig.1 V k S 1.5 enable = (3.18),V enable,s (3.18) Table4.1 Fig

34 Table.1 Fuel coefficient Fig3.4 Wing area vs Fuel coefficient Venable 1.5 = S (3.19) (3.19) S

35 S need Venable = (3.0) 1 RP 5~8 RP RP RP-1 (3.0) % RP 3% RP RP RP-1 (3.0) S need 0.07 Venable = (3.1) RP-1 RD-180,LE-7,, L LH,L LOX D tnk 4.0m, t 0.00m 800kg/m3 Fig3.5, L π π 3 4 Dtnk Dtnk LH = VLH- / +Dtnk LLOX = π π 3 4 Dtnk Dtnk VLOX - / +Dtnk (3.a) (3.b), - 3 -

36 Fig 3.5 Tank model Lb L nose Fig3.6 Lb = L + L + L (3.3) LH LOX nose L/W L / W = Lb/ Db (3.4) Fig3.6 Fuselage mode M tnk,, M 800 t 4 D L _ 3 Dt nk tnk = π π LH + tnk LH M 800 t 4 D L _ 3 Dt nk tnk = π π LOX + tnk LOX (3.5a) (3.5b) M = M + M (3.6) tnk tnk _ LH tnk _ LOX

37 3.3.3 b, TR 1/ Fig3.7 C 0 HOPE-X 85deg b tan λ + b/ tanφ C0 = (3.7) 1-TR Ct C 0 TR Ct = TR C 0 (3.8) S ( TR) bc 0 1+ S = (3.9) AR b AR = (3.30) S Fig3.7 Main wing model MAC C 0 C t MAC CC 0 t MAC = C0 + Ct 3 C 0 + C t (3.31)

38 C L, DATCOM π AR exposed C L = f α AR tan ( λ) (+(4+ 1 ) + η β S S (3.3) (3.3) β =1-Mach 0 (3.33) Clα β η= π (3.34) Db f=1.07 (1+ ) b (3.35) S exposed, S exposed Db Sexposed = S Db C0 4tanθ (3.36),, 1 b θ = tan 1 ( TR) C0 b /tanφ (3.37) S need 1 Mg 0 0 LRW = ρ0vs 0 need CL α α (3.38) (3.38) S need ( Mg 0 0 LRW ) Sneed = (3.39) ρv C 0,L RW L L 1 L= ρv0 CLS+ LRW (3.40)

39 D 1 D= ρv0 CDS (3.41) 3.3.4, V return 300m/s, return 10deg b RW, RW, TR RW t/c 0.03, Cl, C 0RW brw tan λrw C0 = (3.4) RW 1 TR RW C trw C 0RW TR C = TR C (3.43) trw RW 0RW S RW, 1 SRW = brw C0 ( 1+ TR RW RW ) (3.44) AR RW brw ARRW = (3.45) S RW

40 Fig 3.8 Return wing model MAC RW C MACRW = C0RW + CtRW 3 C 0RW 0RW C + C trw trw (3.46) CL RW,DATCOM π AR RW RWexposed C L = f α RW RW AR SRW RW tan ( λrw ) (+(4+ 1 ) + ηrw βrw S (3.47),S exposed, S exposed /S RW =0.5 β =1-Mach (3.48) RW Clα RW βrw ηrw = π (3.49) Db f RW =1.07 (1+ ) brw (3.50),Mach return return CL return return

41 C =C αreturn (3.51) Lreturn Lαreturn S RWneed S RW S RWneed 1 M final g0 = ρ0vreturnsrwneedcl return αreturn α (3.5) (3.5) S RWneed, S RWneed = M final g0 ρ0vreturncl α α (3.53) return return L return 1 Lreturn = ρvreturnclreturnsrw (3.54) D return 1 Dreturn = ρvreturncdreturnsrw (3.55) L RW, 1 LRW = ρ0v0srwcl RW 0 α α (3.56) C D0 (3.57) C = C + KC (3.57) D D0 L Buildup Component Method[] (Cf) (FF) (Q) (Swett)

