ct_root.dvi

Size: px
Start display at page:

Download "ct_root.dvi"

Transcription

1 ( ) (i) ( ) (ii) ( ) (iii) ( ) ( ) 1) 1 x x X R X =[0, x] x b(x) b( ) 2 b(0) = 0 x<x b (x) > 0 b (0) = + b (x) =0 x 0 b (x) < 0 x 2 ( ) Θ Θ ={θ 0,θ 1 } 0 <θ 0 <θ 1 θ 0 θ 0 θ 1 θ 0 p p θ 0 1 p θ 1 p θ i x c i (x) c i (x) =θ i x (i =0, 1) 1) x

2 8 0 <θ i x>0 c 0 (x) <c 1 (x) c 0 (x) <c 1 (x) θ 0 θ 0 θ 1 w x w θ i U i (x, w) =w c i (x) b(x) w x x x x x w w w w M ( ) m M m µ M X R µ(m) m µ(m) =(δ(m),ρ(m)) m δ(m) X ρ(m) R 2 (i) M (ii) µ( ) =(δ( ),ρ( )) 2 (M,µ) (mechanism) (takeit-or-leave-it offer) 2 ( ) ( ) 3

3 9 (x, w) =(0, 0) b(0) c i (0) (reservation utility) θ i (x i,w i ) {(x fb 0,wfb 0 ), (xfb 1,wfb 1 )} (first-best) θ i b(x i ) c i (x i ) max b(x i ) c i (x i ) b (x fb x i )=θ i i w i w i c i (x fb i )=0 w fb i = θ i x fb i x fb i 2) Π fb = p[b(x fb 0 ) θ 0x fb 0 ]+(1 p)[b(xfb 1 ) θ 1x fb 1 ] Π(x 0,x 1 )=p[b(x 0 ) θ 0 x 0 ]+(1 p)[b(x 1 ) θ 1 x 1 ] Π(x) =Π(x fb 0,x)=p[b(xfb 0 ) θ 0x fb 0 ]+(1 p)[b(x) θ 1x] Π(x 0,x 1 ) θ i x i Π(x) θ 0 θ 1 x Π(x fb 1 )=Π(xfb 0,xfb 1 )=Πfb 1.1 x x θ 0 w fb 0 A B θ 1 w fb 1 A + C (M,µ) θ i m i i =0, 1 m i M σ =(m 0,m 1 ) σ (strategy) 2) w fb i

4 b'(x) θ 1 C θ 0 A B 0 x 1 fb x fb 0 x (M,µ) σ =(m 0,m 1) U i (δ(m i ),ρ(m i )) U i (δ(m),ρ(m)), m M,i =0, 1 (1.1) σ (M,µ) (1.1) θ i m i m = m j j i U i (δ(m i ),ρ(m i )) U i(δ(m j ),ρ(m j )). (1.2) (1.2) θ i θ j ( ) M (revelation principle) 3) (direct revelation mechanism) (M =Θ) θ 0 θ 1 (Θ,ν) ν ν = {(x 0,w 0 ), (x 1,w 1 )} θ i x i w i 4) σ =(ˆθ 0, ˆθ 1 ) (ˆθ i Θ) θ i ˆθ i ˆθ i = θ i ˆθ i = θ j (i, j =0, 1 i j) 3) 4) θ 0 θ 1 (x 0,w 0 ) (x 1,w 1 ) (x 0,w 0 ) (x 1,w 1 )

