陽電子科学 第4号 (2015)

Size: px
Start display at page:

Download "陽電子科学 第4号 (2015)"

Transcription

1 PALS as a tool for further insights into the transport of water and solutes during reverse osmosis Doppler Broadening of Annihilation Radiation (Doppler) H.V. HPGe TFA BaF 2 PMT CFD Positron Annihilation Lifetime (PAL) Sample + 22 Na BaF 2 PMT H.V. CFDD Fast Coincidence CFDD PAL Doppler Counts Main Amp. Gate & Delay Generator 10 Biased Amp. TAC ADC 2D-MCA ADC Personal Computer Energy (kev) Positron Age-MOmentum Correlation (AMOC) Time (ns) 4 (2015)

2 4 (2015) PALS as a tool for further insights into the transport of water and solutes during reverse osmosis... Takahiro Fujioka, Long D. Nghiem , Visiting research at Positron Probe Group in AIST The 11th International Workshop on Positron and Positronium Chemistry (PPC11) The International Workshop on Positron Studies of Defects 2014 (PSD-14) : (AMOC) γ : Japanese Positron Science Society

3 O. E. Mogensen 9 (ICPA-9) 62 Yasuyuki Nagashima ( ) (2015) Japanese Positron Science Society 1

4 2 Japanese Positron Science Society 4 (2015)

5 4 (2015) 3 8 Japanese Positron Science Society Positron annihilation age momentum correlation (AMOC) measurement Abstract: Positron annihilation Age-MOmentum Correlation (AMOC) measurement is the coincidence measurement method of positron injection time, positron annihilation time and positron annihilation gamma-rays energy. The methods for measurement and analysis of AMOC will be introduced briefly. Some of the interesting researches also will be introduced. Keywords: positron, annihilation gamma rays, lifetime, Doppler broadening, S parameter, W parameter ) (AMOC) Ge (HPGe) 511 kev (Ps) Ps (p-ps) (o-ps) p-ps 125 ps o-ps 142 ns Ps p-ps o-ps 2 Ps kev p-ps p-ps o-ps Ps *1 2 o-ps Energy (kev) Time (ns) Counts 1 AMOC Tetsuya Hirade (Nuclear Science and Engineering Center, Japan Atomic Energy Agency), TEL: , FAX: , t.hirade@kurenai.waseda.jp *1 free positron Ps free

6 H.V. Doppler HPGe TFA Main Amp. Biased Amp. ADC Sample + 22 Na BaF 2 PMT CFD BaF 2 2D-MCA PMT CFDD Personal Computer 2 H.V. Fast Coincidence Gate & Delay Generator ADC TAC AMOC PAL CFDD Na 22 Na 1.27 MeV Na 2, 3) X 4) 22 Na AMOC 2. AMOC AMOC 22 Na 2 (2D-MCA) 2 22 Na AMOC AMOC 5) 1 1 HPGe 3 HPGe ps 20 ps ev AMOC 2 ns ns μs 5) Fast-Filter Amplifier (Fast Amp.) AMOC Fast Amp. 6) AMOC 1 3 p-ps o-ps (1) A(t) *2 N A(t) I i λ i exp ( λ i t) (1) i=1 N ( ) I i λ i *2 S S (t) A(t) 4 Japanese Positron Science Society 4 (2015)

7 1 AMOC 511 kev (1) AMOC f i (t) = I i λ i exp ( λ i t) Nj=1 I j λ j exp ( λ j t ) (2) f i (t) t i Ps Ps 125 ps p-ps 400 ps ns o-ps 3 p-ps p-ps 3 S S S S S S N N I i λ i exp ( λ i t) S (t) = S i f i (t) = S i Nj=1 I j λ j exp ( λ j t ) (3) i=1 i=1 S (t) 4 AMOC S (t) 1 AMOC PALSfit 7) τ i I i 1 S 4 S (t) I 1 3 λ 1 3 (= 1/τ 1 3 ) S(t) S S p-ps o-ps ns Ps (ns) Ps S(t) 4 (2015) Japanese Positron Science Society 5

8 3 (2) 3 S 1 3 (3) S 1 3 o-ps S S o-ps 6) AMOC AMOC 3. 4 S (t) p-ps o-ps AMOC S (t) AMOC 260 ps 290 ps AMOC 125 ps p-ps 8) o-ps R p- Ps R p-ps o-ps + R (1/4) p-ps + R (3/4) o-ps + R (4) 3 5 p-ps S (t) 6 4-hydroxy-2,2,6,6-tetramethylpiperidine1- oxyl (HTEMPO) o-ps 9) o-ps S (t) o-ps p-ps o-ps p-ps o-ps p-ps (ns) S S 5 Ps o-ps 6 HTEMPO 0.1 M S(t) 9) Reprinted figure with permission. Copyright EDP Sciences Japanese Positron Science Society 4 (2015)

9 7 20K S 13) Reprinted figure with permission. Copyright 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. AMOC S (t) (5) N S (t) = S i f i (t). (5) i=1 S S (t) 4. AMOC Ps Ps 1974 Mogensen 10) (spur) Ps 0.5eV 3eV 11) Ps Ps 11) S (t) 7 20 K 12, 13) Ps Ps p-ps S (t) Ps 10) S (t) Ps 7 13) Ps 2 AMOC (5) S S 4 (2015) Japanese Positron Science Society 7

10 AMOC C Fe-0.88 at.% Cu W 5) Reprinted figure with permission from K. Inoue, Y. Nagai, Z. Tang, T. Toyama, Y. Hosoda, A. Tsuto, M. Hasegawa, PHYSICAL REVIEW B 83 (2011) Copyright (2011) by the American Physical Society. 14) W W(t) AMOC 8 5) 5. AMOC AMOC 1) 2 (2014) 21. 2) H. Stall, M. Koch, K. Maier, J. Major: Nucl. Instrum. Methods B (1991) ) R. Suzuki, T. Ohdaira, T. Mikado, G. V. Rao: Mater. Sci. Forum (2001) ) D. Zvezhinskiy, M. Butterling, A. Wagnerc, R. Krause-Rehberg, S. V. Stepanov: Acta Phys. Pol. A 125 (2013) ) K. Inoue, Y. Nagai, Z. Tang, T. Toyama, Y. Hosoda, A. Tsuto, M. Hasegawa: Phys. Rev. B 83 (2011) ) K. Sato, H. Murakami, K. Ito, K. Hirata, Y. Kobayashi: Macromolecules 42 (2009) ) P. Kirkegaard, J. V. Olsen, M. Eldrup, N. J. Pedersen: PALSfit (Risø-R-1652(EN), 2009). 8) T. Hirade: Mater. Sci. Forum 607 (2009) ) H. Schneider, A. Seeger, A. Siegle, H. Stoll, I. Billard, M. Koch, U. Lauff,J.Major:J.Phys.IV3 (1993) C4 69, 10) O. E. Mogensen: J. Chem. Phys. 60 (3) (1974) ) T. Hirade, F. H. J. Maurer, M. Eldrup: Radiat. Phys. Chem. 58 (2000) ) N. Suzuki, T. Hirade, F. Saito, T. Hyodo: Radiat. Phys. Chem. 68 (2003) ) T. Hirade, N. Suzuki, F. Saito, T. Hyodo: Phys. Status Solidi C 4 (2007) ) Matti Valo 1 (2013) 41. ( ) : Japanese Positron Science Society 4 (2015)

11 4 (2015) 9 22 Japanese Positron Science Society Radioisotope-based spin-polarized positron beam Abstract: In this article, I report, the spin polarization of positrons emitted from radioisotopes, the development of spin-polarized positron beams, the fundamental aspects of spin-polarized positron annihilation method, and the investigation of current-induced spin polarization on metal surfaces through the spinpolarized positronium annihilation. Keywords: spin, spin polarized positron, spintronics, magnetism, surface Yang Li 1) 1957 Wu 2) 60 Co β β Wu Hanna Preston 3) 64 Cu β ) Dead Layer 5) 58 Co 22 % Atsuo Kawasuso (Advanced Science Research Center, Atomic Energy Agency), TEL: , FAX , kawasuso.atsuo@jaea.go.jp Japan 70 % 1982 Ni Dead Layer Live Layer 6) ) 8) 27 Si 18 F d 0 d

12 ν e I I-1 1/2 1/2 e + h<0 h>0 2. e + 1/2 1/2 ν e (Radioisotope, RI) RI 22 Na RI RI RI 2.1 β + (β ) RI β + A Z X N Z 1 A N+1 + e+ + ν e (p + n 0 + e + + ν e ) β + (1) A Z X N + e Z 1 A X N+1 + ν e (p + + e n 0 + ν e ) (2) A Z X N Z+1 A N 1 + e + ν e (n 0 p + + e + ν e ) β (3) X (X ) Z A N (A = Z + N) p + n 0 e e + ν e (ν e ) β + (β ) Q Q β + = [ M(X) M(X ) 2m ] c 2 (4) Q β = [ M(X) M(X ) m ] c 2 (5) M m c β + m 2 1 β + Q (E max ) β ± Fermi Fermi V A β ± 1/2 l = 0 β ± 0 1 Fermi Gamow-Teller 1 Gamow-Teller β + π Japanese Positron Science Society 4 (2015)

13 ( ) (+) 1 β Fermi β Yang Li 1) Wu 2) Hanna Preston 3) +1 ±v/c 1 v/c = (n n )/(n + n ) n ( ) RI 4π 2θ 2π(1 cos θ) P + P + = v 1 + cos θ cos θ = 1 (6) c 2 [1 + E/(mc 2 )] 2 2 E E 1 E 2 ( E max ) P + = v 1 + cos θ c 2 E2 1 = 1 [ ( 1 + E/ mc 2 )] 1 + cos θ N(E)dE (7) 2 2 E 1 v N(E) Q RI RI 22 Na 2 22 Na 9) 22 Na 2.6 β % 9.4 % β + 22 Na 3 Ne Ne MeV EC γ 1 β + 1 β Na 9.43% 90.51% 0.06% 2.842MeV 2 22 Na Na (EC) β Ne MeV 22 Na 22 Ne MeV % 1.275MeV β + Q 22 Na 22 Ne + e + + ν e (8) Q = [ M( 22 Na) M( 22 Ne) 2m ] c 2 = 1.82 MeV (9) Q β + 22 Ne (1.275 MeV) E = = MeV 1 1) 3(a) 3(b) (N 0 (E)) 22 Na 68 Ge/ 68 Ga (N S (E)) (N(E)) 10) 22 Na (0.2 MeV) v /c = % (θ = π/2) 35 % (7) N(E) β + β + N 0 (E) A(z) A 0 4 (2015) Japanese Positron Science Society 11

14 1 (E max ) ( E ) ( v /c) N S (E) = 1 2 ds 0 N 0 (E)[A(z)/A 0 ] T S (E, z)dz (10) E max /MeV E /MeV v /c 18 F Na Al Si Ti/ 44 Sc Cu Co Ge/ 68 Ga N 0 (E) 1 d A N A (E) N A (E) = N S (E)T A (E, d A ) (11) T A (E, d A ) 11) T(E, z) = exp [ (z/z 0 ) m] (12) z 0 = ae n / [ ργ(1 + 1/m) ] (13) N0(E) and NS(E) (arb. units) N0(E) and NS(E) (arb. units) N S (E) N S (E) N 0 (E) N(E) Energy (MeV) N 0 (E) N(E) 0.5 (a) (b) Energy (MeV) 3 N(E) (arb. units) N(E) (arb. units) (a) 22 Na (b) 68 Ge/ 68 Ga N 0 (E) N S (E) 1 μm N(E) 12) T S (E, z) d S N S (E) ρ a (= 4.0 μgcm 2 kev n ) n m. (11) ε M (E, d M ) N(E) = N S (E)T A (E, d A )ε M (E, d M ) (14) d M ε M (E, d M ) 12) ε M (E,d M ) dm = P em p(e, z)sinh(z/l)sinh(d M /L)dz ε M (E,d M ) 0 (15) dm = P em p(e, z)exp( z/l)dz 0 (16) P em p(e, z) (= dt(e, z)/dz) L 2 1 μm (7) 53 % ( 68 Ge/ 68 Ga) 42 % ( 22 Na) 10) 12 Japanese Positron Science Society 4 (2015)

15 2 d S : d M : ρ: m, n: (12) (13) P em : L: 68 Ge/ 68 Ga GaN 22 Na NaCl 53 % ( 68 Ge/ 68 Ga) 42 % ( 22 Na) d S /mm ρ /gcm 3 m n 68 Ge/ 68 Ga GaN 22 Na NaCl d M / μm ρ /gcm 3 m n P em L /nm W Na 68 Ge/ 68 Ga R p 13) R p = logz (17) Z = 6 (17) 10 %. ΔP 10 % Bhabha Mott Bhabha EZ/800,RI 1MeV Bhabha 14) 10 kev ev 15, 16) 17) Spin-flipping probability E=0.2MeV 0.5MeV 1.0MeV Energy loss / Scattering (kev) 4 E = 0.2 MeV, 0.5 MeV, 1.0 MeV Bhabha Bhabha 18) 4 18 I 0.2 MeV, 0.5 MeV 1.0 MeV Na 68 Ge/ 68 Ga 0.2 MeV 0.5 MeV kev 19) 0.2 MeV MeV 1000 ΔP 11 % 8% Mott 4 (2015) Japanese Positron Science Society 13

16 ΔP 20) ( ) 2 1 exp( γd) ΔP = 1 (18) γd d γ N k γ = 4 ( e 2 ) 2πN E + 2mc 2 ( ln(2kb) ξS 1 + ξ 2 S 2 ) b = me 2 Z 1/3 Thomas Fermi S 1 = π 2 l=1 ξ = e2 Z c E + mc 2 E 1/2 (E + mc 2 ) 1/2 H (1) 1 [i(l + 1/2)/(kb)] kb(l + 1/2) tan 1 [ (l + 1/2)k/k 0 ](H: ) 5 68 Ge/ 68 Ga 22, 23) k 0 = e 2 Z(E + mc 2 )/( c) 2 S 2 = { tan 1 [ (l + 1/2)k/k 0 ] } 2 (l + 1/2) 3 l=1 0.2 MeV 0.5 MeV 1 μm ΔP 6 22 NaCl 25) 1T 14 Japanese Positron Science Society 4 (2015)