42 C Dmisc C DL&P (3.58) c ( ) Cf ( CfcFFQ c cswetc ) C = + C + C 0 L& D D subsonic Dmisc D Sref 3.58 Cf C f = ( log R).58 ( M ) R R = ρ Vl / µ l FF (3.61)(3.63) 3.61 (x/c) m m t t FF = M ( cos Λm ) ( x/ c) c c m f FF = f 400 FF 1 ( 0.35/ f ) 3.6 =

43 f l l = = 3.64 d ( 4/ π ) Amax A max Q Q 1.5 Q 1.3 Q 1.0 Q Q=1.0 Q=1.03 Q=1.08 4~5 Buildup Component Method ρv0 Lb Rbody = (3.65) µ C fbody =.58 log R Mach ( 10 body ) ( 0 ) (3.66) 60 f FFbody = 1+ f Lb f = Db 3.68 Q = 1.0 (3.69) body π Swett _ body = Db Lb (3.70) ρv0 MAC Rwing = µ (3.71) C fwing =.58 log R Mach ( 10 wing ) ( 0 ) (3.7)

44 4 t t m 0.6 x/ c c c 0.18 FF = Mach ( cos λ ) ( ) wing 3.73 Q = 1.3 (3.74) body S =.003S (3.75) wett _ wing exposed ρv0 MACRW RRW = (3.76) µ C frw = log R Mach ( ).58 ( 10 RW 0 ) t t x/ c c c m 0.18 FF = Mach ( cosλ ) ( ) RW (3.77) 3.78 Q = 1.3 (3.79) RW S =.003S (3.80) wett _ RW RWexposed C D0 C FF Q S + C FF Q S + C FF Q S = S fbody body body wett _ body fwing wing wing wett _ wing frw RW RW wett _ RW (3.81) C = C + KC (3.8) D D0 L Swept-Wing K K 1 = (3.83) πar ( AR 0.68 )cos 0.15 λ-3.1)

45 R body ρv Lb µ return = (3.84) C fbody = ( log10 Rbody ) ( Machre ) (3.85) FF body 60 f = f Lb f = Db 3.87 Q = 1.0 (3.88) body S wett _ body π = Db Lb (3.89) R RW ρv MAC µ return RW = (3.90) C frw = ( log ).58 ( 10 RRW Mach0 ) (3.91) FF RW t t = Mach0 ( cosλ ) (3.9) ( x/ c) c c m Q = 1.3 (3.93) RW ( ) S _ = S _exp ( t/ c) (3.94) wett RW RW osed C C FF Q S + C FF Q S fbody body body wett _ body frw RW RW wett _ RW D0return= (3.95) S C = C + KC (3.96) Dreturn D0return L Swept-Wing K K 1 = (3.97) πar ( AR 0.68 )cos 0.15 λ-3.1) (3.81) (3.95) - 4 -

46 (3.81) (3.95) HASA,,HASA HASA 1 1 (1) () (3) (4) (5) (6) (7) (8) (9) (10) (11) (1) HASA 1988, HASA,,,RP,, M fuse Lb _ F ULF M fuse _ F = mf Qmax _ F Sb_ F Db _ F 0.15 ( ) ( ) (3.98) Sb, Sb = πdb C 0 (3.99) M whasa Mb _ F ULF TR 0.7 MwHASA _ F = mf S _ F AR t/ c cos λ (3.100)

47 M RW M final _ F ULF _ TRsub MRW F = mf SRW _ F ARRW t/ c cos λrw (3.101) M finv M _ F 5.0 S _ F finv 1.09 = finv (3.10) M tps M _ F = Wins_ F S _ F (3.103) tps wett,swett,, π Swett = SRW + Db Lb (3.104) 4 M thrur M thrur _ F = T _ F (3.105) T_F [lbf] M engine RPRD-180 LE-7 1 LE-7 1.7ton,RD ton, M engine = (3.106) = 7000 M tnk M = M + M (3.107) tnk tnk _ LOX tnk _ LH