5 11 (Θ,ν) ν (M,µ) ( µ =(δ, ρ)) σ = (m 0,m 1 ) ν (i) (ii) ( ) i =0, 1 ˆθ i = θ i (ˆθ 0, ˆθ 1 ) ν (θ 0,θ 1 ) (M,µ) ν = {(x 0,w 0 ), (x 1,w 1 )} i =0, 1 θ i x i = δ(m i ) w i = ρ(m i ) ν = {(x 0,w 0 ), (x 1,w 1 )} x i = δ(m i ), w i = ρ(m i ), i =0, 1 (1.2) U i (x i,w i )=U i (δ(m i ),ρ(m i )) U i (δ(m j ),ρ(m j )) = U i (x j,w j ), j i ν θ i θ i i =0, 1 ˆθ i = θ i (i) i =0, 1 θ i ν θ i (x i,w i )=(δ(m i ),ρ(m i )) (ii) {(x 0,w 0 ), (x 1,w 1 )} ν = {(x i,w i )} (p) max p[b(x 0 ) w 0 ]+(1 p)[b(x 1 ) w 1 ] ν (1.3) subject to w 0 θ 0 x 0 0 (pc 0 ) w 1 θ 1 x 1 0 (pc 1 ) w 0 θ 0 x 0 w 1 θ 0 x 1 (ic 0 ) w 1 θ 1 x 1 w 0 θ 1 x 0 (ic 1 ) (1.3) (pc 0 ) (pc 1 ) (participation constraints) 5) θ 1 (ic 0 ) (ic 1 ) (incentive compatibility constraints) 6) 5) (individual rationality constraints) 6) (self-selection constraints) (truth-telling constraints)

6 12 (p) 1.1 x fb 0 xfb 1 θ 0 x fb 0 wfb 0 = A + B c 0(x fb 0 )=θ 0x fb 0 θ 0 1 = A θ 1 x fb 1 c 0(x fb 1 )=θ 0x fb w fb 1 = A + C C>0 θ 0 (p) (p) (second-best) 1 x 0 x 1 ( ) (ic 0 ) (ic 1 ) θ 1 (x 0 x 1 ) w 0 w 1 θ 0 (x 0 x 1 ). θ 1 >θ 0 x 0 x 1 2 (pc 1 ) (ic 0 ) θ 0 (pc 0 ) ( (pc 0 ) ) ( ) (ic 0 ) (pc 1 ) (pc 0 ) w 0 θ 0 x 0 w 1 θ 0 x 1 w 1 θ 1 x θ 0 (ic 0 ) ( ) (ic 0 ) (pc 0 ) 0=w 0 θ 0 x 0 >w 1 θ 0 x 1 w 1 θ 1 x 1. θ 1 (pc 1 ) (pc 0 ) (pc 0 ) (ic 0 ) w 0 (pc 1 ) (ic 1 ) (ic 1 ) w 0 w 0 (ic 0 ) 4 x 0 x 1 (ic 0 ) θ 1 (ic 1 ) ( ) (ic 0 ) θ 1 (x 0 x 1 ) (w 0 w 1 )=θ 1 (x 0 x 1 ) θ 0 (x 0 x 1 ). θ 1 >θ 0 (ic 1 ) w 1 θ 1 x 1 (pc 1) w 0 = w 1 + θ 0 (x 0 x 1 ) (ic 0 ) x 0 x 1 (m) 3 (pc 1 ) w 1 = θ 1 x 1, (pc 1 ) w 0 = θ 0 x 0 + θx 1. (ic 0) θ = θ 1 θ 0 (pc 1) (ic 0) (1.3)

7 13 (p ) max p[b(x 0 ) θ 0 x 0 θx 1 ]+(1 p)[b(x 1 ) θ 1 x 1 ] (1.4) x 0,x 1 subject to (m). 6 (m) (p ) b( ) (1.4) (b (0) = + b (x) =0) X (x 0,x 1) b (x 0 )=θ 0, (1.5) b (x 1 )=θ 1 + p θ, 1 p (1.6) (w0,w 1) (pc 1) (ic 0) x 0 = x 0 x 1 = x 1 7 (m) (1.6) (1.5) θ 1 >θ 0 b (x 0 ) <b (x 1 ) b( ) x 0 >x 1 1 (1.5) θ 0 (x 0 = xfb 0 ) (1.6) θ 1 ( ) (x 1 <xfb 1 ) 2 (pc 1) (ic 0) w0 θ 0x 0 = θx 1, (1.7) w1 θ 1 x 1 =0, (1.8) θ 0 θ 1 θ 0 θ 0 θ 0 (information rent) (1.7) θx θ 0 w fb 0 = A + B w 0 = A + B + C θ 0 w 0 θ 0 x fb 0 = C θ θ 1 x fb 1 1 θ 1 b (x fb 1 ) θ 1 ( ) θ 0 θ = θ 1 θ 0 ( ) 1 p p (1 p)(b (x 1 ) θ 1 )=p θ x 1 (1.6) Π Π = p[b(x fb 0 ) θ 0x fb 0 θx 1 ]+(1 p)[b(x 1 ) θ 1x 1 ] =Π(x 1) p θx 1 Π fb =Π(x fb 1 ) 2 1 θ 1 2 θ 0 θx 1