17 7 22 NaCl 68 Ge/ 68 Ga 10, 24) 90 6% 4% 32 % ( 22 Na) 42 % ( 68 Ge/ 68 Ga) RI 21) NaCl 68 Ge/ 68 Ga 10, 22 25) 5 6 1T ) 27, 28) 29) S = 0 M S = 0: S M S = 00 S = 1 M S = 0, ±1 : S M S = 10, 11, ps 142 ns 1: F 4 (2015) Japanese Positron Science Society 15

18 27) 1 F 00 = 8(1 + y 2 ) [ (1 y) 2 (1 P + cos φ)(1 + P ) + (1 + y) 2 (1 + P + cos φ)(1 P ) ] (19) 1 F 10 = 8(1 + y 2 ) [ (1 + y) 2 (1 P + cos φ)(1 + P ) + (1 y) 2 (1 + P + cos φ)(1 P ) ] (20) F 11 = 1 + P + cos φ + P + P + P cos φ 4 F 1 1 = 1 P + cos φ P + P + P cos φ 4 (21) (22) P + (P ) y = x/ ( 1 + x ) x = 4μ B B/ΔE (μ B : B: ΔE: ( ev)) φ λ 00 λ p (= 8ns 1 ) λ 10 = λ 11 = λ 1 1 λ o (= ns 1 ) λ pick-off λ λ 00 = κλ p 1 + y 2 + κy2 λ o 1 + y 2 + λ pick-off (23) λ 10 = κy2 λ p 1 + y 2 + κλ o 1 + y 2 + λ pick-off (24) λ 11 = λ 1 1 = κλ o + λ pick-off (25) κ Ps = Ψ m (0) 2 / Ψ v (0) 2 λ p λ o λ pick-off F 2γ Ps = F ( ) 00 κλp λ y + λ 2 pick-off + F ( 10 κy 2 ) λ p λ y + λ 2 pick-off + ( F 11 + F 1 1 ) λ pick-off λ 11 (= λ 1 1 ) (26) F Ps 3γ = F 00 λ 00 κλ o y y + F 10 2 λ 10 κλ o 1 + y 2 κλ o κλ o +F 11 + F 1 1 (27) λ 11 λ 1 1 (26) 00 (λ 10 ) P = 0 κ = 1 λ pick-off = 0 (27) 2 4 [( ) dn(t) κλ o κλ o = N F 11 + F 1 1 λ o exp( λ o t) dt λ 11 = N 4 + F 10 λ 10 [ 2λ o exp( λ o t) λ 1 1 κλ o 1 + y 2 λ 10 exp( λ 10 t) ( + 1 cos φ 2yP ) ] y 2 λ 10 exp( λ 10 t) (28) N φ φ (28) 29) S S S = (S Ps S SiO2 )I(B) + S SiO2 ( F 00 κλ p = (S Ps S SiO2 ) λ y 2 + F 10 κy 2 ) λ p λ y 2 + S SiO2 (29) S Ps S S SiO2 S I(B) (26) F 2γ Ps λ pick-off κ λ pick-off P = 0 S (29) α = S Ps S SiO2 β = S SiO2 P + ] 16 Japanese Positron Science Society 4 (2015)

19 ( ) ( ) ρ ( ) i (p) = e ipr Ψ + (r)ψ ( ) i (r) 2 γ(n (r))dr (30) 8 (a) 68 Ge/ 68 Ga (b) 22 Na S 10, 25) 8(a) (b) 68 Ge/ 68 Ga 22 Na S 7mm (29) 22 Na 68 Ge/ 68 Ga 38 % 65 % 30 % 47 % ) Ψ + (r) Ψ i (r) γ(n (r)) i i (30) N ( ) i (p z ) = ρ ( ) i (p)dp x dp y (31) (31) i (w ( ) i ) w ( ) i = + N ( ) i (p z )dp z (32) ( ) ( ) i ( ) ( ) S = 0 S = 1 M S = 0 S = 1 M S = 1 3 λ ( ) = 1 occ [ λs w ( ) 2 i + λ T (w ( ) i + 2w ( ) i ) ] (33) i=1 4 (2015) Japanese Positron Science Society 17

20 3 ( ) ( ) λ S = 4πr 2 e c r e: c: λ T = λ S /1115 w ( ) : i i S = 0 S = 1, M S = 0 S = 1, M S = 1 S = 1, M S = 1 ( ) λ S w i /2 λ Tw i /2 λ Tw i 0 ( ) λ S w i /2 λ Tw i /2 0 λ Tw i P + (+) ( ) N ± (p z ) = λ S occ [ (1 ± P+ )N i (p z ) + (1 P +)N ] i (p z ) (34) 4 i=1 λ λ ΔN = N + (p z ) N (p z ) = λ SP + occ [ Ni (p z ) N i ] (p z ) 2 i=1 λ λ (35) P + = 0 (34) (33) P + = 0 (35) [ ] (36) N occ [ Ni (p z ) N i (p z ) ] = λ + λ λ [ΔN λ ] + P + ΣN λ S P + λ + λ i=1 ΔN + P 3γ ΣN (36) N = N + (p z )+N (p z ) P 3γ = (N 3γ + N 3γ )/(N 3γ + +N 3γ ) L ± (t) = λ S 4 + λ S 4 occ w i (1 ± P +)exp( λ t) i=1 occ w i (1 P +)exp( λ t) (37) i=1 λ ± = 1 ± P + 2 λ + 1 P + λ (38) 2 λ ( ) λ S w ( ) /2 λ ( ) = 1 2 4πr e 2 c n + (r)n ( ) (r)γ[n ( ) (r)]dr (39) P + = 0 N+(p) - N-(p) (arb. units) Ni Co Fe Electron momentum, p (10-3 m 0 c) 9 5 Fe Co Ni (±1 T) 22) 18 Japanese Positron Science Society 4 (2015)

21 Hanna Preston 3) Fe Fe Ni Co Gd 30 42) 43) 1986 NiMnSb 44) 9 22) Fe Co Ni 7 mrad 14 mrad 3d Ni Co Fe Intensity (arb. units) Gd Tb TC=90K Temperature (K) 10 TC=222K TC=293K Dy Gd Tb Dy (±1 T) T C T C Weiss 23) 4 Fe Co Ni 45) Fe (BCC) Co (HCP) Ni (FCC) 95.1 ps 94.5 ps ps ps 98.2 ps 96.8 ps 10 4f 23) Weiss M/M 0 = B J [g J μ B J(H + λ mf M)/k B T] M 0 : B J : g J : J: λ mf : 45) 4 Fe Co Ni Fe Co Ni Ni sp 3.2 Φ Ps Φ Φ + E B (= 6.8eV) Φ Ps =Φ + +Φ E B (40) Φ Φ + +2 ev +4 ev 3 ev +1 ev ( 4 ev 2 ev) 4 (2015) Japanese Positron Science Society 19

22 P + P φ (19) (22) (y = 0) (a) Decelera on tube Detector e + beam 12 kev Sample P - -j c DC voltage F 00 = (1 P + P cos φ)/4 (41) P + F 10 = (1 P + P cos φ)/4 (42) F 11 = (1 + P + + P cos φ + P + P cos φ)/4 (43) F 1 1 = (1 P + P cos φ + P + P cos φ)/4 (44) F 2γ Ps = F 00 (45) F 3γ Ps = ε(1) ( F 11 + F 1 1 ) + ε(0)f 10 (46) ε(1) ε(0) 46) (F 2γ Ps : F3γ Ps ) 1:3 1:3 P + +P P A A 3γ = F Ps 3γ (+P ) F 3γ Ps ( P ) F 3γ Ps (+P ) + F 3γ Ps ( P ) 2ε(1) ε(0) = 2ε(1) + ε(0) P +P cos φ (47) A 2γ = F Ps 2γ (+P ) F Ps 2γ ( P ) F Ps 2γ (+P ) + F Ps 2γ ( P ) = P +P cos φ (48) A 125 ps 142 ns (I 142 ns ) (46) (I 142 ns = F 3γ Ps ) (b) Counting rate (arb. units) R R R GND HV 0 12 kv 511 kev (2 ) peak 10-3 E + =50 ev with ortho-ps (3 ) E + =12 kev without Ps Area = R x y z +j c Gamma-ray energy (kev) 11 (a) 47, 48) (b) 12 kev 50 ev 511 kev 12 kev 50 ev 511 kev ΔR (511 kev) R R = (1 F3γ Ps )R 0 + F 3γ Ps R 1P 1 /P 0 1 F 3γ Ps + F3γ Ps P (49) 1/P 0 R 0 R % R P 511 kev R F 3γ Ps 100 % R R 0 ΔR ΔR = R R 0 F 3γ Ps (50) 6) Ni Ni 20 Japanese Positron Science Society 4 (2015)

23 R = R R0 F Ps j c -j c...+j c -j c +j c -j c...+j c -j c Au/Fe/MgO@0.6A Pt/Al 2 O -Ta@0.25A -W@0.1A Cu/MgO@0.6A Pd/Al O -Ta@0.05A -W@0.1A +j c -j c...+j c -j c +j c -j c...+j c -j c Current direction Pt Pd Au Cu α-, β-ta α-, β-w ΔR 48) Pt Pd Ta W (47) 10 5 Acm 2 5 % 15 % Φ Ps 0 E F +Φ Ps E E F E F : 0 E Ps = Φ Ps E F + E Φ Ps E f Ps (E) P (E) F 3γ Ps (E) = f Ps(E) [ ] ε(1)(f 11 + F 1 1 ) + ε(0)f 10 (51) Dead Layer *1 47, 48) 11(a) (b) Pt 12 kev 50 ev 511 kev (50) ΔR 12 Pt Pd Au Cu α-, β-ta α-, β-w ΔR Au Cu ΔR Pt Pd Ta W Pt Pd Ta W *1 A 3γ (E) = 2ε(1) ε(0) 2ε(1) + ε(0) P +P (E)cosφ (52) F 3γ Ps (E) D (E) D (E) P (E) = D (E) D (E) D (E) + D (E) (53) A 3γ (E) 4. β + RI 4 (2015) Japanese Positron Science Society 21

24 RI 1) T. D. Lee, C. N. Yang: Phys. Rev. 104 (1956) ) C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson: Phys. Rev. 105 (1957) ) S. S. Hanna, R. S. Preston: Phys. Rev. 106 (1957) ) P. W. Zitzewitz, J. C. van House, A. Rich, D. W. Gidley: Phys. Rev. Lett. 43 (1979) ) L. M. Liebermann, D. R. Fredkin, H. B. Shore: Phys. Rev. Lett. 22 (1969) 539; L. M. Liebermann, J. Chilton, D. M. Edwards, J. Mathon: Phys. Rev. Lett. 22 (1970) ) D. W. Gidley, A. R. Koymen: Phys. Rev. Lett. 49 (1982) ) T. Kumita, M. Chiba, R. Hamatsu, M. Hirose, T. Hirose, H. Iijima, M. Irako, N. Kawasaki, Y. Kurihara, T. Matsumoto, H. Nakabushi, T. Omori, Y. Takeuchi, M. Washio, J. Yang: Appl. Surf. Sci. 116 (1997) 1. 8) F. Saito, T. Hyodo, Y. Nagashima, T. Kurihara, N. Suzuki, Y. Itoh, A. Goto: New Directions in Antimatter Chemistry and Physics, Eds.C.M.Surko,F.A.Gianturco(KluwerAcademic Publishers, The Netherlands, 2001) p.35. 9) ) M. Maekawa, Y. Fukaya, A. Yabuuchi, I. Mochizuki, A. Kawasuso: Nucl. Instrum. Methods B 308 (2013) 9. 11) S. Valkealahti, R. M. Nieminen: Appl. Phys. A 35 (1984) 51; Appl. Phys. A 32 (1983) ) A. Vehanen, J. Maikinen: Appl. Phys. A 36 (1985) ) I. K. MacKenzie, C. W. Shulte, T. Jackman, L. Campbell: Phys. Rev. A 7 (1973) ) F. Rohrich, B. C. Carlson: Phys. Rev. 93 (1954) ) K. A. Ritley, M. McKeon, K. G. Lynn: Proceedings of 4th International Workshop on Slow-positron Beam Techniques for Solids & Surfaces (American Institute of Physics, 1990) p.3. 16) K. O. Jensen, A. B. Walker: Surf. Sci. 292 (1993) ) K. O. Jensen, A. B. Walker: J. Phys.-Condes. Matter 2 (1990) ) C. K. Iddings, G. L. Shaw, Y. S. Tsai: Phys. Rev. 135 (1964) B ) R. M. Sternheimer: Phys. Rev. B 103 (1956) ) M. E. Rose, H. A. Bethe: Phys. Rev. 55 (1938) ) J. van House, P. W. Zitzewitz: Phys, Rev. A 29 (1984) ) A. Kawasuso, M. Maekawa, Y. Fukaya, A. Yabuuchi, I. Mochizuki: Phys. Rev. B (R) (2011). 23) A. Kawasuso, M. Maekawa, Y. Fukaya, A. Yabuuchi, I. Mochizuki: Phys. Rev. B 85 (2012) ) A. Kawasuso, M. Maekawa: Appl. Surf. Sci. 255 (2008) ) M. Maekawa, Y. Fukaya, H. Zhang, H. Li, A. Kawasuso: J. Phys.-Conf. Ser. 505 (2014) ) L. A. Page: Rev. Mod. Phys. 31 (1959) ) A. Rich, H. R. Crane: Phys. Rev. Lett. 5 (1966) ) G. Gerber, D. Newman, A. Rich, E. Sweetman: Phys. Rev. D 15 (1977) ) Y. Nagai, Y. Nagashima, J. Kim, Y. Itoh, T. Hyodo: Nucl. Instrum. Methods B 171 (2000) ) S. Berko: Positron Annihilation, Ed. A. T. Stewart, L. O. Roellig (Academic Press, New York, 1967) p ) P. E. Mijnarends, L. Hambro: Phys. Lett. 10 (1964) ) P. E. Mijnarends: Physica 63 (1973) ) S. Berko, J. Zuckerman: Phys. Rev. Lett. 13 (1964) ) T. W. Mihalisin, R. D. Parks: Phys. Rev. Lett. 18 (1967) ) T. W. Mihalisin, R. D. Parks, Solid State Commun. 7 (1969) ) N. Shiotani, T.Okada, H. Sekizawa, T. Mizoguchi, T. Karasawa: J. Phys. Soc. Jpn. 35 (1973) ) M. Sǒb, S. Szuszkiewicz, M. Szuszkiewicz: Phys. Status Solidi B-Basic Res. 123 (1984) ) T. Jarborg, A. A. Manuel, Y. Mathys, M. Peter, A. K. Singh, E. Walker: J. Magn. Magn. Mater (1986) ) S. Szuszkiewicz, M. Sǒb, M. Szuszkiewicz: J. Magn. Magn. Mater. 62 (1986) ) P. Genoud, A. K. Singh, A. A. Manuel, T. Jarlborg, E. Walker, M. Peter, M. Welle: J. Phys. F 18 (1988) ) P. Genoud, A. A. Manuel, E. Walker, M. Peter: J. Phys.-Condes. Matter 3 (1991) ) H. Kondo, T. Kubota, H. Nakashima, T. Kawano, S. Tanigawa: J. Phys.-Condes. Matter 4 (1992) ) S. Wakoh: J. Phys. Soc. Jpn. 20 (1965) ) K. E. H. M. Hanssen, P. E. Mijnarends: Phys. Rev. B 34 (1986) ) J. Lin, K. Nishida, M. Saito: Jpn. J. Appl. Phys. 51 (2012) ) R. M. Drisko: Phys. Rev. 102 (1956) ) A. Kawasuso, Y. Fukaya, M. Maekawa, H. Zhang, T. Seki, T.Yoshino, E. Saitoh, K. Takanashi: J. Magn. Magn. Mater. 342 (2013) ) H. J. Zhang, S. Yamamoto, Y. Fukaya, M. Maekawa, H. Li, A. Kawasuso, T. Seki, E. Saitoh, K. Takanashi: Sci. Rep. 4 (2014) ( ) : 7 22 Japanese Positron Science Society 4 (2015)