48 M hydr ( S_ F + Sfinv _ F) M hydr _ F =.64 Lb_ F + b_ F 1000 ( ) 0.5 (3.108) M elect M _ F M _ F Lb_ F elect = 0 (3.109) Mb HASA,HASA Mb HASA = M body + M wing + M RW + M finv + M tps + M thrur + M engine + M tnk + M hydr + M elect (3.110) M 0HASA HASA bhasa Ml, M = M + Ml + Mp (3.111) 0HASA bhasa IP M IP_before M = M M (3.11) IP _ before 0HASA RD180 IP M IP_after M = M M M IP _ after 0HASA RD180 whasa = M M IP _ before whasa IP V IP_need IP IP V = a Mach (3.114) IP _ need 0 IP

49 V IP M 0HASA M IP_before M 0HASA VIP _ able = IspRD 180 g0ln + V0 Vloss _ before (3.115) M IP _ before V loss Vloss Vloss _ before = MachIP (3.116) 5 V f_able M V = Isp g ln + V V (3.117) IP _ after f _ able LE7 0 IP _ able loss _ after M final L/D L/D CL L/ D= (3.118) C D L/D return L/D CLreturn L/ Dreturn = (3.119) C Dreturn 1 HASA Mb HASA σ Mb Mb HASA 1 = (3.10) MbHASA HASA Mw HASA

50 σ M M whasa w = (3.11) M whasa HASADATCOM Optimization Variables M0 u1 u MachIP b TR brw TRRW RW Mb C0 S AR C0RW SRW ARRW Mp Mw Mfinal MLE7 MRD180 VLH VLOX VRP1 Mtnk Lb Sneed1 L/W HASA DATCOM Mfuse MwHASA MRW Mfinv Mtps CD CL CLRW CLreturn CDreturn Mthrur Mengine Mhydr Melect L/D Sneed SRWneed L/Dreturn MbHASA M0HASA MIP_before MIP_after Constraint Variable VIP_able Vf_able Constraint Relation Objective Function Fig Determination of Variables

51 3.4 f = M 0HASA : ( ) (3.1) M 0 Mach b TR IP λ brw (3.13) TRRW λrw 1/ u1 u S S S S SRW S L/ D 6 need1 need L/ Dreturn 6 (3.14) VIP _ able VIP _ need Vf _ able Vf σ1 ε σ ε RWneed ( ) ( ) M 0HASA HASA

52

53 SQP 4. HASA RP 010 RP SSTO SSTO 3 ( ) Fig4.1 Composite utilization

54 [10] [11] % RP HASA RP RP CFRP 58 CFRP 0.75 HASA kg/m 3 CFRP 1600kg/m 3 CFRP TPS TPS TPS [11] TPS TPS 0.60 SSTO

55 4.3 SQP, Vloss Vloss=1000,1500,000 [m/s] =(5,7),10,1,15,17,0,,(5) [deg] 0.3Lb RP L/D, Vloss 1000m/s Fig4. Take off Angle of attack vs M 0 and Mw - 5 -

56 Fig4.3 Take off angle of attack vs Required wing area Fig 4.4 Take off angle of attack vs Take off L/D

57 Fig4.5 Take off angle of attack vs Aspect ratio

58 Vloss 1500m/s Fig4.6 Take off angle of attack vs M 0 and Mw Fig 4.7 Take off angle of attack vs Required wing area

59 Fig4.8 Take off angle of attack vs Take off L/D Fig4.9 Take off angle of attack vs Aspect ratio

60 000m/s Fig4.10 Take off angle of attack vs M 0 and Mw Fig 4.11 Take off angle of attack vs Required wing area

