内容 1. 宇宙に存在する最も純粋で単純な物質 2. 絶対零度への挑戦 3. 原子を支配する法則 4. 物理学における最も劇的な現象 超伝導 超流動 ボース アインシュタイン凝縮特に超伝導を中心に 5.21 世紀の最先端科学技術としての超伝導 超伝導 : 発見されてちょうど 100 年

Size: px
Start display at page:

Download "内容 1. 宇宙に存在する最も純粋で単純な物質 2. 絶対零度への挑戦 3. 原子を支配する法則 4. 物理学における最も劇的な現象 超伝導 超流動 ボース アインシュタイン凝縮特に超伝導を中心に 5.21 世紀の最先端科学技術としての超伝導 超伝導 : 発見されてちょうど 100 年"

Transcription

1 極低温の世界超伝導 超流動 ボース アインシュタイン凝縮 松田祐司 京都大学大学院理学研究科 物理学 宇宙物理学専攻 物理学第一教室

2 内容 1. 宇宙に存在する最も純粋で単純な物質 2. 絶対零度への挑戦 3. 原子を支配する法則 4. 物理学における最も劇的な現象 超伝導 超流動 ボース アインシュタイン凝縮特に超伝導を中心に 5.21 世紀の最先端科学技術としての超伝導 超伝導 : 発見されてちょうど 100 年

3 我々の住む世界はどうやってできたのか 我々の住む世界はどうやってできたのか 宇宙望遠鏡 宇宙背景放射のゆらぎ 世界は大爆発から始まった 特異点 超高温から徐々に冷えていった

4 太陽の中心 (1 千万度 C ) 原子核が崩壊 原子が崩壊 分子が崩壊 日常生活の温度 溶鉱炉 (2 千度 C) 水が凍る (0 度 C 273K) 空気が液化 (-200 度 C 80K ) ヘリウムが液化 (-270 度 C 4K) 絶対零度 (-273 度 C 0K)

5 原子 (atom) 電子 原子核 固体 気体 液体

6 C( 炭素 ) 生命 Si( シリコン ) 半導体 Fe( 鉄 ) 磁石 Au( 金 ) 金属

7 絶対温度 ( 単位 [ K (0 ) 氷点 : 水の凝固 約 253K ( 約 -20 ) 家庭用冷蔵庫の冷凍庫 234K (-39 ) 194K (-79 ) 184K (-89 ) 158K (-115 ) 室温 水銀の凝固 ドライアイスの昇華 南極の最低気温 エタノールの凝固 約 120K (-150 ) 夜の月面 111K (-162 ) 液化天然ガス ( メタン ) 90 K (-183 ) 酸素の沸騰 87 K (-186 ) アルゴンの沸騰 77 K (-196 ) 窒素の沸騰 ] ) K ( ) ネオンの沸騰 20.3K ( ) 水素の沸騰 4.2 K ( ) ヘリウムの沸騰 約 3K ( 約 -270 ) 宇宙空間 広い宇宙でも 3K より低い温度は人工的なもので 人類はすでに マイクロケルビンの領域に到達しています

8 絶対零度 (Absolute zero) K

9 絶対零度 (Absolute zero) K これ以上低い温度は存在しない 運動エネルギーがゼロになるすべてのものは固まって凍り付く だから物質を冷却しても何も起こらない??

10 原子や電子のマクロな数の集団 (10 23 個 ) 電子 電子ガス 液体ヘリウム 宇宙に存在する系で最も 純粋 単純 等方的な粒子の集まり ヘリウム原子 電子雲 原子核 これらを極低温に冷却すると何が起こるか 超伝導 超流動 ボーズ アインシュタイン凝縮 物理学でもっとも劇的な現象 我々の想像を超えた不思議な状態の出現 全く個性のない粒子の集団が劇的な個性の集団に変化する

11

12 He( ヘリウム ) 不活性ガス C( 炭素 ) 生命 Al( アルミニウム ) 超伝導 Si( シリコン ) 半導体 Fe( 鉄 ) 磁石 Au( 金 ) 金属

13 アルミニウム ( 原子番号 13) 金属 ( アルミニウム ) の中の電子 原子 13 個の電子 結晶 3x10-10 m m 原子核 電子雲 中性子 陽子 m 1 オングストローム 電子 電子はマイナスの電荷を持つ

14 アルミニウムは電気を流す 3x10-10 m クイズ このとき一円玉の中を動いている電子の速さは 1. 人が歩くよりも遅い 2. 人が歩くよりも速いがジョット機 ( 音速 : マッハ 1) よりは遅い 3. ジョット機よりも速い ずっとずっと 光速の 1/100( 秒速 3000 km, マッハ 1000) 一秒で日本列島縦断!!