8 b'(x) θ 1 θ 0 C A B 0 fb x x0 fb 1 x θ 0 p Π p dπ dp = Π p + Π x 1 x 1 p. [b(x fb 0 ) θ 0x fb 0 θx 1] [b(x 1) θ 1 x 1] 2 x 1 / p (1.6) x 1 (1.4) Π / x 1 =0 p ( ) x 1 (1.6) x 1 p p θ 0 θ 1 θ 1 p[b(x 0 ) w 0 ] (1.3) x 1 = w 1 =0 θ 1 θ 1 θ 0 (x 0,w 0 ) w 0 θ 0 x 0 0 (ic 0 ) θ 0 (x 0,w 0 )=(x fb 0,wfb 0 ) θ 1 θ 0 w fb 0 θ 1x fb 0 = θxfb 0 < 0 θ 1 (x fb 0,wfb 0 ) (p) (x 1,w 1 )=(0, 0) (p) (1.6) (1.8) (x 1,w 1 ) (0, 0) 1.1 ( )

9 15 3. ( ) ( ) Θ θ y (allocation) y =(x, w) x w Y U(y, θ) V (y, θ) ( ) M µ : M Y 7) (game with incomplete information) (game with imperfect information) p( ) (common knowledge) p( ) ( ) (M,µ) σ :Θ M 8) σ(θ) θ (M,µ) σ 1.3 Θ Y M Y µ (M,µ) σ σ (M,µ) U(µ(σ (θ)),θ) U(µ(m),θ), m M, θ Θ (1.9) 7) 8)

10 16 σ (θ) arg max m M U(µ(m),θ), θ Θ θ σ (θ) 1.3 Θ Y σ µ M (Θ,ν) ν Θ Y σ ν Θ 1.1 ( ) (M,µ) σ ν (i) (ii) ( ) θ Θ σ(θ) =θ σ ν (M,µ) σ θ Θ ν(σ(θ)) = µ(σ (θ)) (1.9) θ Θ U(µ(σ (θ)),θ) U(µ(σ (θ )),θ), θ Θ. ν( ) θ Θ ν(θ) =µ(σ (θ)) U(ν(θ),θ) U(ν(θ ),θ), θ Θ. σ(θ) =θ ν(σ(θ)) = ν(θ) =µ(σ (θ)) (ii) Θ ={θ 0,θ 1,θ 2 } M = {m 0,m 1 } (M,µ) σ σ (θ 0 )=m 0, σ (θ 1 )=m 1, and σ (θ 2 )=m 0. U(µ(m 0 ),θ 0 ) U(µ(m 1 ),θ 0 ) U(µ(m 1 ),θ 1 ) U(µ(m 0 ),θ 1 ) U(µ(m 0 ),θ 2 ) U(µ(m 1 ),θ 2 ) ν ν(θ) =µ(σ (θ)) ν(θ 0 )=µ(m 0 ), ν(θ 1 )=µ(m 1 ), and ν(θ 2 )=µ(m 0 )