61 Fig4.1 Take off angle of attack vs Take off L/D Fig4.13 Take off angle of attack vs Aspect ratio

62 Fig4.,4.6,4.10 (Fig4.3,4.7,4.11) Fig4.,4.6,4.10 L/D L/D 6 L/D (3.97) (3.100) 17deg 1000m/s,1500m/s,000m/s 380ton,500ton,640ton

63 1000m/s Fig4.14 Take off angle of attack vs M 0 and Mw Fig4.15 Take off angle of attack vs Required wing area

64 1500m/s Fig4.16 Take off angle of attack vs M 0 and Mw Fig4.17 Take off angle of attack vs Required wing area

65 000m/s Fig4.18 Take off angle of attack vs M 0 and Mw Fig4.19 Take off angle of attack vs Required wing area - 6 -

66 ,17deg, 1000m/s,1500m/s,000m/s 3ton,84ton,353ton SSTO SSTO 1000m/s Fig4.0 Take off angle of attack vs M 0 and Mw

67 Fig4.1 Take off angle of attack vs Required wing area 1500m/s Fig4. Take off angle of attack vs M 0 and Mw

68 Fig4.3 Take off angle of attack vs Required wing area 000m/s Fig4.4 Take off angle of attack vs M 0 and Mw

69 Fig4.5 Take off angle of attack vs Required wing area SSTO 0deg 1000m/s,1500m/s,000m/s 50ton,334ton,476ton

70 4.4 Fig4.6 A-1 B-1 C-1 A- B- C- A-3 B-3 C-3 Fig 4.6 Result for Body optimization 1000m/s 380ton 000m/s 600ton 3ton 600ton 000m/s 350ton SSTO 480ton [13] m/s 1500m/s RP 500ton 80ton SSTO 330ton

71 Fig4. Table4.1 RP 1000m/s,1500m/s,000m/s A-1,A-,A-3 RP SSTO B-1,B-,B-3 C-1,C-,C-3 Table4.1 Definition of Optimized Vehicle Model

72

73 n 5. h h ρ = 1.5e (5.1) T h 0 h < T = h h < 0000 T = h < 3000 T = ( h- 0000) 3000 h < T = ( h- 3000) h < T = (5.) h < T = ( h ) h < T = ( h ) h < T = h h h T = 760(1- exp(( h) / 54800)) / T µ = (5.3) T

74 g h g g R 0 = 0 R0 + h (5.4) R 0,g km,9.807m/s RP dv F cosα D = g sin γ (5.5) dt m dγ Fsinα + L v v = g cosγ dt m r (5.6) ds R = v cos γ dt r (5.7) dr dh = = vsinγ dt dt (5.8) dm = mt () dt (5.9) F L D s h r m Isp (5.9) F m = (5.10) Isp g L, D 1 L= ρv CLS (5.11) 1 D= ρv CDS (5.1) 0 71

75 H- 300m/s t f Vloss = g sinγ dt (5.13) gravity 0 t f D Vlossdrag = dt (5.14) m DATCOM 5.3.1, DATCOM π AR exposed C L = f α AR tan ( λ) (+(4+ 1 ) + η β S S (5.15) (5.15) β =1-Mach (5.16) Clα β η= π (5.17) Db f=1.07 (1+ ) b (5.18) C L CL α = α (5.19) 7

76 ρv Lb V Lb Rbody = = (5.0) µ υ C fbody =.58 log R Mach ( 10 body ) ( ) (5.1) 60 f FFbody = 1+ f Lb f = Db 5.3 Q = 1.0 (5.4) body π Swett _ body = Db Lb (5.5) ρv MAC V MAC Rwing = = µ υ (5.6) C fwing =.58 log R Mach ( 10 wing ) ( ) t t 0.8 x/ c c c m 0.18 FF = Mach ( cos λ ) ( ) wing (5.7) 5.8 Q = 1.3 (5.9) body S =.003S (5.30) wett _ wing exposed 1.3 CfbodyFFbodyQbodySwett _ body + Cfwing FFwingQwing Swett _ wing CD0 = 1.3 (5.31) S C = C + KC (5.3) D D0 L Swept-Wing K 1 K = (5.33) πar ( AR 0.68 )cos 0.15 λ-3.1) 73