15 金属アルミニウム中の電子 ( 電子のガス状態 ) 金属 ( アルミニウム ) の中 : 伝導電子のガス状態 1x10-10 m 3x10-10 m 正イオン 伝導電子 1m の杭 日常スケールに置き換えてみる (x10 10 ) 3m 間隔 運動場 原子が正イオンとなって規則正しく並び その間を電子 ( 伝導電子 ) が動き回り電気を伝える ( 伝導電子のガス状態 ) 伝導電子とイオン 伝導電子と伝導電子には強い力が働く 子供達が動こうとしても杭にぶつかるか隣の子供にぶつかるかしてほとんど動けないだろう 金属の不思議 : 電子はほとんど自由に動き回っている!!? 場合によっては 1mm 動けることもある これは右図で 1 万キロメーター ( 日本列島の 5 倍!!) に対応

16 一円玉 ( アルミニウム ) を -272 C まで冷やす 一円玉 ( アルミニウム ) を -272 (1K) まで冷やす 電気抵抗 -272 ゼロ抵抗 温度 もし穴をあけてリングを作り 電気を流したら 電流は全く減衰すること無しに 宇宙の年齢より長く流れ続ける 永久電流!! この現象を利用して 普通の磁石より 100 倍強い超強力な磁石 地球一周させても電力損失ゼロの送電線

17 一円玉 ( アルミニウム ) を -272 (1K) まで冷やす もう一つの一円玉を弱く押しつける 直流を流すと電磁波が発生 この効果を使って 超高感度磁気測定 脳の中を流れる電流を検出する 超高速コンピューター その周波数は正確に f=w J /2p=eV/ph = GHz/V 超伝導 (Superconductivity) 10 桁 中国人の人口を最後の一人まで正確に数える!!! 現在のスーパーコンピューターで 10 万年かかる計算を百万分の 1 秒でやってのける しかも消費電力はゼロに近い

18 超伝導を理解するには原子の世界の ルールを知る必要がある 原子や電子はとても小さい

19 量子の世界 古典物理 プランク長 オングストローム ミクロン 京都 一光年 宇宙の半径 目で見える範囲 顕微鏡か望遠鏡で見える範囲

20 量子の世界 プランク長 オングストローム 大きな隔たり ミクロン 京都 古典物理 一光年 宇宙の半径 目で見える範囲 顕微鏡か望遠鏡で見える範囲

21 量子の世界 プランク長 オングストローム 大きな隔たり ミクロン 京都 結晶 古典物理 原子 分子 一光年 10-6 m 10-9 m 宇宙の半径 m 目で見える範囲 原子核 顕微鏡か望遠鏡で見える範囲 核子 m クォーク

22 量子の世界 プランク長 オングストローム 大きな隔たり ミクロン 京都 古典物理 一光年 宇宙の半径 目で見える範囲 顕微鏡か望遠鏡で見える範囲

23 量子の世界 電子は粒子であると同時に波である 粒子 波動

24 水の波 鉄原子 電子の波 鉄原子 140 nm

25 波は干渉しあう 増幅 打ち消し合う

26 電子の波は原子の周期と一致したものだけ強く散乱される 入射波 定在波 反射波 原子面 電子は周期的に並んだ原子とはほとんどぶつからない

27 我々の世界には 2 種類の粒子が存在する 量子の世界の不思議 原子や電子には 個性 がない 同じ状態にある同種粒子は 本質的 に区別できない 同じ粒子 ( 原子 電子 ) が2 個以上ある状態を考える 1 2 と 2 1 は同じ状態!!?? 波の性質から来る

28 我々の世界には 2 種類の粒子が存在する 量子の世界の不思議 量子の世界の不思議 原子や電子には 個性 がない 同じ状態にある同種粒子は 本質的 に区別できない 同じ粒子 ( 原子 電子 ) が2 個以上ある状態を考える 1 2 と 2 1 は同じ状態!!??