25 4 (2015) Japanese Positron Science Society Theoretical calculation of positron lifetime Abstract: This article describes the methods used for calculating positron lifetimes. Positron lifetimes can be calculated by integrating the product of the electron and positron charge densities with an enhancement factor that describes the pileup of electrons around a positron. In the case of semiconductors and insulators, the enhancement factor needs to be modified because the effect of the pileup is reduced by the existence of the band-gap. There are two ways of calculating the electron and positron densities. In the two-component scheme, the electron and positron densities are calculated self-consistently and simultaneously. On the other hand, in the conventional scheme, the electron densities are calculated without the effect of the positron. The conventional scheme is often employed because positron lifetimes obtained by the conventional scheme are comparable to those obtained by the two component scheme. Keywords: defect, vacancy, first-principles calculation, metal, alloy, metal oxide, semiconductor, insulator Puska Nieminen 1) Masataka Mizuno (Division of Materials and Manufacturing Science, Osaka University), TEL: , FAX , mizuno@mat.eng.osaka-u.ac.jp Atomic Superposition Method, ATSUP ATSUP 2) ZnO

26 2. V + V + (r) = V c (r) + V corr (n (r)) (1) n V c V corr 1 V corr Broński Nieminen Arponen Pajanne 3) BN 4) V corr (0.56 r s < 8.0) = (r s + 2.5) (2) r s r s r s = (3/4πn ) 1/3 1 r s r s BN (2) ev Broński Nieminen r s 4 Sterne Kaiser Arponen Pajanne 1 5) V corr (r s ) = (arctan r s ) 1/ exp [ (r s 4.092) 2 ] SK Sterne Kaiser (3) 0.1 Broński Nieminen (2) (3) 1 1 BN, Broński Nieminen (2) SK, Sterne Kaiser (3) 2 Cu Cu (a) ; (b)1 ; (c) 0.1 V c Cu (001) [110] 1 4 Å 6.5 ev ev 3.9 ev 3 24 Japanese Positron Science Society 4 (2015)

27 3 MgO Mg O. (a)mg ; (b)o MgO Mg O MgO Mg O Mg O Mg O 10.5 ev Cu O Mg 6.0 ev O ev O 3. 3 ATSUP ATSUP Projector Augmented Wave (PAW) 6) VASP 7 9) PAW 1 (finite-difference) (Two-component Scheme TC Scheme) 1 Broński Nieminen 4) GaAs TC scheme Gilgen Galli Gygi Car 4 10) TC scheme GGGC Puska Seitsonen Nieminen 11) TC scheme PSN 4 (2015) Japanese Positron Science Society 25

28 (Conventional Scheme CONV scheme) CONV scheme TC scheme TC scheme 12, 13) τ λ 1 τ = πr2 0 c drn + (r)n (r)g(n (r), n + (r)) (4) r 0 c g (Enhancement Factor Contact Density) n (r) n + (r) TC scheme Broński Nieminen CONV scheme g 0 r s 4) g 0 (r s ) = r s r 3/2 s 1.26r 2 s r 5/2 s + r 3 s /6 (5) 4 BN (5) (10 3 ) 10 1 (3) 1 Sterne Kaiser Broński Nieminen 5) g 0 (r s ) = r s rs 3/2 2.01rs r5/2 s + rs 3 /6 (6) 4 SK (6) (5) 4 BN, Broński Nieminen (5) SK, Sterne Kaiser (6) 14) Puska 15) g 0 (r s ) = r s rs 3/2 1.26rs r5/2 s + (1 1/ε )rs 3 /6 (7) ε (7) (5) rs 3 ε 5 DV-Xα 16 18) DV-Xα Al Cu 5 43 CONV scheme Al 26 Japanese Positron Science Society 4 (2015)

29 1 Al Al (169 ps) Al (250 ps) [%] [ns 1 ] [%] [ns 1 ] s p d Al Al (a) ; (b)al Al 1 Al (3) 3.8 % 1.0 % 3p 50 % Al 3d 3p Al Cu Cu 3d Al 73 ps 108 ps Cu 3d 4p 6 Cu Cu (a) ATSUP ; (b) Conventional scheme; (c) Two-component scheme Al Cu Cu ATSUP CONV scheme TC scheme (001) [100] CONV scheme ATSUP Cu Cu 2 Cu Cu (108 ps) Cu (181 ps) [%] [ns 1 ] [%] [ns 1 ] d s p (2015) Japanese Positron Science Society 27

30 3 (ps) Method Cu Ag Au Al Fe Nb fcc fcc fcc fcc bcc bcc LMTO-ASA a FP-LMTO a DV-Xα ATSUP a Experiment b a 11) b 19) 162 ps CONV scheme 181 ps 19 ps TC scheme 177 ps CONV scheme Korhonen Puska Al, Cu, Ag, Au, Fe, Nb 12, 13) 3 4 LMTO-ASA FP-LMTO FP-LMTO 3 CONV scheme TC scheme CONV scheme ATSUP ATSUP CONV scheme TC scheme 5ps ATSUP CONV scheme TC scheme 5 MgO ATSUP Mg 2+ O 2 CONV scheme TC scheme MgO Mg 2+ O 2 MgO NaCl TiC CONV scheme TC scheme Ti C 60 ps ATSUP Ti C TiC Ti-C Ti C Ti C Ti C BCC 5 (ps) ATSUP CONV TC MgO Mg MgO O TiC Ti TiC C CoAl Co CoAl Al CoTi Co CoTi Ti (ps) Method Cu Ag Au Al Fe Nb fcc fcc fcc fcc bcc bcc LMTO-ASA, TC a LMTO-ASA, CONV a FP-LMTO, CONV a DV-Xα, CONV ATSUP, CONV a Experiment 179 b 198 c 210 d 251 e 175 f 210 g a 11) b 20) c 21) d 22) e 23) f 24) g 25) 28 Japanese Positron Science Society 4 (2015)

31 B2 CoAl CoTi CoAl ATSUP CONV scheme CoTi Co Ti ATSUP CoAl Al Co 0.13 CoTi Ti Co 1.02 Co Ti ATSUP CONV scheme TC scheme ATSUP CONV scheme TC scheme ) TC scheme (7) 1989 Puska 14) (7) Semiconductor model Puska Semiconductor model Insulator model Insulator model 2 Puska MgO 166 ps 29) Tanaka MgO 140 ps 30) Mg Puska Semiconductor model Insulator model Insulator model 31) Puska 5.2 (GGA) (Local Density Approximation, LDA) LDA (Generalized Gradient Approximation, GGA) Barbiellini 1 32, 33) Arponen Pajanne Broński Nieminen (4) g 0 (r s ) = r s rs 2 + r3 s /6 (8) g GGA g LDA g GGA = 1 + (g LDA 1) exp( αε) (9) ε ε = n 2 n q TF = ln n 2 q 2 TF (10) (q TF ) 1 1 ( VGGA corr = Vcorr LDA exp αε ) 3 (11) 4 (2015) Japanese Positron Science Society 29

32 7 (ps) BN GGA Method Cu Ag Au Al Fe Nb fcc fcc fcc fcc bcc bcc BN a GGA, BPTN a a 34) 7 BN, Broński Nieminen (5) BTPN, Barbiellini (8) KB, Kuriplach Barbiellini (12) 6 (ps) LDA GGA Method Cu Ag Au Al Fe Nb fcc fcc fcc fcc bcc bcc LDA, BPTN a GGA, BPTN a LDA, KB b GGA, KB b a 33) b 37) (9), (11) α α = 0.22 Barbiellini Broński Nieminen 7 BPTN Barbiellini BN Barbiellini BN Barbiellini LDA GGA LDA (8) Broński Nieminen (4) 3 10 ps Al 20 ps GGA 3 Al GGA 10 ps Ag 10 ps BN BN GGA Campillo Robles 34) 7 6 Fe Nb BN Al Ag (8) LDA BN α = 0.22 (8) GGA α GGA Puska Semiconductor model Insulator model ZnO GGA BN Semiconductor model 20 ps 35) ZnO GGA 2014 Kuriplach Barbiellini 36) 37) (8) rs 2 g 0 (r s ) = r s 0.22r 2 s + r 3 s /6 (12) 30 Japanese Positron Science Society 4 (2015)

33 7 KB (8) BPTN BN BN α = 0.22 α = LDA GGA 7 LDA BN ps Al Ag GGA GGA GGA MgO ZnO 5.3 MgO ZnO MgO Puska Insulator model 167 ps 14) Insulator model 2001 Xu Insulator model MgO 155 ps 31) ZnO GaN 38) Si GaAs GaN 39) ZnO ZnO 1989 Fernández ZnO 195 ps 40) 1992 Cruz 169 ps 41) 2003 Uedono Eagle-Picher 155 ps 158 ps 42) Chen Eagle-Picher Scientific Production Company 171 ps 189 ps 43) Chen ATSUP Semiconductor model 158 ps Zn 187 ps Zn Tuomisto ZnO 170 ps 177 ps 44) Brauer 34) Barbiellini GGA 30 ps 8 Al MgO Semiconductor model GGA 20 ps ZnO MgO ZnO 2 MO 3 X MO + 2X MO 2X + V M (13) 3 V M ppm Shirai Tanaka MgO Al Ga 30, 45) 8 Al MgO Al 135 ps Al 180 ps 3 Al Mg Al 130 ps 185 ps Shirai Tanaka ZnO ZnO 1 ppm Eagle-Picher 153 ps 155 ps 46) MgO ZnO 130 ps 153 ps 155 ps 4 (2015) Japanese Positron Science Society 31

34 8 MgO ZnO (ps) SM: Semiconductor model, IM: Insulator model MgO bulk Mg vac. ZnO bulk Zn vac. Puska, SM a 119 Puska, IM a Xu, IM b Chen, SM c Tuomist, GGA d 177 Brauer, SM e Brauer, GGA e Mizuno, BN f Mizuno, SM f Kuriplach, GGA g Kuriplach, GGA2 g a 14) b 31) c 43) d 44) e 35) f 46) g 37) MgO ZnO 8 BN Semiconductor model (7) Semiconductor model Barbiellini GGA MgO ZnO 8 GGA2 Kuriplach Barbiellini GGA 37) Semiconductor model GGA BN BN Semiconductor model GGA 6. TC scheme PSN GaAs Ga 10) TC scheme GGGC GaAs As 11) TC scheme Saito Si GGGC 47) Si 256 ps 279 ps 270 ps Wiktor SiC GGGC PSN 48) SiC Si C 153 ps 32 Japanese Positron Science Society 4 (2015)

35 PSN 195 ps Si 198 ps 227 ps TC scheme GaAs Si SiC 4.2 CONV scheme TC scheme TC scheme Si SiC CONV scheme TC scheme TC scheme 7. IT PHASE/0 WEB 49) PHASE URL 50) Linux UNIX Windows CONV scheme BN Semiconductor model VASP PHASE/0 ABINIT WEB 51) PHASE/0 Windows WEB WEB CONV scheme BN TC scheme PSN Semiconductor model Barbiellini GGA α = 0.22 BN (AIST) QMAS 52, 53) 8. ABINIT 1) M. J. Puska, R. M. Nieminen: J. Phys. F 13 (1983) ) J. Kuriplach, O. Melikhova, C. Domain, C. S. Becquart, D. Kulikov, L. Malerba, M. Hou, A. Almazouzi, C. A. Duque, A. L. 4 (2015) Japanese Positron Science Society 33