77 5.3. (RW:Return Wing) RD180 M RD180 4 C L α = (5.34) Mach 1 C = α (5.35) L CL α CfbodySwett _ body + CfwingSwett _ wing IP CD0 = CDwave S (5.36) CfbodySwett _ body + CfRW Swett _ RW CD0 = CDwave S (5.37) RW l Recutoff = 44.6 k Mach 1.16 (5.38) (5.38) k Table5.1 Skin roughness value(k) Lb Rbody = 44.6 k Mach C fbody =.58 log R Mach 1.16 ( 10 body ) ( ) (5.39) (5.40) 74

78 ( ) π Swett _ body = Db Lb (5.41) MAC Rwing = 44.6 k Mach C fwing =.58 log R Mach 1.16 ( 10 wing ) ( ) (5.4) (5.43) S =.003S (5.44) wett _ wing exposed ( ) MACRW RRW = 44.6 k Mach C frw = log R Mach 1.16 ( ).58 ( 10 RW ) (5.45) (5.46) S =.003S (5.47) wett _ RW RWexposed Sears-Haack-body Sears-Haack-body ( D/ q) ( D/ q) Sears-Haack Sears-HaackRW 9π Amax = Lb 9π Amax RW = Lb (5.48a) (5.48b) Sears-Haack-body Sears-Haack-body Sears-Haack-body ( ) ( ) ( *180 / π) π λ D/ q = Ewd Mach 1. 1 D/ q wave 100 ( ) Sears-Haack (5.49a) 75

79 ( ) ( ) ( *180 / π) π λ RW D/ q = Ewd Mach 1. 1 D/ q waverw 100 ( ) Sears-HaackRW (5.49b) A max Ewd Sears-Haack A max + ( ) IP C = C + KC (5.50) D D0 L K = ( 1) AR Mach 4AR Mach 1 cos λ (5.51)

80 5.4 4 RP IP u v mg = + (5.5) 10km ISS 8000m/s, 10km 0 50kPa u maximize (5.53) n α i ( i = 1,,, n) (5.54) i ( ) ( ) h 0 i=1,,,n Q i=1,,,n (5.55) v n i V IP v maximize (5.56) n α i ( i = 1,,, n) (5.57) i ( ) ( ) h 0 i=1,,,n Qi i=1,,,n h = 1000 n γ = 0 n (5.58) i n 0 77

81 5.4. RP RP Fig5.1 Result of velocity Fig5. Result of height 78

82 Dynamic Pressure=50kPa Fig5.3 Velocity vs Height Fig5.4 Distance vs Height 79

83 Fig5.5 Result of Angle of attack 1500m/s,000m/s (A-,A-3) 8000m/s Fig5.6 Loss of velocity (A-1Model) 80

84 Fig5.7 Loss of velocity (A-Model) Fig 5.8 Loss of velocity (A-3Model) 10km 8000m/s 81

85 700800m/s 00~400m/s H- 1700m/s RP Table 5. Result of Present RP model Table m/s (A-1) H m/s 1000m/s RP RP Fig 5.9 Result of velocity 8

86 Fig 5.10 Result of height Dynamic Pressure=50kPa Fig 5.11 Velocity vs Height 83

87 Fig 5.1 Distance vs Height Fig 5.13 Result of Angle of attack ISS 84

88 Fig 5.14 Loss of Velocity (B-1 Model) Fig 5.15 Loss of Velocity (B- Model) 85

89 Fig 5.16 Loss of velocity (B-3 Model) Table 5.3 Result of Next RP model 1000m/s 300m/s 1500m/s RP RP RP RP SSTO SSTO 86