29 我々の世界には 2 種類の粒子が存在する 量子の世界の不思議 量子の世界の不思議 原子や電子には 個性 がない 同じ状態にある同種粒子は 本質的 に区別できない 同じ粒子 ( 原子 電子 ) が2 個以上ある状態を考える 1 2 と 2 1 は同じ状態!!?? j(1,2) = x j(2,1) j(1,2) = x 2 j(1,2) x 2 =1 したがって 2 つの粒子の名前を入れ替える もう一度入れ替える ( 元に戻す )

30 自然界に存在する粒子は x=+1 と x= 1 の 2 種類ある 2 種類の粒子は全く異なった振る舞いを示す x=1 ボース粒子 ( ボゾン ) x= 1 フェルミ粒子 ( フェルミオン ) 光子中間子 ヘリウム原子 電子ニュートリノ陽子中性子クォーク フ ボース アインシュタイン フェルミ ディラック

31 1 ボース粒子とフェルミ粒子 粒子の入れ替え a 2 a j(1,2) = f a (1) f b (2) +f a (2) f b (1) a=bのときj(1,2) = 0 2 ボース粒子 j(1,2) = j(2,1) ボース粒子 b 1 フェルミ粒子 j(1,2) = -j(2,1) j(1,2) = f a (1) f b (2)-f a (2) f b (1) a=bのときj(1,2) = 0 フェルミ粒子 b 何個の粒子でも同じ状態を取ることが出来る ( みんなで集まる ) フェルミエネルギー 2 個の粒子が同じ状態を取ることは出来ない ( 一人でいる )

32 なぜ金属 ( アルミニウム ) の中の電子は自由に動けるのか 原子 ( イオン ) 3x10-10 m 1. 波の性質により規則正しく並んだ原子 ( イオン ) とはほとんどぶつからない フェルミ粒子 2. 電子はフェルミ粒子であるため電子同士はまれにしかぶつからない これが超伝導が起こる舞台 2 個の粒子が同じ状態を取ることは出来ない

33 なぜ超伝導になるのか 電気抵抗 普通の金属の状態電子は自由に動き回る 温度

34 金属 超伝導では二つの電子がペアを組む 超伝導 電気抵抗 普通の金属の状態 超伝導状態 温度 34

35 金属 超伝導では二つの電子がペアを組む 超伝導 35

36 超伝導では二つの電子がペアを組む 金属 超伝導 一個の電子 フェルミ粒子 ペアを組んだ電子 ボース粒子 36

37 鴨川沿い フェルミ粒子 ボース粒子

38 ボーズ アインシュタイン凝縮 ボース アインシュタイン凝縮 高温 低温 最低エネルギー状態 粒子はでたらめな熱運動状態 マクロな数の粒子が同じ状態みんながそろって同じ運動をし始める

39 超伝導のメカニズム ( ボース アインシュタイン凝縮 ) 金属 超伝導 散乱 電子の波はバラバラ 電気抵抗が発生する 白熱灯 2 つの電子がペアを組む ( ボース粒子のように振る舞う ) 電子はペアを組んで揃った波となる ( コヒーレントな波 ) 電気抵抗ゼロ レーザー 金属理論 (B の 39

40 岩礁があると波は少しは乱されるが 全体で見るとほとんど影響を受けない

41 普通の流体 超流動 超伝導 はじめ同じ速度で流れていた粒子は 壁に衝突して向きを変えたり 粒子同士衝突したりして乱雑な運動に変わり やがて流れは止まってしまう 粒子が壁に衝突しても 粒子同士が衝突しても 流れは止まらない

42 超伝導 ( 電気抵抗ゼロ ) 超伝導で出来た送電線は電力損失が全く ゼロ

43 伝導 ( 電気抵抗ゼロ ) 超伝導 ( 電気抵抗ゼロ ) 永久電流 宇宙の年齢より長い!!