36 Morales: Appl. Surf. Sci. 252 (2006) ) J. Arponen, E. Pajanne: Ann. Phys. (N.Y.) 121 (1979) ) E. Boroński, R. M. Nieminen: Phys. Rev. B 34 (1986) ) P. A. Sterne, J. H. Kaiser: Phys. Rev. B 43 (1991) ) P. E. Blöchl: Phys. Rev. B 50 (1994) ) 8) G. Kresse, J. Hafner: Phys. Rev. B 47 (1993) ) G. Kresse, J. Furthmüller: Phys. Rev. B 54 (1996) ) L. Gilgien, G. Galli, F. Gygi, R. Car: Phys. Rev. Lett. 72 (1994) ) M. J. Puska, A. P. Seitsonen, R. M. Nieminen: Phys. Rev. B 52 (1995) ) T. Korhonen, M. J. Puska, R. M. Nieminen: Phys. Rev. B 54 (1996) ) M. J. Puska, T. Korhonen, R. M. Nieminen, A. P. Seitsonen: Appl. Surf. Sci. 116 (1997) ) M. J. Puska, S. Makinen, M. Manninen, R. M. Nieminen: Phys. Rev. B 39 (1989) ) M. J. Puska: J. Phys.-Condens. Matter 3 (1991) ) H. Adachi, M. Tsukada, C. Satoko: J. Phys. Soc. Jpn. 45 (1978) ) D. E. Ellis, G. S. Painter: Phys. Rev. B 2 (1970) ) 19) A. Seeger, F. Barnhart, W. Bauer: Positron Annihilation, edited by L. Dorikens-Vanpraet, M. Dorikens, D. Segers (World Scientific, Singapore, 1989) p ) H. E. Schaefer, W. Stuck, F. Banhart, W. Bauer: Proceedings of the 8th International Conference on Vacancies and Interstitials in Metals and Alloys, edited by C. Ambromeit and H. Wollenberger (Trans Tech, Aedermannsdorf, Switzerland, 1986). 21) R. H. Howell: Phys. Rev. B 24 (1981) ) D. Herlac, H. Stoll, W. Trost, T. E. Jackman, K. Maier, H. E. Schaefer, A. Seeger: Appl. Phys. 12 (1977) ) H. E. Schaefer, R. Gugelmeier, M. Schmolz, A. Seeger: Proceedings of the Vth Risø International Symposium of Metallurgy and Materials Science, edited by N. H. Andersen, M. Eldrup, N. Hansen,D.J.Jensen,T.Leffers, H. Lillholt, O. B. Pedersen, B. N. Singh (Risø National Laboratory, Risø, Denmark, 1984). 24) A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila: Phys. Rev. B 25 (1982) ) P. Hautojärvi, H. Huomo, M. Puska, A. Vehanen: Phys. Rev. B 32 (1985) ) P. Folegati, I. Makkonen, R. Ferragut, M. J. Puska: Phys. Rev. B 75 (2007) ) R. A. Mackie, S. Singh, J. Laverock, S. B. Dugdale, D. J. Keeble: Phys. Rev. B 79 (2009) ) R. A. Mackie, A. Peláiz-Barranco, D. J. Keeble: Phys. Rev. B 82 (2010) ) R. Pareja, M. A. Pedrosa, R. Gonzáles: Positron Annihilation, edited by P. C. Jain, Rm M. Singru, K. P. Gopinathan (World Scienfitic, Singapore, 1985) p ) I. Tanaka, T. Mizoguchi, M. Matsui, S. Yoshioka, H. Adachi, T. Yamamoto, T. Okajima, M. Umesaki, W. Y. Ching, Y. Inoue, M. Mizuno, H. Araki, Y. Shirai: Nature Mat. 2 (2003) ) J. Xu, J. Moxom, B. Somieski, C. W. White, A. P. Mills, Jr., R. Suzuki, S. Ishibashi: Phys. Rev. B 64 (2001) ) B. Barbiellini, M. J. Puska, T. Torsti, R. M. Nieminen: Phys. Rev. B 51 (1995) ) B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, R. M. Nieminen: Phys. Rev. B 53 (1996) ) J. M. Campillo Robles, E. Ogando, F. Plazaola: J. Phys.- Condens. Matter 19 (2007) ) G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, C. Moisson, H. von Wenckstern, H. Schmidt, M. Lorenz, M. Grundmann: Phys. Rev. B 74 (2006) ) N. D. Drummond, P. Lopéz Ríos, R. J. Needs, C. J. Pickard: Phys. Rev. Lett. 107 (2011) ) J. Kuriplach, B. Barbiellini: Phys. Rev. B 89 (2014) ) D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch: Solid State Commun. 105 (1998) ) D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, J. R. Sizelove: Appl. Phys. Lett. 75 (1999) ) P. Fernández, N. de Diego, J. del Rio, J. Llopis: J. Phys.- Condens. Matter 1 (1989) ) R. M. de la Cruz, R. Pareja, R. González, L. A. Boatler, Y. Chen: Phys. Rev. B 45 (1992) ) A. Uedono, T. Koida, A. Tsukazaki, M. Kawasaki, Z. Q. Chen, S. F. Chichibu, H. Koinuma: J. Appl. Phys. 93 (2003) ) Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso X. L. Yuan, T. Sekiguchi: J. Appl. Phys. 94 (2003) ) F. Tuomisto, V. Ranki, K. Saarinen, D. C. Look: Phys. Rev. Lett. 91 (2003) ) M. Mizuno, Y. Inoue, K. Sugita, H. Araki, Y. Shirai, T. Mizoguchi, I. Tanaka, H. Adachi: Mater. Sci. Forum (2004) ) M. Mizuno, H. Araki, Y. Shirai: Mater. Trans. 45 (2004) ) M. Saito, A. Oshiyama: Phys. Rev. B 53 (1996) ) J. Wiktor, G. Jomard, M. Torrent, M. Bertolus: Phys. Rev. B 87 (2013) ) 50) 51) 52) 53) S. Ishibashi, A. Uedono: J. Phys.-Conf. Series 505 (2014) ( ) : Japanese Positron Science Society 4 (2015)

37 4 (2015) Japanese Positron Science Society New precise measurement of the hyperfine splitting of positronium Abstract: A significant divergence of 3.9σ exists between the theoretical prediction and the averaged experimental value for the ground state hyperfine splitting of positronium (Ps), Δ HFS. We have performed a new measurement of Δ HFS taking into account the Ps thermalization effect. As a result Δ HFS = ± (statistical) ± (systematic) GHz was obtained, consistent with theoretical calculations. Our new result differs from the average of previously measured values by 2.6σ, and it was found that the effect of assuming that Ps is instantly thermalized after formation is 10 ± 2 ppm. This result suggests that the previous divergence between the theoretical and experimental values can be explained by a failure to take account of Ps thermalization. Keywords: positronium, quantum electrodynamics, hyperfine splitting, thermalization 1. (Ps) Ps 2 1. QED QED g Ps 2. p-ps o-ps Ps Akira Ishida (Graduate School of Science, The University of Tokyo), TEL: , FAX: , ishida@icepp.s.u-tokyo.ac.jp Ps 2000 Δ HFS Ps Ps 1 1 S 0, p-ps Γ p-ps = (17) ns ps 1) 2 γ 1 3 S 1 o-ps Γ o-ps = (7) μs ns 2) 3 γ o-ps p-ps 0.84 mev (203 GHz) Δ exp HFS = (67) GHz (3.3 ppm) 3 5) QED α QED 1 α α α 1/137 O(α 3 ln α 1 ) Δ th HFS = (41) GHz (2.0 ppm) 6 8)

38 α α Δ 1 (a 4) b 5) QED 6 8) 21) 6) 1 15 ppm (3.9σ [σ: ]) 2014 O(α 3 ) +1 ppm 9, 10) O(α 3 ) Ps QED (QCD) 2 1. Ps Ps Ps Ps Ps Ps 20 o-ps 11 13) 2. ppm Δ HFS ppm 10 cm 3 ppm 100 cm (Δ Zeeman ) Δ HFS Δ HFS 14) 15, 16) B Ps 2 0 o-ps p-ps Δ HFS Ps o-ps m = 0 p-ps + 0 o-ps 0 p-ps 2 m = ±1 + Δ Zeeman Δ HFS Δ Zeeman Breit-Rabi Δ Zeeman 1 ( ) 2 2 Δ g μ B B HFS (1) hδ HFS g = g ( α2) Ps g 17 20) μ B h Δ HFS 203 GHz Δ Zeeman 1T 3 GHz Ps 36 Japanese Positron Science Society 4 (2015)

39 4 3 2 m 0 GHz 1 0, E o Ps 203 E p Ps 204 HFS o-ps m ± m B T 2 Ps 0 o-ps 0 3 γ o-ps kev γ (1) ppm 21) Ps Δ HFS n, t Ps v(t) nv(t) 3/5 Lennard-Jones 22) v(t) Ps Ps 23) v(t) ( ) 3kT 1 + Ae bt v(t). (2) 1 Ae bt b = 16 3 m Ps 2 π σ mps kt mn M, 3 (a) (b) (a) (b) (a) (b) (b) 21) / 3 A = E0 2 kt 3 E0 + 2 kt, σ m Ps m Ps Ps k T M E 0 Ps ( 1 amagat, amagat 0 C, 1 atm ) ns o-ps o-ps ( 0.3 amagat ) Ps 2.2 Ps (2015) Japanese Positron Science Society 37

40 Ps Ps Ps Ps γ 38.1 mm 50.8 mm LaBr 3 (Ce) 6 UVT PMT 511 kev 8 %FWHM, 16 ns 2γ back-to-back γ 2γ 3γ mm, 2m B T 40 mm 100 mm 100 cm ppm RMS Ps 1 1 ppm 1 MBq 22 Na Ps β- 10 mm 0.1 mm PMT 1.2 ns Ps CW GaN 500 W 0.2 % 128 mm 100 mm γ 1.5 mm TM GHz, Q L Pa amagat amagat (> 99.9 %) 2γ Ps Doppler Broadening Spectroscopy, DBS 0.15 ev 1.52 ev E 0 = ev σ m = 146 ± 11 Å 2 24) 24) 0.17 ev Ps 0.17 ev σ m DBS 0.17 ev Ps 2, 11, 12) Ps (Ps + e 2γ + e ) Γ pick (t) Γ pick (t)/γ o-ps = (2γ )/(3γ ) γ Γ pick (t) 25) 26) nv(t) 0.6 Γ pick (t) v(t) 0.17 ev σ m = 47.2 ± 6.7Å khz, 910 Hz PMT NIM CAMAC 11 (0.129, 0.133, 0.167, 0.232, 0.660, 0.881, 0.969, 1.193, 1.353, 1.358, amagat) RF-ON RF-OFF Ps 50 ns 440 ns Ps Japanese Positron Science Society 4 (2015)

41 (/kev/ns/s) RF-ON RF-OFF RF-OFF RF-OFF Ps (ns) 4 (0.881 amagat, T) RF-OFF RF-ON 21) ns ns ns ns ns ns (T) ns ns ns ns ns (/kev/ns/s) RF-ON RF-OFF RF-OFF RF-OFF (kev) (T) amagat ) 5 50 ns 60 ns (0.881 amagat, T) RF-OFF RF-ON RF-ON RF-OFF 21) γ ns 1430 ns 511 kev ± 1σ ( 17 kev) [(RF-ON ) (RF-OFF )]/(RF-OFF ) ) Ps Δ HFS Γ pick n Ps t Δ HFS (n, t) =Δ 0 HFS Cnv(t) 3 5, (3) ( ) 0.6 v(t) Γ pick (n, t) =Γ pick (n, ). (4) v( ) Δ 0 HFS Δ HFS, C 2 ( ) Γ pick (n, ) RF-OFF N(t) Ps 4 (2015) Japanese Positron Science Society 39

42 (GHz) Δ HFS amagat amagat amagat Ps (ns) 7 Δ HFS amagat, amagat, amagat 21) t N(t) = N 0 exp [ Γ o-ps 0 t + N 1 exp [ Γ + 0 ( 1 + Γ pick(t ) Γ o-ps ( 1 + Γ pick(t ) Γ + ) dt ] ) ] dt. (5) N 0 N 1 Γ ps 6 Δ 0 HFS = (16) GHz (6) χ 2 /ndf = 633.3/592, p Ps Δ HFS 50 ns 100 ppm 100 ns 10 ppm Ps Ps Ps (3) (4) v(t) v( ) Δ HFS (16) GHz Ps 10 ± 2 ppm (15 ppm) 0 50 ns (GHz) Δ HFS (amagat) Δ HFS 21) Ps Δ HFS Δ HFS Δ HFS 8 (3) Δ HFS (n, t) ppm 5 1. o-ps Γ pick (n, ) RF-OFF Δ HFS 3.5 ppm 2. (1) Δ HFS ppm 3.0 ppm 3. Ps Ps Δ HFS Γ pick 40 Japanese Positron Science Society 4 (2015)

43 1 21) Δ HFS (ppm) : o-ps Ps : E DBS σ m 0.5 σ m 1.8 : NMR 1.0 : 1.2 Q L <0.1 : <0.2 <0.1 o-ps <0.1 p-ps < ppm Δ HFS = ± (, 8.0 ppm) ± (, 6.4 ppm) GHz. (7) 1 QED 1.2σ 2.6σ 4. Ps Ps o-ps Δ HFS 10 ± 2 ppm Ps Δ HFS = ± (, 8.0 ppm) ± (, 6.4 ppm) GHz O(α 3 ln α 1 ) QED 1.2σ 2.6σ Ps Ps Δ HFS Δ HFS 2.5 ppm Δ HFS 4. Ps Ps E 0,DBS σ m, σ m Δ HFS 1.9 ppm ns 440 ns 40 ns, 60 ns 260 ns, 620 ns Δ HFS KEK KEK JSPS ) A. H. Al-Ramadhan, D. W. Gidley: Phys. Rev. Lett. 72 (1994) ) Y. Kataoka, S. Asai, T. Kobayashi: Phys. Lett. B 671 (2009) ) A. P. Mills, Jr., G. H. Bearman: Phys. Rev. Lett. 34 (1975) ) A. P. Mills, Jr.: Phys. Rev. A 27 (1983) ) M. W. Ritter, P. O. Egan, V. W. Hughes, K. A. Woodle: Phys. Rev. A 30 (1984) ) B. A. Kniehl, A. A. Penin: Phys. Rev. Lett. 85 (2000) ) K. Melnikov, A. Yelkhovsky: Phys. Rev. Lett. 86 (2001) ) R. J. Hill: Phys. Rev. Lett. 86 (2001) (2015) Japanese Positron Science Society 41

44 9) M. Baker, P. Marquard, A. A. Penin, J. Piclum, M. Steinhauser: Phys. Rev. Lett. 112 (2014) ) G. S. Adkins, R. N. Fell: Phys. Rev. A 89 (2014) ) S. Asai, S. Orito, N. Shinohara: Phys. Lett. B 357 (1995) ) O. Jinnouchi, S. Asai, T. Kobayashi: Phys. Lett. B 572 (2003) ) R. S. Vallery, P. W. Zitzewitz, D. W. Gidley: Phys. Rev. Lett. 90 (2003) ) A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, T. Idehara: arxiv: v3 (2014). 15) Y. Sasaki, A. Miyazaki, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, K. Tanaka, A. Yamamoto: Phys. Lett. B 697 (2011) ) D. B. Cassidy, T. H. Hisakado, H. W. K. Tom, A. P. Mills, Jr.: Phys. Rev. Lett. 109 (2012) ) H. Grotch, R. A. Hegstorm: Phys. Rev. A 4 (1971) ) E. R. Carlson, V. W. Hughes, M. L. Lewis, I. Lindgren: Phys. Rev. Lett. 29 (1972) ) H. Grotch, R. Kashuba: Phys. Rev. A 7 (1973) ) M. L. Lewis, V. W. Hughes: Phys. Rev. A 8 (1973) ) A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, K. Tanaka, A. Yamamoto: Phys. Lett. B 734 (2014) ) N. Allard, J. Kielkopf: Rev. Mod. Phys. 54 (1982) ) F. Saito, Y. Nagashima, T. Hyodo: J. Phys. B 36 (2003) ) M. Skalsey, J. J. Engbrecht, C. M. Nakamura, R. S. Vallery, D. W. Gidley: Phys. Rev. A 67 (2003) ) R. S. Vallery, A. E. Leanhardt, M. Skalsey, D. W. Gidley: J. Phys. B 33 (2000) ) B. N. Miller, T. L. Reese, G. A. Worrell: Can. J. Phys. 74 (1996) 548. ( ) : 2014 ALPHA 42 Japanese Positron Science Society 4 (2015)