11 17 σ (incentive compatible) y x X R w R y =(x, w) w X 1 U(y, θ) V (y, θ) 1.1 U = u(x, θ)+w V = v(x, θ) w u( ) v( ) x 2 ( ) S(x, θ) =u(x, θ)+v(x, θ) U θ x t = w U = u(x, θ) t V = t c(x) c(x) 1.1 ( ) ( ) x w U = w c(x, θ) V = v(x, θ) w θ 1.1 c(x, θ) =θx v(x, θ) =b(x) θ θ θ x w U = w c(x, θ) V = v(x) w + αu v w α θ x t U = u(x, θ) t

12 18 1 V = E θ [U] θ I A x w a = I A x + w n = I x U = θz(a)+(1 θ)z(n) z( ) ( ) V = x θw ( ) y( ) =(x( ),w( )) x( ) w( ) θ Θ S(x, θ) x x fb ( ) S(x, θ) x S x (x, θ) =0 x = x fb (θ), θ Θ u(x fb (θ),θ)+w = U w = w fb (θ) =U u(x fb (θ),θ) x( ) w( ) x( ) 2 Spence- Mirrlees (Spence-Mirrlees single crossing property) 9) 1.2 (SCP) u x θ x X θ, θ Θ θ >θ u x (x, θ) >u x (x, θ ) 1.5 x w dw = U x = u x dx U:const U w (SCP) θ θ θ θ <θ θ U = u(x, θ) t = θx t θ>0 θ 1 u x (x, θ) =θ (SCP) u x θ θ U = x/θ t x θ ( ) u x = θ 1 u x θ (SCP) ( ) 9) u( ) (x, θ) (strict increasing differences) ( A.2 )

13 (θ >θ ) w θ' θ x 1.3 u θ x X θ, θ Θ θ >θ u(x, θ) >u(x, θ ) u(x, θ) =θx u(x, θ) =x/θ u θ θ = θ 1 u u x θ θ u u x Θ Θ 1.3 Θ Θ ={θ 0,...,θ N } 1.1 N =1 1.1 N +1 θ i θ 0 < <θ N θ i p i i =0,...,N p i > 0 F i i F i =Pr{θ θ i } = i j=0 p j F N = y( ) u(x(θ),θ)+w(θ) u(x(θ ),θ)+w(θ ), θ, θ Θ. (IC)

14 20 U(θ θ) =u(x(θ ),θ)+w(θ ) θ θ U(θ) =U(θ θ) (IC) U(θ) U(θ θ), θ, θ Θ (IC ) θ i y i =(x i,w i ) (i =0,...,N) U(θ i )=u(x i,θ i )+w i u(x j,θ i )+w j = U(θ j θ i ), i,j =0,...,N (IC N ) y =(y 0,...,y N ) x =(x 0,...,x N ) w =(w 0,...,w N ) ) 1.1 y =(x, w) (IC N ) i =1,...,N U(θ i ) >U(θ i 1 ) ( ) (IC N ) 1.3 U(θ i ) U(θ i 1 θ i ) >U(θ i 1 ) (SCP) 1.2 y =(x, w) (IC N ) U(θ i ) U(θ i 1 θ i ), i 1 (LICD) U(θ i ) U(θ i+1 θ i ), i N 1 (LICU) ( ) (IC N ) (LICD) (LICU) (LICD) (LICU) U(θ i ) U(θ i 1 θ i ) 0 U(θ i θ i 1 ) U(θ i 1 ), i =1,...,N U u(x i,θ i ) u(x i 1,θ i ) u(x i,θ i 1 ) u(x i 1,θ i 1 ), i =1,...,N. xi x i 1 [u x (x, θ i ) u x (x, θ i 1 )]dx 0, i =1,...,N. (SCP) x 0 x N (IC N ) N =1 (LICD) (LICU) N = M N = M +1 u(x M+1,θ M+1 )+w M+1 u(x i,θ M+1 )+w i, i =0,...,M, (1.10) u(x i,θ i )+w i u(x M+1,θ i )+w M+1, i =0,...,M, (1.11) 2 (1.10) (1.11) (LICD) u(x M+1,θ M+1 ) u(x M,θ M+1 ) w M w M+1. 10) u θ 1.1 U(θ i ) <U(θ i 1 )