44 超伝導トンネル効果 ( ジョセフソン効果 ) 電磁波を発振 S I S I f=w J /2p=eV/ph = GHz/V 10 桁 2D ev 中国人の人口!!! 電気を流さない絶縁体 ( 抵抗無限大 ) が超伝導 ( 抵抗ゼロ ) になる 高速スイッチング

45 古典力学 トンネル効果 粒子は 100% 壁にはね返される くぐり抜ける確率 P=0 量子力学 壁をくぐり抜ける粒子もある P 1 >0 超伝導トンネル効果 粒子はペアを組んで壁をくぐり抜ける P 2 >>P 1 >0

46 魔法の鏡 電子 電子 金属 別の電子 電子 超伝導体 アンドレーエフ反射? 金属の鏡 超伝導の鏡

47 超高感度電流検出装置 ( 超伝導トンネル効果の応用 ) 超伝導量子干渉計 SQUID(Superconducting QUantum Interference Device)!

48 超伝導量子コンピューター Q ビット 高速フーリェ変換 10 万年 量子フーリェ変換 1 マイクロ秒!!

49 完全反磁性 ( マイスナー効果 ) 超伝導の磁場効果 B=0! T>T c! T<T c! 超伝導体の中では磁場は排除される

50 H c2! 超伝導の磁場効果 ある種の超伝導体は磁場を取り込むことが出来る 超伝導内部に小さい渦が発生! Normal! B! Abrikosov Lattice! Meissner! T! T c! 渦が超伝導体を覆い尽くすと超伝導が消える

51 超伝導の磁場効果 MRI!

52 超伝導の磁場効果 強力な磁場を発生 ビデオ

53 超伝導磁気浮上 ( 成功編 ) ビデオ 嵯峨野高校にて

54 21 世紀の先端科学技術としての超伝導 超伝導は最先端科学技術にも直結している 20 世紀科学文明の基礎 半導体 トランジスタ 大規模集積回路 ( 超 LSI) コンピューター 半導体中の電子の運動を予測する 電磁気学 量子力学 統計力学 バンド理論 21 世紀はボース アインシュタイン凝縮 ( 超伝導 ) を用いた新しい画期的なデバイスができるかもしれない

55 ヘリウム原子 超流動ヘリウム 超流動も基本的には超伝導と同じ現象 ヘリウムは絶対零度でも液体のまま 4.2 Kで液体になる 2.17 Kで粘性のない超流体 ヘリウムはボース粒子 電子雲 原子核 + + 中性子 陽子 m m

56 超伝導転移温度 銅酸化物高温超伝導体 オキシニクタイト 金属系 液体窒素温度 ( 絶対温度 77 度 ) 例 ) 銅酸 Tl Ba CuO 八面体 BEDT-TTF TMTSF 1911 超伝導発見 46 年 年 2010 現在 金属系 高温超高温超伝超伝導 伝導発見 導未解明 理論完成

57 超流動液体ヘリウムの実験

58 宇宙には地球よりもはるかに重い超伝導体が存在する 中性子星 宇宙の超伝導 温度 1 億度密度 角砂糖一個の大きさで数億トン極低温状態にあると見なせる

59

60 自然の階層構造

61 原子や電子のマクロな数の集団 (10 23 個 ) 電子ガス 液体ヘリウム 宇宙に存在する系で最も 純粋 単純 等方的 均一な粒子 これらを極低温に冷却すると何が起こるか 超伝導 超流動 ボーズ アインシュタイン凝縮 物理学におけるもっとも劇的な現象我々の想像を超えた不思議な状態 全く個性のない粒子の集団が劇的な個性の集団に変化する 一個一個の電子や原子の性質やお互いの相互作用が 完全に わかってもその集団の示す状態は予想できない 自然は階層構造を持っている! More is different!