45 4 (2015) Japanese Positron Science Society Positron annihilation lifetime spectroscopy as a tool for further insights into the transport of water and solutes during reverse osmosis Takahiro Fujioka, Long D. Nghiem School of Civil Mining and Environmental Engineering, The University of Wollongong Abstract: Reverse osmosis (RO) filtration is an important separation process for water treatment and many industrial applications. Despite many decades of research and development efforts, solute transport through an RO membrane is still not fully understood. This article provides an insight into transport of small and uncharged solutes in RO membranes, with a particular focus on free-volume hole-size of the membrane active skin layer determined by positron annihilation lifetime spectroscopy (PALS). Free-volume hole-size is one of the most important membrane properties governing solute rejection. In fact, the rejection of boric acid (which is a small and uncharged solute) by RO membranes decreases with increasing free-volume hole-radius. In addition to free-volume hole-size, other properties of the active skin layer may also influence the rejection of uncharged small solutes. Thus, future development of PALS or other analytical techniques to characterise the free-volume hole-shape, hole-size distribution, and free-volume fraction of the active skin layer can provide an unprecedented level of insight into the separation of small and uncharged solutes by RO membranes. Keywords: boron, free-volume hole, positron annihilation lifetime spectroscopy, reverse osmosis 1. Introduction Reverse osmosis (RO) filtration is a key separation technology in many water treatment applications. Modern seawater desalination plants are primarily based on seawater reverse osmosis (SWRO) membranes which can offer more than 99.5 % rejection of inorganic salts. 1) Low pressure reverse osmosis (LPRO) membranes have been widely employed in potable water recycling applications for the removal of soluble organic substances and partial removal of inorganic salts. 2) RO applications for specific industrial applications in food processing, biotechnology, and hydrometallurgyhave also significantly increased recently. Central to the application of RO membranes for desalination, water recycling, and many other industries is their ability to reject small and dissolved solutes. However, there remains scope for further improvement in rejection properties, particularly with respect to small and uncharged solutes. Boron and N-nitrosodimethylamine (NDMA) are two of the most notable examples of such solutes. Takahiro Fujioka and Long D. Nghiem (Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, The University of Wollongong), NSW 2522, Australia TEL: , FAX: , takahiro@uow.edu.au Most commercial RO membranes can only achieve up to 90 % rejection of boron at lower than ph 8. 3) As a result, most seawater desalination plants have to employ a two pass RO system (seawater is filtered twice by RO membranes) to comply with the boron limit for potable water supply. 3) NDMA has been classified as a probable human carcinogen 4) and its concentration in recycled water for potable reuse has been regulated in Australia and several other countries at 10 ng L 1 or below. 2) NDMA rejection by RO membranes can be as low as 10 %; 5) thus, a subsequent advanced oxidation process or a dilution with other clean water sources is often required to meet the NDMA level. Any improvement on the rejection of these small and uncharged solutes by RO membranes can lead to a reduction in capital and operational costs. In fact, some membrane manufacturers have been developing new RO membranes designed for high boron removal (e.g. ESPAB and SWC4B membranes supplied by Hydranautics/Nitto), however the specific details behind the high boron rejection capacity of these high rejection membranes are proprietary information of the respective manufacturers. To further optimize the rejection of small and neutral solutes by RO membranes, an understanding of the solutemembrane interaction is of paramount importance. Solute transport through an RO membrane can be described by the irreversible thermodynamic model, 6) in which the membrane is considered as a black box and the transport of solute

46 Fujioka et al. PALS as a tool for further insights into the transport of water and solutes during reverse osmosis is driven by the partition of the solute into the membrane followed by diffusive and convective movement across the membrane. Based on the irreversible thermodynamic model, the solution-diffusion model has been developed to describe the transport of solutes through RO membrane. 7) Another approach that has been widely used for nanofiltration membranes is the pore-flow model. The pore-flow model describes the RO membrane as a thin separation layer with cylindrical pores where solutes and water pass through by pressure-driven convective and diffusive flow. 8) It is noteworthy that the pore-flow model was first introduced by Loeb and Sourirajan 9) in the early 1960s to describe the transport of water and solutes in the cellulose acetate membranes that they have invented. In recent years, significant progress in deploying the positron annihilation lifetime spectroscopy (PALS) technique has been made to explore the internal structure of the membrane active skin layer at near atomic-scale. PALS allows for an accurate measurement of free-volume hole-size within the active skin layer of an RO membrane and can potentially offer a new horizon in our understanding of the transport of water 10, 11) and solutes in the RO process. Despite the significant increase in the number of studies using PALS to characterise RO membranes, the significance of free-volume holes on the rejection of small and uncharged solutes has not been fully elucidated. Thus, this article aims to identify the relationship between free-volume hole-size of RO membranes and their rejection capacity for small and uncharged solutes. Directions for further developments to better understand the transport of water and solutes in RO membranes will also be delineated. Feed Ac ve skin layer ( μm) Support layer (50 μm) Permeate Backing layer ( μm) Fig. 1 Layers and thickness of a typical thin composite flat sheet membrane. 2. Thin film composite membranes Most commercial RO membranes are thin-film composites (TFC) and comprise an active polyamide or polyamide derivative skin layer on top of a polysulfone porous support layer and a polyether non-woven fabric backing layer 12) (Fig. 1). The polyamide active skin layer is so densely packed and crosslinked that it contains subnanometer-scale free-volume holes. The active skin layer playsan important role in the permeation of water and solutes through membranes. 11) In contrast, the polysulfone porous support layer and the polyether non-woven backing layer have no significant resistance to water permeation. Their roles are solely to provide mechanical strength to the membrane. Thus, separation performance of RO membranes is governed exclusively by the physicochemical properties of the active skin layer. The separation performance of RO membranes is generally Table 1 Separation properties of commercial membranes. Model Type Manufacturer NaCl rejection a [%] Boron rejection b [%] SWC5 SWRO Hydranautics/Nitto c ESPAB LPRO Hydranautics/Nitto c TFC-HR LPRO KMS d BW30 LPRO Dow/Filmtec d ESPA2 LPRO Hydranautics/Nitto c ESPA1 LPRO Hydranautics/Nitto d a Manufacturer s data. b Determined using a laboratory-scale RO system with overall permeate flux = 20 L m 2 h 1 ; feed solution contains 20 mm NaCl; 1 mm NaHCO 3 ; and 1 mm CaCl 2 ; cross flow velocity 40.2 cm s 1 ; feedtemperature = 20.0 C; feed ph 8. c Ref. 13), d Ref. 14). 44 Japanese Positron Science Society 4 (2015)

47 Fujioka et al. PALS as a tool for further insights into the transport of water and solutes during reverse osmosis Table 2 Properties of boric acid and NDMA. Membrane type Boric Acid NDMA Structure OH Molecular weight [g mol 1 ] HO B OH N N O LogD a Molecular volume b [nm 3 molecule 1 ] pk a /(pk b ) c 8.70 (3.52) a ACD/PhysChem Suite software (Advanced Chemistry Development, Inc., Ontario, Canada). b The molecular volume of each molecule (V m ) was estimated with the equation (V m = Molecular volume [nm 3 mol 1 ]/N A ) where Avogadro constant (N A ) is mol 1.The molecular volume of each molar was obtained from the ACD/PhysChem Suite software. c Chemaxon ( determined based on the rejection of NaCl. In general, high NaCl rejection by RO membranes (> 99 %) can be readily achieved (Table 1). Although sodium and chloride ions are very small in size (molecular mass = 23 g mol 1 and 35.5 g mol 1, respectively), they exist in charged and hydrated form in an aqueous solution. These hydrated ions can be highly rejected due to the size exclusion mechanism in combination with electrostatic interactions. In contrast, small and uncharged solutes often exhibit low rejection by RO membranes. Typical examples include boron and NDMA that are present in natural water in an uncharged form as B(OH 3 ) (M W = 62 g mol 1 )andc 2 H 6 N 2 O(M W = 74 g mol 1 ), respectively (Table 2). These compounds are not hydrated and smaller in size than hydrated sodium ions. 12) The rejection of boron by RO membranes can be very low and highly variable in the range of 12 % 81 % 13, 14) (Table 1). Unlike charged solutes, uncharged solutes including boric acid and NDMA are primarily rejected under the size exclusion mechanism. 15) In fact, the rejection of uncharged solutes by RO membranes generally increases in proportion to their molecular size (e.g. molecular volume) 13) (Fig. 2). Although hydrophobic interactions between these solutes and the membrane could influence the rejection of uncharged solutes by TFC membranes, 16) both boric acid and NDMA are hydrophilic (Table 2). As a result, free-volume hole-size can be one of the most important factors governing the rejection of these solutes. 3. Membrane characterisation by PALS PALS is currently the only available technique that can determine free-volume hole-radius within a polymeric layer including the active skin layer of RO membranes. 17) PALS us- Rejection [%] Boric Acid (0.071) NDMA (0.124) NPYR (0.134) NMOR (0.145) NMEA (0.151) NPIP (0.161) NDEA (0.178) SWC5 ESPAB ESPA2 NDPA (0.232) Fig. 2 Rejection of boric acid and N- nitrosamines (20 mm NaCl, 1 mm NaHCO 3, 1mMCaCl 2, permeate flux 20 L m 2 h 1,cross flow velocity 40.2 cm s 1, feed ph 8.0 ± 0.1, feed temperature = 20.0 ± 0.1 C). 13) The molecular volume (nm 3 molecule 1 )isshownin NDBA (0.268) the parentheses. Values reported here are the average and ranges of duplicate results. ing a variable energy slow positron beam can analyse freevolume hole-radius in a specified depth without the need to isolate the target active skin layer. Mean free-volume holeradius (r [nm]) of an RO membrane can be determined from the pick-off lifetime of ortho-positronium (τ o-ps ) measured by PALS using the Tao-Eldrup model: 18) [ τ o-ps = r r ( 2π sin 2π r )] 1. (1) 4 (2015) Japanese Positron Science Society 45

48 Fujioka et al. PALS as a tool for further insights into the transport of water and solutes during reverse osmosis Table 3 Free-volume hole-radii of commercial polyamide RO membranes analysed by PALS. Membrane type Model Manufacturer Free-volume hole-radius [nm] Reference SWRO SWC5 Hydranautics/Nitto 0.26 Fujioka et al. 13) LPRO LF10 Nitto 0.20 Chen et al. 20) ESPA2 Hydranautics/Nitto 0.29 Fujioka et al. 13) ESPAB Hydranautics/Nitto 0.29 Fujioka et al. 13) AG GE 0.23 Ito et al. 21) AK GE 0.24 Ito et al. 21) Boron Rejeciton [%] Free-volume Hole-radius [nm] Fig. 3 Boron rejection as a function of free-volume hole-radius of SWRO membranes (TDS = mg L 1, feed ph 6.5, flow rate = 3.51 L min 1, temperature = 25 C, boron = 5mgL 1 ). 10) separation, rejection of a given solute could vary in response to changes in free-volume hole-size. In fact, a strong correlation between uncharged solute rejections and free-volume 10, 19, 20) hole-size has been reported in previous studies. For example, Henmi et al., 10) evaluated boron rejections using similar types of SWRO membranes and reported that the rejection of boron decreased with increasing free-volume hole-radius (Fig. 3). Fujioka et al., 13) reported that the free-volume hole-radius of a SWRO membrane (0.26 nm) was smaller than that of LPRO membranes (0.29 nm), and accordingly boron rejection by the SWRO membrane (81 %) was greater than that of the LPRO membranes (36 % 59 %) (Fig. 4). It is noteworthy that free-volume holes are approximated as a spherical shape. The free-volume hole-radius of RO membranes analysed by PALS using a variable slow positron beam is summarised in Table 3. The range of beam intensity (1 kev 2 kev) used in these studies corresponds to a mean positron implantation depth of 40 nm 120 nm, which was determined so that most positrons are implanted into the active skin layer of typical RO membranes. The reported mean free-volume hole-radius for 13, 19, 20) LPRO membranes is in the range of 0.20 nm 0.29 nm (Table 3). Although a notable difference in free-volume holeradius is observed among RO membranes, these data alone do not provide any significance of the difference on solute rejection. 4. Effects of free-volume hole-radius on solute rejection Because the free-volume hole-radius of RO membranes could be a dominant factor governing uncharged solute Boron Rejeciton [%] SWC5 ESPAB ESPA Free-volume Hole-radius [nm] Fig. 4 Boron rejection as a function of freevolume hole-radius of a SWRO membrane (SWC5) and LPRO membranes (ESPAB and ESPA2) (20 mm NaCl, 1 mm NaHCO 3, 1 mm CaCl 2, feed ph 8.0 ± 0.1, permeate flux = 20 L m 2 h 1, feed temperature = 20 C, boron = 5mgL 1 ). 13) 46 Japanese Positron Science Society 4 (2015)