15 21 u(x M,θ M ) u(x i,θ M ) w i w M, i M 1. u(x M+1,θ M+1 ) u(x M,θ M+1 )+u(x M,θ M ) u(x i,θ M ) w i w M+1, i =0,...,M. (1.12) (SCP) x M x i (i =0,...,M 1) u(x M,θ M ) u(x i,θ M ) u(x M,θ M+1 ) u(x i,θ M+1 ). (1.12) u(x M+1,θ M+1 ) u(x i,θ M+1 ) w i w M+1, i =0,...,M (1.10) 1.2 (IC N ) (LICD) (LICU) (LICD) (LICU) 1.6 θ i θ i (x i,w i ) θ i+1 θ i+1 θ i+1 (x i+1,w i+1 ) θ i (x i,w i ) (x i+1,w i+1 ) ( ) (x i+1,w i+1 ) θ i θ i+1 (x i+1,w i+1 ) (x i,w i ) (x i+1,w i+1 ) θ i+1 x i x i w θ i θ i+1 w i xx xxxxxx xxxx xxxxxx xxxxx xxx xx xxxxx xxx x xxxxx xxx xxxxx x x i x y =(x, w) (IC N ) x 0 x N

16 22 (P N ) N max p y i [S(x i,θ i ) U(θ i )] (1.13) i=0 subject to (LICD) (LICU) and U(θ i ) U, i =0,...,N (PC N ) (P N ) (PC N ) θ (LICU) ( ) 1.2 y (P N ) y (P N ) N max p y i [S(x i,θ i ) U(θ i )] (1.14) i=0 subject to (LICD) U(θ 0 ) U and x 0 x N (M N ) ( ) ( ) 1.1 ( ) (P N ) (PC N ) U(θ 0 ) U 1.1 (LICU) 2 1 (P N ) (LICD) y =(x, w) i u(x i,θ i )+w i >u(x i 1,θ i )+w i 1 ɛ>0 u(x i,θ i )+w i ɛ>u(x i 1,θ i )+w i 1 (x, w ) { w k = w k, if k =0,...,i 1 w k ɛ, if k = i,...,n (P N ) (x, w) (x, w) (P N ) (LICD) 2 (P N ) (LICU) 1 (x, w) u(x i,θ i ) u(x i 1,θ i )=w i 1 w i, i =1,...,N (M N ) (SCP) u(x i,θ i ) u(x i 1,θ i ) u(x i,θ i 1 ) u(x i 1,θ i 1 ), i =1,...,N. u(x i,θ i 1 ) u(x i 1,θ i 1 ) w i 1 w i, i =1,...,N. (LICU) x w x i w i i U i = U(θ i )=u(x i,θ i )+w i x U =(U 0,...,U N )

17 23 (P N ) N max p i [S(x i,θ i ) U i ] (1.15) x,u i=0 subject to (M N ) U 0 U and U i U i 1 u(x i 1,θ i ) u(x i 1,θ i 1 ), i =1,...,N (LICD ) (M N ) i (LICD ) λ i (i =1,...,N) U 0 U λ 0 L = N p i [S(x i,θ i ) U i ]+λ 0 [U 0 U] i=0 + N λ i [U i U i 1 u(x i 1,θ i )+u(x i 1,θ i 1 )] i=1 i =0,...,N L/ x i =0 L/ U i =0 p i S x (x i,θ i )=λ i+1 [u x (x i,θ i+1 ) u x (x i,θ i )], i =0,...,N 1 (1.16) p N S x (x N,θ N ) = 0 (1.17) p i + λ i λ i+1 =0, i =0,...,N 1 (1.18) p N + λ N = 0 (1.19) λ i = N p j =1 F i 1 > 0, i =0,...,N. (1.20) j=i ( F 1 =0 ) (1.20) (M N ) 11) Φ(x i,θ i )=S(x i,θ i ) 1 F i [u(x i,θ i+1 ) u(x i,θ i )], i =0,...,N (1.21) p i (1.16) (1.20) x i Φ x (x i,θ i )= Φ/ x i (x i,θ i )=0 1.4 θ, θ Θ (i) (ii) Φ( ) (quasi-concave) x Φ( ) (x, θ) θ >θ x X Φ x (x, θ) Φ x (x, θ ) 0 (i) u(x, θ) v(x, θ) (ii) x i i (M N ) ( A.2 ) 11) Φ i p i θ i F i θ i Φ θ i i Φ