90 Fig 5.17 Result of velocity Fig 5.18 Result of height 87

91 Dynamic Pressure=50kPa Fig5.19 Velocity vs Height Fig5.0 Distance vs Height 88

92 Fig 5.1 Result of Angle of attack Fig 5. Loss of Velocity (C-1 Mode) 89

93 Fig 5.3 Loss of Velocity (C- Model) Fig 5.4 Loss of velocity (C-3 Model) SSTO SSTO 90

94 Table 5.4 Result of Next SSTO model Fig5.5 Velocity vs Height(velocity loss =1000m/s model) 91

95 Fig5.6 Velocity vs Height(velocity loss =1500m/s model) Fig5.7 Velocity vs Height(velocity loss =000m/s model) 9

96 km ISS 8300m/s 8300m/s 300m/s ISS 8000m/s B-1 C-1 B- C- B-3 A-1 A- C-3 final velocity=8300m/s A-3 Fig5.8 Result of trajectory optimization Fig5.8 0 A-,B-,C-3 0 RP 40ton, RP 75ton, SSTO 480ton 93

97 Fig5.9 A- model Fig5.30 B- model Table 5.5 Parameter of A- mode M0[Mg] 497. S[m ] 37.9 Lb[m] b[m] AR 1.06 Table 5.6 Parameter of B- mode M0[Mg] 84.8 S[m ] Lb[m] b[m] AR 1.45 Fig5.31 C-3 model Table 5.5 Parameter of C-3 mode M0[Mg] S[m ] 34.9 Lb[m] b[m] 4.16 AR

98

99 6 RP RP 1000m/s,1500m/s,000m/s RP 500ton, RP 80ton, SSTO 480ton 500ton 170m/s RP RP SSTO

100 [1] Gary J.HarloffBrian M.Berkowitz:HASA-Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles1988 [] Dnaniel P.Raymer:Aircraft Design:A Conceptual AttroachAIAA1999 [3] : 00 [4] :FORTRAN [5] : 001 [6] Nobuyuki Tomita Alexander V.Nebylov Victor V.Sokolov Yoshiaki Ohkami:Performance and Technological Feasibility of Rocket Powered HTHL-SSTO with Take-off Assist(Aerospace Plane/Ekranoplane)1999 [7] :TSL VOL.37, ,1998 [8] : 1968 [9] : 199 [10] : 001 [11] L.B.ILCEWICS: Composite Applications in Commercial Airframe Structures [1] : TPS 1999 [13] : 1997 [14] : 1989 [15] : 1993 [16] : 1998 [17] :

101 POC POC POC POC POC

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

untitled

untitled 50cm 2500mm 300mm 15 CCD 15 100 1 2 3 4 23 SORA Kwak SeungJo 1 1.1 1995 20 2015 6 18 1931 1 2 3 2 ˆ 300mm 2500mm ˆ 2 1.2 WASP 1: 15 2048 2048 CCD 200mm 70 13 WASP 8 1.3 50cm 1 1: CCD 2: 1.4 MOST MOST 15

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

untitled

untitled Stacking sequence optimization of composite wing using fractal branch and bound method Orbiting Plane : HOPE-X (JAXA) Fractal Branch and Bound Method (FBBM) Fractal structure of design space 5 y V a 9º

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

第3章 非線形計画法の基礎

第3章 非線形計画法の基礎 3 February 25, 2009 1 Armijo Wolfe Newton 2 Newton Lagrange Newton 2 SQP 2 1 2.1 ( ) S R n (n N) f (x) : R n x f R x S f (x ) = min x S R n f (x) (nonlinear programming) x 0 S k = 0, 1, 2, h k R n ɛ k

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i i j ij i j ii,, i j ij ij ij (, P P P P θ N θ P P cosθ N F N P cosθ F Psinθ P P F P P θ N P cos θ cos θ cosθ F P sinθ cosθ sinθ cosθ sinθ 5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ + σ P σ () n σ () n σ P ) σ ( σ P σ σ σ + u V e m w ρ w gv V V s m s ρ s gv s ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s (

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

NETES No.CG V

NETES No.CG V 1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4

More information