49 Fujioka et al. PALS as a tool for further insights into the transport of water and solutes during reverse osmosis 5. Findings by the authors While the free-volume hole-size of RO membrane is indeed an important factor determining uncharged solute rejection as described above, a variation in free-volume hole-size is not necessarily correlated with a variation in uncharged solute rejection. A recent study performed by Fujioka et al., 13) revealed a remarkable difference in boron rejection by two LPRO membranes (i.e. ESPA2 and ESPAB) with equivalent free-volume hole-radius (i.e nm) (Fig. 4). A similar difference in rejection between the two LPRO membranes was also observed for several other small and uncharged compounds (e.g. NDMA and N-nitrosomethylethylamine (NMEA)). 13) In addition to free-volume hole-size, there are other physicochemical properties of RO membranes that may play an important role in solute rejection. These properties include free-volume hole-shape, free-volume hole-size distribution and free-volume fraction, all of which can vary considerably depending on manufacturing method and polymer materials even if the RO membranes have an identical mean free-volume hole-radius. These properties have not yet been determined by current characterization techniques. Although further development is still needed, PALS has arguably the best potential to characterise these properties. 6. Directions for future development While the contribution of membrane properties described above (i.e. free-volume hole-shape, hole-size distribution and free-volume fraction) toward the rejection of uncharged solutes still remains unclear, the quantification of these properties may lead to a breakthrough in understanding the solutemembrane interaction during RO filtration. Firstly, free-volume holes analysed using PALS are assumed to be spherical and uniform size and their shapes 15, 21) cannot be determined by PALS. Many previous studies have reported that the molecular width of solutes among molecular size parameters shows the best correlation with solute rejections, indicating that shape and size interactions between free-volume holes and solutes are important factors influencing solute rejection. Thus, it is necessary to reconcile the difference between the actual hole-shape and hole-size distribution and the assumption of current PALS techniques (i.e. spherical shape and uniform size). Free-volume fraction of the active skin layer is another property that can influence solute rejection according to the pore-flow model. 22) Solute and water fluxes can vary largely depending on free-volume fraction. The degree of free-volume fraction among several TFC membranes may be compared using o-ps intensity (I 3 ) data obtained through PALS. 23) In fact, Sasaki et al., 24) reported that boron rejection by modified SWRO membranes does not depend on the free-volume hole-radius but is dependent on V I 3, where V = free-volume hole-space (V = 4/3πr 3 ). Nevertheless, the o-ps intensity (I 3 ), which is the ratio of the o-ps component to the total implanted positron intensity, does not necessarily represent free-volume fraction; thus, the evaluation using V I 3 for understanding the role of hole-size and free-volume fraction on solute rejection may not be sufficiently accurate. 7. Conclusions PALS using a slow positron beam has the potential to elucidate the subnanometer-scale inner structure of RO membranes. PALS data previously reported in the literature reveal that commercially available RO membranes have a mean free-volume hole-radius of 0.20 nm 0.29 nm. Free-volume hole-size can be an important parameter in determining the rejection of boron which is uncharged at environmental ph values. Data in the literature also indicate that in addition to the free-volume hole-size, other membrane properties may also play an important role in boron rejection. Major challenges lie in the measurement of free-volume hole-shape, free-volume hole-size distribution and free-volume fraction of the active skin layer, all of which may require further development of PALS or support from other analytical techniques. References 1) K. P. Lee, T. C. Arnot, D. Mattia: J. Membr. Sci. 370 (2011) 1. 2) T. Fujioka, S. J. Khan, Y. Poussade, J. E. Drewes, L. D. Nghiem: Sep. Purif. Technol. 98 (2012) ) K. L. Tu, L. D. Nghiem, A. R. Chivas: Sep. Purif. Technol. 75 (2010) 87. 4) USEPA, (1993). 5) M. J. Farré, K. Döderer, L. Hearn, Y. Poussade, J. Keller, W. Gernjak: J. Hazard. Mater. 185 (2011) ) K. S. Spiegler, O. Kedem: Desalination 1 (1966) ) J. G. Wijmans, R. W. Baker: J. Membr. Sci. 107 (1995) 1. 8) T. Matsuura, S. Sourirajan: Ind. Eng. Chem. Proc. Des. Dev. 20 (1981) ) S. Loeb, S. Sourirajan: Sea Water Demineralization by Means of an Osmotic Membrane, in Saline Water Conversion II (American Chemical Society, 1963), Vol.38, pp ) M. Henmi, Y. Fusaoka, H. Tomioka, M. Kurihara: Water Sci. Technol. 62 (2010) ) S. H. Kim, S.-Y. Kwak, T. Suzuki: Environ. Sci. Technol. 39 (2005) (2015) Japanese Positron Science Society 47

50 Fujioka et al. PALS as a tool for further insights into the transport of water and solutes during reverse osmosis 12) T. Uemura, K. Kotera, M. Henmi, H. Tomioka: Desalin. Water Treat. 33 (2011) ) T. Fujioka, N. Oshima, R. Suzuki, S. J. Khan, A. Roux, Y. Poussade, J. E. Drewes, L. D. Nghiem: Sep. Purif. Technol. 116 (2013) ) K. L. Tu, T. Fujioka, S. J. Khan, Y. Poussade, A. Roux, J. E. Drewes, A. R. Chivas, L. D. Nghiem: Environ. Sci. Technol. 47 (2013) ) C. Bellona, J. E. Drewes, P. Xu, G. Amy: Water Res. 38 (2004) ) T. Fujioka, S. J. Khan, J. A. McDonald, L. D. Nghiem: Sep. Purif. Technol. 136 (2014) ) Y. C. Jean, P. E. Mallon, D. M. Schrader: Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003). 18) M. Eldrup, D. Lightbody, J. N. Sherwood: Chem. Phys. 63 (1981) 51; S. J. Tao, J. Chem. Phys. 56 (1972) ) K. Ito, Z. Chen, W. Zhou, N. Oshima, H. Yanagishita, R. Suzuki, Y. Kobayashi: Jpn. J. Poly. Sci. Technol. 69 (2012) ) Z. Chen, K. Ito, H. Yanagishita, N. Oshima, R. Suzuki, Y. Kobayashi: J. Phys. Chem. C 115 (2011) ) Y. Kiso, K. Muroshige, T. Oguchi, T. Yamada, M. Hhirose, T. Ohara, T. Shintani: J. Membr. Sci. 358 (2010) ) Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani: J. Membr. Sci. 369 (2011) ) Y. C. Jean, W.-S. Hung, C.-H. Lo, H. Chen, G. Liu, L. Chakka, M.-L. Cheng, D. Nanda, K.-L. Tung, S.-H. Huang, K.-R. Lee, J.- Y. Lai, Y.-M. Sun, C.-C. Hu, C.-C. Yu: Desalination 234 (2008) ) T. Sasaki, H. Tomioka, K. Nakatsuji: USA Patent No. US B2 (2010). ( ) Biographies Takahiro Fujioka: Dr. Takahiro Fujioka has had 13 years of research and industrial experience in water and wastewater treatment. He has worked for Mitsubishi Electric Co. and Fuji Electric Systems Co. for over 5 years. He received a Doctorate of Philosophy from the University of Wollongong (Australia) in July Takahiro is currently employed by the University of Wollongong as a Research Fellow to develop a range of novel membrane applications for wastewater treatment and water reuse. He is a board member and secretary of the Membrane Society of Australasia. Long D. Nghiem: Dr. Long Nghiem is a Professor at the University of Wollongong, where he leads the Strategic Water Infrastructure Laboratory. In 2010, he received the prestigious Vice-Chancellor Award for Research Excellence for Emerging Researchers. His specialised research expertise covers a range of membrane processes including pressure driven membrane filtration, forward osmosis, membrane distillation, membrane electrolysis, and membrane bioreactor. These processes can be applied to industries such as water treatment, biotechnology, and food processing. His current work focuses on the development of a membrane platform for securing a reliable potable water supply and the recovery of energy and nutrients from wastewater. 48 Japanese Positron Science Society 4 (2015)

51 4 (2015) Japanese Positron Science Society Experimental Investigation of Antihydrogen using a Cusp Trap Abstract: In this review, we describe a planned experiment of the Atomic Spectroscopy And Collisions Using Slow Antiprotons (ASACUSA) collaboration at CERN to test CPT symmetry via atomic beam spectroscopy of the ground-state hyperfine splitting of antihydrogen using a cusp trap. The cusp trap which consists of a superconducting anti-helmholtz coil and a stack of ring electrodes, is expected to produce a spin-polarized antihydrogen beam. Recently, the ASACUSA collaboration succeeded in producing antihydrogen atoms in the cusp trap and extracting an antihydrogen beam. This paves the way towards precision in-flight spectroscopy of the antihydrogen atom. Keywords: ASACUSA, antihydrogen, CPT symmetry, cusp trap, atomic beam, non-neutral plasma 1. 1, 2) CPT Lagrangian CPT C: P: T: Lagrangian CPT (CPT ) 3 6) CPT Yugo Nagata (Atomic physics laboratory, RIKEN), Naofumi Kuroda (Institute of Physics, Graduate School of Arts and Sciences, The University of Tokyo), TEL: , FAX: , nagata@radphys4.c.u-tokyo.ac.jp 7) CPT 8, 9) Indiana Kostelecký (Standard Model Extension: SME) CPT 10) CPT K (K 0 ) (K 0 ) ( ) 11) m CPT (Δ) Δ mn+1 Λ n (1) 12) n n > 0 Λ CPT 13) Λ m pl = c/g = h/(2π), h c G m m H GeV n = 1 Δ GeV 10 khz K 0 K Hz

52 1/10 (Weak equivalence principle: WEP) 14) 1995 CERN Low energy antiproton ring (LEAR) 15) Z e e + p p + γ + γ + Z p + e + + e + Z H + e + Z 1.9 GeV c 1 Xe 2pb Z 2 = cm 2 CERN PS (FNAL) E ) 2002 CERN ATHENA, ATRAP 17, 18) LEAR (Antiproton decelerator: AD) AD 22 Na Penning-Malmberg ev 10 ALPHA ATRAP 1S 2S Ioffe-Pritchard 19, 20) 1K 21, 22) Atomic spectroscopy and collisions using slow antiprotons (ASACUSA) CPT AEgIS GBAR 1K μk 23, 24) 2. ASACUSA ASACUSA (1.4 GHz) B = 0 (F = 0 F = 1) 2 Rabi 25) ASACUSA (Multiple ring electrodes: MRE) 2 B = 0 1 1S 50 Japanese Positron Science Society 4 (2015)

53 LFS HFS MRE 2 ASACUSA Ioffe-Pritchard MRE 26) Ioffe-Pritchard ASACUSA 27) (µ B) µ µ μ B µ B Low field seeking (LFS) High field seeking (HFS) 1 LFS 26) ASACUSA mt 1 π 1 σ 1 LFS HFS HFS B / r (T/m) (a) z (m) B / r (T/m) r (m) (b) 0.1 z (m) (a) B / r (b)(a) 29) r (m) π 1 σ 1 28) ASACUSA Hz 2.2 B 4 (2015) Japanese Positron Science Society 51

54 4 (a) (b) LFS (c) HFS 29) B r 2 + 4z 2. (2) z r B = 0 B μ B r r r2 + 4z 2 (3) z = 0 B / r z > r B / r r B B / r 3(a) 3(b) (a) z = 0 B / r r B 4 (a) (b) (c) LFS HFS 10 K 1.5 m (φ100 mm) LFS HFS ASACUSA l K μ B 29) K [K] ± 1.1B [T] l [m] = ±0.085 B [T] (4) 5 (a) (b) LFS 29) LFS HFS 0.05 m K Boltzmann 5 LFS (a) B z (b) f LFS (4) 4 (B = 0) 5 K 10 K 29) (4) 52 Japanese Positron Science Society 4 (2015)

55 3. p + e + H + hν (5) p + e + + e + H + e + (6) p + (e + e ) H + e (7) (5) ρ T ρt 1/2 (6) ρ 2 T 9/2 30) CERN (7) 31) 6 ASACUSA AD Monoenergetic Ultra Slow Antiproton Source for Highprecision Investigations (MUSASHI) 22 Na () 2.7 m ASACUSA 39) 4 (2015) Japanese Positron Science Society 53

56 3.1 8 (MUSASHI) 7 CERN PS Complex 7 CERN proton synchrotron (PS) complex (Linac 2) (PSB) (PS) 25 GeV AD p + p p + p + p + p (8) GeV ev AD 2.8 GeV Kicker 5.3 MeV ns ASACUSA (Radio frequency quadrupole: RFQ) RFQ (Radio frequency quadrupole decelerator: RFQD) 100 kev 8 MUSASHI Penning-Malmberg 2.5 T (MRE) 32) ev MRE 50 V 9(a) 2.5 T 10 8 cm 3 9 MUSASHI (a) (b) (c) (MRE) 54 Japanese Positron Science Society 4 (2015)

57 RFQD MRE 8 kev MRE 13 kv 9(b) 13 kv 9(b) 180 μ gcm 2 PET RFQD 4K Torr ASACUSA RFQD MUSASHI 33) 1eV 2.5 T r m d2 r dt = q2 ρr + qv 2 θ B + mv2 θ 2ɛ 0 r. (9) m, q, v θ ρ ω ± r = ω c 2 1 ± 1 2ω2 p ω 2 c (10) ω c = qb/m, ω p = q 2 ρ/(ɛ 0 m) ɛ 0 34) MUSASHI 35) 150 ev Ne 36) Surko 37) 22 Na (MRE) Na β kev 220 kev ev Ne 0.3 T N 2 /CF 4 55 ev 10 4 (2015) Japanese Positron Science Society 55

58 11 12 (a) MRE (b) (c) MRE 38) φ 1 φ 2 (nested trap) φ φ 4 φ 3 nested trap nested trap 12(c) (FI) FI (FIT) φ 5 FIT FIT MUSASHI 38) 11 MRE 6K 12 (a) MRE (b) (c) MRE 12(c) 13 39) RF 56 Japanese Positron Science Society 4 (2015)

59 13 nested trap 25 nested trap 38) nested trap RF ) BGO (Bi 4 Ge 3 O 12 ) BGO 100 mm 5mm 5inch BGO BGO 49 % BGO 300 MeV c 1 BGO BGO BGO BGO BGO BGO ) 4 (2015) Japanese Positron Science Society 57