18 y =(x, w) S x (x i,θ i )= 1 F i [u x (x i,θ i+1 ) u x (x i,θ i )], p i i =0,...,N 1 (1.22) S x (x N,θ N ) = 0 (1.23) U 0 = U (1.24) i U i = U + [u(x j 1,θ j ) u(x j 1,θ j 1 )], i =1,...,N (1.25) j=1 1.1 (1.23) θ N (1.22) 12) (1.24) θ 0 (1.25) θ i i [u(x j 1,θ j ) u(x j 1,θ j 1 )] j=1 (j =0,...,i 1) x j ( (SCP) ) x j 1.4 Θ=[θ 0,θ 1 ] Θ f(θ) θ Θ f(θ) > 0 F (θ) (SCP) 1.3 u θ > 0 u xθ > 0 (optimal control theory) ( ) (IC) (IC ) U(θ) =u(x(θ),θ)+w(θ) u(x(θ ),θ)+w(θ )=U(θ θ), θ, θ Θ (IC) 1.1 (IC) 1.3 θ >θ U(θ) U(θ θ) >U(θ ) 1.3 y( ) (IC) U(θ) 12) x 0 x N v(x, θ) θ 1.1 v(x, θ) θ (SCP)

19 25 (SCP) y( ) 2 U(θ θ) 2 U 1 (θ) =U 1 (θ θ) θ U U 2 (θ) =U 2 (θ θ) θ 13) U 1 (θ) =0 du(θ) dθ = U 1 (θ)+u 2 (θ) =U 2 (θ) =u θ (x(θ),θ) (EC) U(θ) θ U(θ) =U(θ 0 )+ u θ (x(s),s)ds, θ Θ (EC ) θ 0 (EC) (EC ) (LICD) (LICU) U 1 (θ) =0 θ U 11 (θ)+u 12 (θ) =0 (EC) U 11 (θ) 0 U 12 (θ) 0 u θx (x(θ),θ)x (θ) 0. (SCP) x (θ) U( ) θ (EC) 1.4 θ Θ=[θ 0,θ 1 ] (i) (ii) (iii) ( ) θ>θ 0 U( ) θ U (θ ) u θ (x(θ),θ) θ<θ 1 U( ) θ U (θ+) u θ (x(θ),θ) θ (θ 0,θ 1 ) U( ) θ U (θ) =u θ (x(θ),θ) θ, θ Θ U(θ ) U(θ θ )=U(θ)+[u(x(θ),θ ) u(x(θ),θ)]. U(θ) U(θ ) u(x(θ),θ) u(x(θ),θ ). (1.26) (i) θ>θ θ θ > 0 U(θ) U(θ ) θ θ u(x(θ),θ) u(x(θ),θ ) θ θ. U( ) θ θ θ (ii) θ<θ (1.26) θ θ>0 U(θ ) U(θ) θ θ u(x(θ),θ ) u(x(θ),θ) θ. θ U( ) θ θ θ+ (iii) U( ) θ θ (i) (ii) 13) U 1 (θ) = U(θ θ) fi fifiθ θ =θ U 2 (θ) = U(θ θ) fi fi fi θ θ =θ