60 BGO 15 39) GEANT4 40) 40 MeV 1 (scheme 1, scheme 2) N t BGO N >40 40 MeV scheme 1 94 V cm 1 n 43 BGO scheme 2 (452 V cm 1 ) n 29 4 scheme 1 scheme , 42) ) n ) scheme 1 scheme 2 [s] N t N > Profile likelihood ratio (σ) Z-value (σ) H 25 ± 3 16 ± 2 5. ASACUSA CPT MUSASHI ASACUSA 43 45) ASACUSA 1) J. R. Sapirstein, D. R. Yennie: Quantum Electrodynamics, edited by T. Kinoshita (World Scientific, Singapore, 1990) pp ) C. G. Parthey et al.:phys.rev.lett.107 (2011) ) G. Lüders: Ann. Phys. 2 (1957) 1. 4) W. Pauli: Niels Bohr and the Development of Physics (McGraw- Hill, New York, 1955) p.30. 5) R. Jost: Helv. Phys. Acta 39 (1957) ) J. Schwinger: Proc. Natl. Acad. Sci. 44 (1958) ) A. Kostelecký, R. Potting: Nucl. Phys. B 359 (1991) ) A. D. Dolgov, V. A. Novikov: JETP Lett. 95 (2012) ) M. Chaichian, K. Fujikawa, A. Tureanu: Phys. Lett. B 718 (2013) ) R. Bluhm, A. V. Kostelecký, N. Russel: Phys. Rev. Lett. 82 (1999) ) J. Beringer et al. (Particle Data Group): Phys. Rev. D 86 (2012) and 2013 partial update for the 2014 edition. 12) M. Kobayashi, A. I. Sanda: Phys. Rev. Lett. 69 (1992) ) M. C. Fujiwara et al.: AIP Conf. Proc (2008) ) D. B. Cassidy, S. D. Hogen: Int. J. Mod. Phys. Conf. Ser (2014) 15) G. Baur et al.: Phys. Lett. B 368 (1996) ) G. Blanford et al.: Phys. Rev. Lett. 80 (1998) ) M. Amoretti et al.: Nature, 419 (2002) ) G. Gabrielse et al.: Phys. Rev. Lett. 89 (2002) ) W. Bertsche et al.: Nucl. Instrum. Methods A 566 (2006) ) G. Gabrielse et al.: Phys. Lett. 98 (2007) ) G. B. Andresen et al.: Nature 468 (2010) ) G. Gabrielse et al.: Phys. Rev. Lett. 108 (2012) ) M. Doser et al. (AEGIS Collaboration): Class. Quantum Grav. 29 (2012) Japanese Positron Science Society 4 (2015)

61 24) P. Perez, Y. Sacquin: Class. Quantum Gravity 29 (2012) ) I. I. Rabi, J. M. Kellogg, J. R. Zacharias: Phys. Rev. 46 (1934) ) A. Mohri, Y. Yamazaki: Europhys. Lett. 63 (2003) ) ASACUSA proposal addendum, CERN-SPSC SPSC P-307 Add.1., ) B. Juhász, E. Widmann: Hyperfine Interact. 193 (2009) ) Y. Nagata, Y. Yamazaki: New J. Phys. 16 (2014) ) F. Robicheaux: Phys. Rev. A 73 (2006) ) C. H. Storry et al.: Phys. Rev. Lett. 93 (2004) ) N. Kuroda et al.: Phys. Rev. Spec. Top.-Accel. Beams 15 (2012) ) N. Kuroda et al.: Phys. Rev. Lett. 94 (2005) ) X.-P. Huang, F. Anderegg, E. Hollmann, C. Driscoll, T. O Neil: Phys. Rev. Lett. 78 (1997) ) N. Kuroda et al.: Phys. Rev. Lett. 100 (2008) ) R. Khatri et al.: Appl. Phys. Lett. 57 (1990) ) T. J. Murphy, C. M. Surko: Phys. Rev. A 46 (1992) ) Y. Enomoto et al.: Phys. Rev. Lett. 105 (2010) ) N. Kuroda et al.: Nat. Commun. 5 (2014) ) S. Agostinelli et al.: Nucl. Instrum. Methods A 506 (2003) ) G. Cowan et al.: Eur. Phys. J. C 71 (2011) ) R. Cousins et al.: Nucl. Instrum. Methods A 595 (2008) ) A. Müller, A. Wolf: Hyperfine Interact. 109 (1997) ) M. Amoretti et al.: Phys. Rev. Lett. 97 (2006) ) P. K. Mandel, A. Speck: Phys. Rev. A 81 (2010) ( ) : : 4 (2015) Japanese Positron Science Society 59

62 60 Japanese Positron Science Society 4 (2015)

63 Visiting research at Positron Probe Group in AIST Peng Kuang Institute of High Energy Physics, Chinese Academy of Sciences Preamble. In 2014 I was most happy to get the opportunity of being a visiting researcher to Positron Probe Group (PPG), Research Institute of Instrumentation Frontier (RIIF) at AIST from 1 October to 21 October. The opportunity was supported by the Japan Science and Technology Agency (JST) program Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science). During my stay at AIST, Dr. Nagayasu OSHIMA, Senior Research Scientist of PPG/RIIF/AIST, was my host researcher. In the 21 days, I had the opportunity to visit several research institutes and universities in Japan. Among these were Prof. Uedono s Lab at the University of Tsukuba, the Spin-Polarized Positron Beam Research Group at the Japan Atomic Energy Agency (JAEA), ASRC as well as laboratories at AIST and KEK in Tsukuba. of semiconductor materials, insulating film (low-k high-k), and thin metal films. Afterwards, he guided us around visit their beautiful campus with his three students and we had a group picture before the graceful lake located in the center of campus. : Group picture at Tsukuba University. Back (L-R) Peng Kuang, N. Oshima (AIST), S. Sellaiyan (Tsukuba Uni.), T. Kakizaki (Tsukuba Uni.), T. Murayama (Tsukuba Uni.). Front (L-R) Jiang LiXian (AIST), T. Semba (Tsukuba Uni.), Brian O Rourke (AIST). : Tsukuba Central 2 4A AIST. At these institutes, the directors of the labs introduced the equipment to me and introduced their main research fields and recent research results. Thanks to patient and clear explanations from all the respective researchers, I had the chance to learn about various positron techniques and to see at first hand the current status of positron research in Japan. University of Tsukuba. On October 3, 2014, Dr. Oshima organized a visit to the Positron Annihilation Laboratory at Tsukuba University, along with fellow AIST researchers by Dr. Lixian Jiang and Dr. Brian O Rourke. In Tsukuba University, assistant Professor Selvakumar Sellaiyan introduced the laboratory to us. We had saw a Slow Positron Beam line and three Positron Annihilation Lifetime Spectroscopy equipment in Uedono Lab. During the lab visit, Prof. Sellaiyan explained how they use PALS as a method for defect characterization : Conference in JAEA. JAEA. On October 6, I had a precious opportunity to visit JAEA during an academic meeting between the AIST and JAEA positron groups. I introduced myself to all members at the meeting, and three Chinese postdoctoral researchers based in the JAEA positron group showed us their recent research results. The three post-docs at JAEA all graduated from Wuhan University and have worked in Dr. Kawasuso s group for more 4 (2015) Japanese Positron Science Society 61

64 than one year. We talked in depth about the current situation of working and living in Japan and I found that they were satisfied with their research and life in Japan. After the meeting, Dr. Kawasuso showed us around his laboratory in where they have a wide variety of equipment, including spin-polarized positron beam based in both Ge-68 and Na-22 sources, a lowtemperature STM and a slow Positron Beam. They are developing advanced positron beams and promoting materials research using those positron beams. From 2010 to 2014, they developed a highly spin-polarized positron beam and are now exploring its applications to magnetic substances and spinrelated phenomena. They are also pursuing positron diffraction studies of metal-insulated transitions and magnetic effects associated with surface low-dimensional materials. Furthermore, they are investigating the SCC degradation mechanism of nuclear stainless steels. : Dr. Oshima s lecture. AIST. During my stay at AIST, Dr. Oshima gave several lectures about the techniques of bunching and focusing slow positron beams, and patiently answered my questions every day. He also guided us around his lab, where he introduced the PPMA (positron probe microanalyzer) and high-frequency microwave cavity to us. The spatial resolution of PALS using the PPMA is two and half orders of magnitude smaller than that using conventional methods so that by scanning the sample the PPMA can obtain two or three dimensional positron annihilation spectroscopy images. He also invited other researchers in his lab to show me their research results such as development of a dedicated superconducting accelerator for positron production introduced by Dr. B. O Rourke, the development of portable X-ray sources using carbon nanostructures introduced by Dr. H. Kato, a C-band RF gun for compact radiation sources introduced by Dr. Y. Taira, a positron reemission microscopy apparatus introduced by Dr. H. Ogawa, and a slow positron beam system for in-situ lifetime measurements during ion beam irradiation introduced by Dr. A. Kinomura. Those researches described above are innovative and creative, for example, portable X-ray sources can be used to image object internal structure everywhere as more than 300 high-definition X-ray transmission images can be taken using two AA batteries as a power source. : The commercial PALS system introduced by Dr. Masato Yamawaki (AIST). On October 10, Dr. Kenji Ito warmly invited Dr. Lixian Jiang, Kuzuya-san (a research student from the Kyoto University reactor who was also staying at AIST during my stay) and I to visit his laboratory located the central AIST campus in Tsukuba. During the visit, Dr. Masato Yamawaki showed us around the lab and introduced the experimental facilities in detail including a slow positron beam system, a commercial PALS device and several RI based measurement systems. Additionally, we were shown an on-site positron lifetime inspection device, a very small and exquisite portable positron detector assembly using a sealed Kapton source, which can measure samples directly in situ. : Annual Positron Conference at AIST. On October 17, I was invited to attend the annual positron conference held by the AIST Positron Probe Group. During the conference, Dr. Oshima gave a presentation about the PPMA, and researcher Dr. H. Hagihara talked about the application of PALS. It is a good chance for me to know the de- 62 Japanese Positron Science Society 4 (2015)

65 velopment of the newest research fields in Japan, like positron technology, carbon dioxide separation membrane, etc. After the meeting we had a small celebration party, and enjoyed delicious Japanese food. are a great variety of advanced positron techniques and experimental installations in Japanese research groups. In addition, the daily management and safety facilities of all laboratories are of a very high level. Certainly, I learned much about positron equipment technology thanks to the experience of visiting to the different positron laboratories in Japan. Besides the research activities I had the chance to visit other places in Japan such as Ginza and Sensoji Temple. Additionally, a highlight of my stay was a tour to Mt. Tsukuba (together with Dr. Ito and Kuzuya-san) and the park near to AIST. In our free Dr. Oshima and Dr. Ito kindly invited Kuzuya-san and I for dinner. : Group picture in KEK. (L-R) N. Oshima (AIST), K. Wada (KEK), Y. Kuzuya (KUR), Peng Kuang, I. Mochizuki (KEK). KEK. On October 20, Dr. Oshima took Kuzuya-san and I to visit the high energy accelerator research institute, KEK. Dr. Wada, a researcher at the Slow Positron Facility in KEK, gave us a great overview of ongoing studies in KEK including particle and nuclear studies, materials structure science, accelerator laboratory and applied research laboratory. Then, we had a tour of the Belle II factory which is searching for violations of the symmetry between particles and anti-particles and new physics laws conducted using large numbers of particles, such as B mesons, produced by the KEKB accelerator. We also visited the photon factory which has played a large role in the development of the synchrotron radiation science for more than 30 years since After that, we visited the Slow Positron Facility. In the lab, we were shown the slow positron beam line and associated experimental stations which presently consists of Ps-TOF (positronium time-of-flight) measurement station, a reflection high-energy positron diffraction station, and positronium negative ion station. The positronium negative ion produces pulses of Ps- ions. The Ps-TOF measurement, where the width and the frequency of the incident positron pulse are 1 ns 10 ns (variable) and 50 Hz, is used to measure the energy of positronium emitted from a solid surface. The reflection high-energy positron diffraction is for the analysis of the atomic configuration of a crystal surface by using reflection high-energy positron diffraction (RHEPD). Dr. Wada led me through the different experimental halls and explained working principle of those equipment in detail. Summary. During my stay, I had the impression that there : Group picture at the top of the Mt. Tsukuba. (L-R) Y. Kuzuya (KUR), Dr. Ito (AIST), Peng Kuang. As everyone knows, Japanese people are extremely friendly and helpful. In general, I could feel the enthusiasm of every one I met here as a smile was always appearing on their faces. I deeply appreciate the help I received from everyone I met during my stay. Acknowledgements. I would like to extend my sincere gratitude to my teachers, Dr. Wang and Dr. Cao, who recommended and introduced me to Dr. Oshima at AIST. I would like to express my heartfelt gratitude to JST and AIST for giving such a precious opportunity and much support to me with the help from Dr. Oshima. I would also like to thank all members of the Positron Probe Group in AIST who gave me their help and time in listening to me and helping me work out my problems during my studying in AIST. I am also deeply indebted to all the other tutors and researchers I meet at Tsukuba University, JAEA and KEK for their direct and indirect help to me. Special thanks should go to Dr. Oshima, Kuzuya-san and Dr. Jiang who have put considerable time and effort into minimizing the difficulties I encountered in those days when I was studying and living in Japan. 4 (2015) Japanese Positron Science Society 63

66 5 (RHEPD) j.html : ( ) 64 Japanese Positron Science Society 4 (2015)

67 52 30 : : : th International Conference on Positron Annihilation (ICPA17) : : : () : Dr.Z.Q.Chen chenzq@whu.edu.cn : : WEB HP 14th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS14) SLOPOS Excursion Banquet Social program WEB WEB : : : : TEL/FAX: : : ( ) ( ) : 4 (2015) Japanese Positron Science Society 65

68 Positron Studies of Defects 2017 (PSD17) : : : E mail reinhard.krause-rehberg@physik.unihalle.de 12th International Workshop on Positron and Positronium Chemistry (PPC12) : 2017 : 3 MLF MLF PF : : : J-PARC CROSS PF-UA MLF : : WEB : E mail: imss-festa@pfiqst.kek.jp WEB : 66 Japanese Positron Science Society 4 (2015)

69 KEK (10 3 ) G615 Si(110) 2 16 (RHEPD) G630 X Ag G /3 2013G694 Ge(001) S /3 2014S G / KEK (4 7 ) (10 3 ) 11 KEK ( (ken.wada@kek.jp).. SPF-A3 SPF-B1 ( Ps ) SPF-B2 (Ps TOF) ( ) ps 300 ps 1 kev 30 kev 0.1 mm 10 mm 100 cps 2000 cps (IBEC) / B) 1 C) sayuri.yamauchi@aist.go.jp A) ( ) 4 (2015) Japanese Positron Science Society 67

70 KUR KUR 3 KUR : KUR H24 H27 (,, ) 68 Japanese Positron Science Society 4 (2015)

71 BBQ Brian O Rourke 8 Brian O Rourke 8 BBQ Dirac Anderson ( 2 ) : 4 (2015) Japanese Positron Science Society 69

72 Ps Ps Ps e Ps 2 Ps AMOC Ps Ps Ps Ps Ps : Ps Ps 7 AMOC Ps Ps AMOC S-paraemter W-parameter p-ps Ps Ps AMOC AMOC Ps 70 Japanese Positron Science Society 4 (2015)