20 ( ) y( ) =(x( ),w( )) x( ) θ, θ Θ U(θ) U(θ θ) =U(θ )+[u(x(θ ),θ) u(x(θ ),θ )]. U(θ) U(ˆθ) u(x(ˆθ),θ) u(x(ˆθ), ˆθ). (1.27) (1.26) (1.27) u(x(θ),θ) u(x(θ),θ ) U(θ) U(θ ) u(x(θ ),θ) u(x(θ ),θ ). (1.28) (SCP) x(θ) x(θ ) 1.4 L x X θ Θ u θ (x, θ) <L y( ) =(x( ),w( )) 2 (a) (the envelope condition) (EC ) (b) x( ) ( ) ( ) (b) 1.5 (EC ) x( ) x( ) ( ) 1.4 θ (EC) (EC) (EC ) K U(θ) U(θ ) <K θ θ, θ, θ Θ (1.29) 14) θ, θ Θ θ >θ U(θ) U(θ ) = sup U(t θ) sup U(t θ ) sup U(t θ) U(t θ ) t Θ t Θ t Θ =sup u(x(t),θ) u(x(t),θ ). t Θ u(x, θ) θ u(x(t),θ) u(x(t),θ )= θ θ u θ (x(t),s)ds sup t Θ u(x(t),θ) u(x(t),θ ) =sup t Θ θ θ θ θ θ θ u θ (x(t),s)ds sup u θ (x(t),s) ds t Θ u θ (x(θ 1 ),s)ds x( ) K = L (1.29) (EC) (EC ) ( ) θ, ˆθ U(ˆθ θ) >U(θ) u(x(ˆθ),θ) u(x(ˆθ), ˆθ) >U(θ) U(ˆθ). 14) U( ) [θ 0,θ 1 ] (absolutely continuous) U( ) (EC ) ( ) ( A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, New York, Dover, 1970, Chapter 9) H. L. Royden, Real Analysis, Second Edition, Macmillan 1968

21 27 (a) θ ˆθ u θ (x(ˆθ),s)ds > θ ˆθ u θ (x(s),s)ds. θ ˆθ [u θ (x(ˆθ),s) u θ (x(s),s)]ds > 0 (b) (SCP) u xθ > (P) θ1 max y( ) θ 0 [S(x(s),s) U(s)]f(s)ds (1.30) subject to (EC ), x(θ) x(θ ), θ, θ Θ,θ >θ, (M) U(θ) U, θ Θ (PC) 1.3 (PC) U(θ 0 ) U (EC ) θ1 θ 0 U(s)f(s)ds = U(s)[1 F (s)] θ1 = U(θ 0 )+ θ 0 θ1 θ 0 + θ1 θ 0 du(s) dθ u θ (x(s),s) 1 F (s) f(s)ds. f(s) 1 F (s) f(s)ds f(s) (1.31) f(s) f(s) ( f(s) ) F (s) (1 F (s)) U(s) 2 F (θ 0 )=0 F(θ 1 )=1 (EC) (1.31) U(θ 0 ) U 15) (1.31) (P) (P ) θ1 [ max S(x(s),s) u θ (x(s),s) 1 F (s) ] f(s)ds U(θ 0 ) (1.32) x( ) θ 0 f(s) subject to (M) and U(θ 0 ) U U(θ 0 )=U (1.32) Φ(x, θ) =S(x, θ) 1 F (θ) u θ (x, θ) (1.33) f(θ) (M) E θ [Φ(x, θ)] θ Θ Φ(,θ) 1.4 (i) x(θ) Φ x (x(θ),θ)=0, θ Θ (1.34) 15) (EC ) (1.31) U(s) (1.31) ( )