73 9 20 C 1 ( 2 ) : 2 5 : ( 1 ) 4 (2015) Japanese Positron Science Society 71

74 The 11th International Workshop on Positron and Positronium Chemistry (PPC11) The 11th International Workshop on Positron and Positronium Chemistry (PPC-11) 2012 : 9 Cidade de Goa Maurer Maurer Rätzke Alam 11 Hugenschmidt Alam Van Horn Japanese Positron Science Society 4 (2015)

75 PPC12 ( ) : The 11th International Workshop on Positron and Positronium Chemistry PPC-11 PPC SLOPOS ICPA Stepanov Mohamed He 3 10 Maurer Maurer 2 Cultural program 11 4 (2015) Japanese Positron Science Society 73

76 DJ DJ PPC Polish seminar 1 ( ) The International Workshop on Positron Studies of Defects 2014 (PSD-14) The International Workshop on Positron Studies of Defects 2014 (PSD 14) PSD 14 PSD : 9 17 THE SODOH HIGASHIYAMA KYOTO 74 Japanese Positron Science Society 4 (2015)

77 Journal of Physics: Conference Series (JPCS) 11 1 Martin-Luther University Halle R. Krause- Rehberg 2017 ( ) PSD-14 3 : ( 2 ) 4 (2015) Japanese Positron Science Society 75

陽電子科学 第4号 (2015) 3-8

陽電子科学 第4号 (2015) 3-8 4 (2015) 3 8 Japanese Positron Science Society Positron annihilation age momentum correlation (AMOC) measurement Abstract: Positron annihilation Age-MOmentum Correlation (AMOC) measurement is the coincidence

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been studied using a volume constant technique. The process

More information

渡辺(2309)_渡辺(2309)

渡辺(2309)_渡辺(2309) [ 29 p. 241-247 (2011)] ** *** ** ** Development of a nickel-based filler metal containing a small amount of silicon by WATANABE Takehiko, WAKATSUKI Ken, YANAGISAWA Atsusi and SASAKI Tomohiro Authors tried

More information

teionkogaku43_527

teionkogaku43_527 特集 : 振動流によるエネルギー変換 熱輸送現象と応用技術 * Oscillatory Flow in a Thermoacoustic Sound-wave Generator - Flow around the Resonance Tube Outlet - Masayasu HATAZAWA * Synopsis: This research describes the oscillatory

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2 JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* 1 1 1 1 210 Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb 2010 10 4 2010 12 10 1 2 * 237-0061 2-15 046-867-9794 ogurik@jamstec.go.jp 27 210

More information

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru IIJIMA2 and Zensaku KOZUKA1 1. Faculty of Engineering,

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523

More information

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6 NMR ESR NMR 5 Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6 Fig. (a) Na O-B -Si Na O-B Si Fig. (b) Na O-CaO-SiO Na O-CaO-B -Si. Na O-. CaO-. Si -. Al O

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe *1 *2 *1 JIS A 14812008X TEM 950 TEM 1 2 3 4 JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbestos with Superheated Steam Part 3 An evaluation with

More information

Author Workshop 20111124 Henry Cavendish 1731-1810 Biot-Savart 26 (1) (2) (3) (4) (5) (6) Priority Proceeding Impact factor Full paper impact factor Peter Drucker 1890-1971 1903-1989 Title) Abstract

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

T05_Nd-Fe-B磁石.indd

T05_Nd-Fe-B磁石.indd Influence of Intergranular Grain Boundary Phases on Coercivity in Nd-Fe-B-based Magnets Takeshi Nishiuchi Teruo Kohashi Isao Kitagawa Akira Sugawara Hiroyuki Yamamoto To determine how to increase the coercivity

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

SPring-8_seminar_

SPring-8_seminar_ X 21 SPring-8 XAFS 2016 (= ) X PC cluster Synchrotron TEM-EELS XAFS / EELS HΨ k = E k Ψ k XANES/ELNES DFT ( + ) () WIEN2k, Elk, OLCAO () CASTEP, QUANTUM ESPRESSO FEFF, GNXAS, etc. Bethe-Salpeter (BSE)

More information

Fig. 1 Experimental apparatus.

Fig. 1 Experimental apparatus. Effects of Concentration of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer In this study, the influence of a drag-reducing surfactant on the turbulent boundary layer was extensively investigated

More information

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a Degradation Mechanism of Ethylene-propylene-diene Terpolymer by zone in Aqueous Solution Satoshi MIWA 1, 2, Takako KIKUCHI 1, 2, Yoshito TAKE 1 and Keiji TANAKA 2 ( 1 Chemicals Evaluation and Research

More information

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

1) K. J. Laidler, Reaction Kinetics, Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, Catalysis and Inhibition of Chemical Reactio 1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactions", Butterworths, London (1963) Chap. 7, p. 185. 2)

More information

<95DB8C9288E397C389C88A E696E6462>

<95DB8C9288E397C389C88A E696E6462> 2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Institute of Colloid and Interface Science, Science University

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi ODA Department of Human and Mechanical Systems Engineering,

More information

製紙用填料及び顔料の熱分解挙動.PDF

製紙用填料及び顔料の熱分解挙動.PDF Thermogravimetric analysis of pigments and fillers for papermaking Toshiharu Enomae Graduate School of Agricultural and Life Sciences Contact e-mail address: enomae@psl.fp.a.u-tokyo.ac.jp A2 350 450 A2

More information

Surface Characterization and Performance of Surface-Treated Materials (II) Container Material Kinji Saijo* *Toyo Kohan Co., LTD Technical Research Laboratory This article reviews the application of surface

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be Gogny hard core spin-isospin property @ RCNP (Mar. 22 24, 2004) Collaborator: M. Sato (Chiba U, ) ( ) global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, 014316

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, School of Medicine, Tokushima University, Tokushima Fetal

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information

yasi10.dvi

yasi10.dvi 2002 50 2 259 278 c 2002 1 2 2002 2 14 2002 6 17 73 PML 1. 1997 1998 Swiss Re 2001 Canabarro et al. 1998 2001 1 : 651 0073 1 5 1 IHD 3 2 110 0015 3 3 3 260 50 2 2002, 2. 1 1 2 10 1 1. 261 1. 3. 3.1 2 1

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple 1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

特-7.indd

特-7.indd Mechanical Properties and Weldability of Turbine Impeller Materials for High Temperature Exhaust Gas Turbocharger 1 000 1 050 246 IN100 The increase in environmental awareness in recent years has led to

More information

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = 8 8.1 8.1.1 1 Chadwick [ 1 ] 1919,, electron number Q 0.0 0. 0.4 0.6 0.8 1.0 kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = E γ φ φ E e X 153 154 8, 3 H 3 He, ( ) 3 H( 1 ) 3 He(

More information

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alternative approach using the Monte Carlo simulation to evaluate

More information

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test

Fig. 4. Configuration of fatigue test specimen. Table I. Mechanical property of test materials. Table II. Full scale fatigue test conditions and test (J. Soc. Mat. Sci., Japan), Vol. 52, No. 11, pp. 1351-1356, Nov. 2003 Fatigue Life Prediction of Coiled Tubing by Takanori KATO*, Miyuki YAMAMOTO*, Isao SAWAGUCHI** and Tetsuo YONEZAWA*** Coiled tubings,

More information

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of Standard PA-Sugar Chain Catalogue Masuda Chemical Industries Co., LTD. http://www.mc-ind.co.jp Introduction ur company has just started service to cut out sugar chains from protein and supply them to users

More information

放射線化学, 97, 29 (2014)

放射線化学, 97, 29 (2014) 20 5 Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation

More information

Phonetic Perception and Phonemic Percepition

Phonetic Perception and Phonemic Percepition No.7, 587-598 (2006) The Historical and Social Significance of Foreign Brides in the Uonuma Region of Niigata Prefecture (1) TAKEDA Satoko Nihon University, Graduate School of Social and Cultural Studies

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp April 30, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 260 Today s Lecture: Itinerant Magnetism 60 / 260 Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L +

More information

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni JAMSTEC Rep. Res. Dev., Volume 8, November 2008, 29 36 X CTm/pixel X CT X CT. -. mol/l KI KI CT CT X CT CT ; - - +- -- hirono@ess.sci.osaka-u.ac.jp Accuracy check of grading of XCT Report Accuracy check

More information

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

(Jackson model) Ziman) (fluidity) (viscosity) (Free v 1) 16 6 10 1) e-mail: nishitani@ksc.kwansei.ac.jp 0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)(

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

Huawei G6-L22 QSG-V100R001_02

Huawei  G6-L22 QSG-V100R001_02 G6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 17 4 5 18 UI 100% 8:08 19 100% 8:08 20 100% 8:08 21 100% 8:08 22 100% 8:08 ********** 23 100% 8:08 Happy birthday! 24 S S 25 100% 8:08 26 http://consumer.huawei.com/jp/

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Member (Okinawa Electric Power Co.,Inc.) Toshimitsu Ohshiro,

More information

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization) in the annealed state of iron-cobalt alloys has been

More information

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf 1,a) 2,b) 4,c) 3,d) 4,e) Web A Review Supporting System for Whiteboard Logging Movies Based on Notes Timeline Taniguchi Yoshihide 1,a) Horiguchi Satoshi 2,b) Inoue Akifumi 4,c) Igaki Hiroshi 3,d) Hoshi

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

2) Goetz, A., Tsuneishi, N.: Application of molecular filter membranes to the bacteriological analysis of water, J. Am. Water Works Assn., 43 (12): 943-969,1951. 3) Clark, H.F. et al.: The membrane filter

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

Fig. 1 Structure of a Sebaceous Follicle (Ref.1). Importance and Countermeasures for Sebum Control in Application of Makeup Cosmetics Koichi NOMURA POLA Chemical Industries, Inc., R&D Planning Department 27-1, Takashimadai, Kanagawa-ku, Yokohama 221-0833,

More information

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 4 Simultaneous reduction-sulfurization and direct sulfurization of iron

More information

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA ( 1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (Central Research Laboratory, Onoda Cement Co., Ltd.,

More information

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Chikara MINAMISAWA, Nozomu AOKI (Department of Mechanical

More information

プラズマ核融合学会誌11月【81‐11】/小特集5

プラズマ核融合学会誌11月【81‐11】/小特集5 Japan Atomic Energy Agency, Ibaraki 311-0193, Japan 1) Kyoto University, Uji 611-0011, Japan 2) National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan 3) Central Research

More information

chap1_MDpotentials.ppt

chap1_MDpotentials.ppt simplest Morse : simplest (1 Well-chosen functional form is more useful than elaborate fitting strategies!! Phys. Rev. 34, 57 (1929 ( 2 E ij = D e 1" exp("#(r ij " r e 2 r ij = r i " r j r ij =r e E ij

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

untitled

untitled /Si FET /Si FET Improvement of tunnel FET performance using narrow bandgap semiconductor silicide Improvement /Si hetero-structure of tunnel FET performance source electrode using narrow bandgap semiconductor

More information

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R 38 2002 7 2000 9 * Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National Research Institute for Earth Science and Disaster Prevention,

More information

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CHIBA Department of Mechanical Engineering, Tokyo University

More information

udc-2.dvi

udc-2.dvi 13 0.5 2 0.5 2 1 15 2001 16 2009 12 18 14 No.39, 2010 8 2009b 2009a Web Web Q&A 2006 2007a20082009 2007b200720082009 20072008 2009 2009 15 1 2 2 2.1 18 21 1 4 2 3 1(a) 1(b) 1(c) 1(d) 1) 18 16 17 21 10

More information

Adams, B.N.,1979. "Mate selection in the United States:A theoretical summarization," in W.R.Burr et.al., eds., Contemporary Theories about the Family, Vol.1 Reserch - Based Theories, The Free Press, 259-265.

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

untitled

untitled 213 74 AlGaN/GaN Influence of metal material on capacitance for Schottky-gated AlGaN/GaN 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1 1 AlGaN/GaN デバイス ① GaNの優れた物性値 ② AlGaN/GaN HEMT構造 ワイドバンドギャップ半導体 (3.4eV) 絶縁破壊電界が大きい

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm 73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571)

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

<31322D899C8CA982D982A95F985F95B65F2E696E6464>

<31322D899C8CA982D982A95F985F95B65F2E696E6464> SUMMARY Japan is one of the most earthquakeprone country in the world, and has repeatedly experienced serious major damages. No matter how serious the impact of earthquake disasters, each and every time,

More information

千葉県における温泉地の地域的展開

千葉県における温泉地の地域的展開 1) 1999 11 50 1948 23) 2 2519 9 3) 2006 4) 151 47 37 1.2 l 40 3.6 15 240 21 9.2 l 7. 210 1972 5) 1.9 l 5 1 0.2 l 6 1 1972 1.9 0.4 210 40-17- 292006 34 6 l/min.42 6) 2006 1 1 2006 42 60% 5060 4050 3040

More information

研究室ガイダンス(H28)福山研.pdf

研究室ガイダンス(H28)福山研.pdf 1 2 3 4 5 4 He M. Roger et al., JLTP 112, 45 (1998) A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969) Born in 2004 (hcp 4 He) E. Kim and M.H.W. Chan, Nature 427, 225 (2004); Science 305,

More information

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3 67 1 Landau Damping and RF Current Drive Kazuya UEHARA* 1 Abstract The current drive due to the rf travelling wave has been available to sustain the plasma current of tokamaks aiming the stational operation.

More information

Table 1. Chemical composition of Fe203 and SrCO3 used for experiment. Fig. 1. Process of preparion of the specimen.

Table 1. Chemical composition of Fe203 and SrCO3 used for experiment. Fig. 1. Process of preparion of the specimen. Influence of Addition of Some Oxides on the Magnetic Properties of the Strontium Ferrite Magnets Takeshi Anbo, Takahiro Motone, Takashi Furuya and Koichi Sasaki Synopsis Recently high coercivity ferrite

More information

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND (43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND DRYING PROCESSES* By Hiroshi Aotani, Katsumi Yamazaki

More information

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed a series of researches on continuous cooling transformation

More information

000..\..

000..\.. Bull. Nagoya Univ. Museum No. 20, 79 91, 2004 Quantitative chemical analysis of rocks with X-ray fluorescence analyzer XRF-1800 NAKAZAKI Mineko TSUBOI Motohiro KANAGAWA Kazuyo KATO Takenori SUZUKI Kazuhiro

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity atom interstitial impurity atom line defect dislocation planar defect surface grain boundary interface

More information