22 28 16) x(θ) (EC ) U(θ 0 )=U w(θ) = u(x(θ),θ)+u + θ θ 0 u θ (x(s),s)ds (1.35) 1.4 (ii) x X θ Θ Φ xθ (x, θ) 0 ( A.2 ) Φ (1.33) S(x, θ) =u(x, θ)+v(x, θ) (ii) (a) (b) (c) v xθ (x, θ) 0 x X, θ Θ u ( xθθ (x, θ) ) 0 x X, θ Θ d 1 F (θ) /dθ 0 θ Θ f(θ) (a) v(x, θ) θ (b) u(x, θ) x + θ 1.4 (i) (c) (monotone hazard rate condition, MHRC) (hazard rate) λ(θ) =f(θ)/(1 F (θ)) θ f(θ)dt θ θ + dt θ dt λ(θ)dt ( λ(θ) θ ) 1.5 x(θ) (1.34) w(θ) (1.35) y( ) =(x( ),w( )) (EC ) θ 0 θ θ θ 0 u θ (x(s),s)ds (1.34) S x (x(θ),θ)f(θ) =(1 F (θ))u xθ (x(θ),θ) (1.36) θ = θ 1 (1.36) θ x θ 1 F (θ) θ x(θ) U = θx t V = t c(x) θ 0 > 0 X =[0, + ) Spence-Mirrlees ) (1.33) Φ(x, θ) Φ(x, θ) =θx c(x) 1 F (θ) x f(θ) c Φ x (MHRC) Φ xθ 0 x(θ) 16) ) x =0 1.3

23 29 f(θ)(θ c (x(θ))) = 1 F (θ), θ Θ 1.1 U = w c(x, θ) V = b(x) w X =[0, + ) θ Θ x>0 c θ (0,θ) 0 c θ (x, θ) > 0 c xθ (x, θ) > 0 c xx (x, θ) c(x, θ) =θx u(x, θ) = c(x, θ) u u x θ (a) θ1 U(θ) =U(θ 1 )+ c θ (x(s),s)ds, θ [θ 0,θ 1 ], θ (b) x(θ) U(θ) θ1 θ1 U(s)f(s)ds = U(θ 1 )+ c θ (x(s),s) F (s) θ 0 θ 0 f(s) f(s)ds Φ(x, θ) Φ(x, θ) =b(x) c(x, θ) c θ (x, θ) F (θ) f(θ) c θxx 0 Φ x x(θ) b (x(θ)) = c x (x(θ),θ)+c θx (x(θ),θ) F (θ) f(θ), θ Θ c xθθ 0 F/f θ Φ xθ 0 x( ) 18) 1.1 c(x, θ) =θx θ + F (θ)/f(θ) (1.34) x(θ) (M) ˆx(θ) ˆx(θ) x(θ) ˆx(θ) θ θ ˆx(θ) ˆx(θ) x(θ) Fudenberg and Tirole (1991, Chapter 7) Laffont (1989, Chapter 10) 2. u θ u θ x u θxx ) Laffont and Tirole (1993)

24 θ θ 1 1 Rochet and Stole (2000) Lars Stole Stole (1998) (optimal control theory) 1.4 Fudenberg and Tirole (1991, Chapter 7) Laffont (1989, Chapter 10) Fudenberg and Tirole (1991, Chapters 6, 7) Myerson (1985) Spence-Mirrlees 2 A. Michael Spence Spence (1974) Kreps (1990, Chapter 17) James A. Mirrlees Mirrlees (1971) Milgrom and Segal (2002) Spence-Mirrlees Milgrom and Shannon (1994) Edlin and Shannon (1998) Spence-Mirrlees Wilson (1993) Baron (1989) Laffont and Tirole (1993) 19) Guesnerie (1995) 19) Laffont and Tirole

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

数値計算:有限要素法

数値計算:有限要素法 ( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ .3.2 3.3.2 Spherical Coorinates.5: Laplace 2 V = r 2 r 2 x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.93 r 2 sin θ sin θ θ θ r 2 sin 2 θ 2 V =.94 2.94 z V φ Laplace r 2 r 2 r 2 sin θ.96.95 V r 2 R

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

(1) (2) 27 7 15 (1) (2), E-mail: bessho@econ.keio.ac.jp 1 2 1.1......................................... 2 1.2............................... 2 1.3............................... 3 1.4............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

1 c Koichi Suga, ISBN

1 c Koichi Suga, ISBN c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0 20 5 8..................................................2.....................................3 L.....................................4................................. 2 2. 3 2. (N ).........................................

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1 t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information