62 電子の波 超伝導電子対 鉄原子 鉄原子 nm 140 nm 100 nmのスケールまでの物理はかなり理解できている DNA バクテリア DNA しかし同じスケールで起こる生命現象はほとんど理解されていない

63 今朝の朝刊 読売新聞第 2 面

超伝導研究の最前線

超伝導研究の最前線 低温科学 A 2015 年 4 月 22 日 理学研究科物理学第一教室石田憲二 ( 内線 :3752) kishida@scphys.kyoto-u.ac.jp 超伝導の紹介 Keyword 量子性 : 超 の世界の法則 金属中の電子の不思議 粒子 ( 電子 ) の量子性 電子間の引力相互作用 1. 温度とは 絶対零度とは 分子運動のイメージ 温度 :T ( K: ケルビン ) Lord Kelvin

More information

体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ

体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ 4. 発表内容 : 電子は電荷とスピンを持っており 電荷は電気伝導の起源 スピンは磁性の起源になって います 電荷同士の反発力が強い物質中では 結晶の格子点上に二つの電荷が同時に存在する ことができません その結果 結晶の格子点の数と電子の数が等しい場合は 電子が一つずつ各格子点上に止まったモット絶縁体と呼ばれる状態になります ( 図 1) モット絶縁体の多く は 隣接する結晶格子点に存在する電子のスピン同士が逆向きになろうとする相互作用の効果

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 光が作る周期構造 : 光格子 λ/2 光格子の中を運動する原子 左図のように レーザー光を鏡で反射させると 光の強度が周期的に変化した 定在波 ができます 原子にとっては これは周期的なポテンシャルと感じます これが 光格子 です 固体 : 結晶格子の中を運動する電子 隣の格子へ 格子の中を運動する粒子集団 Quantum Simulation ( ハバードモデル ) J ( トンネル ) 移動粒子間の

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 電子のスピンが量子液体状態にある特異な金属の発見 結晶中で独立に振る舞う電荷とスピン 1. 発表者 : 大池広志 ( 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 鈴木悠司 ( 東京大学大学院工学系研究科物理工学専攻修士課程 1 年生 : 研究当時 ) 谷口弘三 ( 埼玉大学大学院理工学研究科物質科学部門准教授 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 気体の性質 1 1990 年度本試験化学第 2 問 問 1 次の問い (a b) に答えよ a 一定質量の理想気体の温度を T 1 [K] または T 2 [K] に保ったまま, 圧力 P を変える このときの気体の体積 V[L] と圧力 P[atm] との関係を表すグラフとして, 最も適当なものを, 次の1~6のうちから一つ選べ ただし,T 1 >T 2 とする b 理想気体 1mol がある 圧力を

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 203 号室 講義予定 1. イントロダクションレーザー冷却からボース アインシュタイン凝縮へ 2. 光と原子の相互作用 3. レーザー冷却 トラップの原理

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

Microsoft PowerPoint 超伝導研究の新世紀(提出版).pptx

Microsoft PowerPoint 超伝導研究の新世紀(提出版).pptx 物理学会大阪支部公開シンポジウム 超 の物理 st, Oct. 0 アウトライン 超伝導研究の新世紀 石田憲二 京都大学大学院理学研究科物理学第一教室固体量子物性研究室 超伝導の紹介 Keyword 金属中の電子の不思議 粒子 ( 電子 ) の量子性 電子間の引力相互作用 最近発見された超伝導体 量子性 : 超 の世界の法則 0 超伝導の発見年は超伝導研究の新世紀!! 超伝 ( 電 ) 導の応用 巨大超伝導磁石

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

論文の内容の要旨

論文の内容の要旨 論文の内容の要旨 2 次元陽電子消滅 2 光子角相関の低温そのまま測定による 絶縁性結晶および Si 中の欠陥の研究 武内伴照 絶縁性結晶に陽電子を入射すると 多くの場合 電子との束縛状態であるポジトロニウム (Ps) を生成する Ps は 電子と正孔の束縛状態である励起子の正孔を陽電子で置き換えたものにあたり いわば励起子の 同位体 である Ps は 陽電子消滅 2 光子角相関 (Angular

More information

kagome

kagome 超伝導のふしぎ ~ マクロな量子現象 ~ 川上則雄 京都大学理学部物理学第一教室 GCOE- 市民講座 2009 年 10 月 31 日 普遍性と創発性から紡ぐ次世代物理学 - フロンティア開拓のための自立的人材養成 - 京都大学 理学研究科 物理学 宇宙物理学専攻 グローバル COE プログラム (2008 年度より 5 年間 ) 創発 : 基本法則からは容易に推測できない新しい現象の発現 超伝導現象

More information

学術俯瞰講義 137億年の「物質」の旅 ビッグバンからみどりの地球へ 第4回~第6回 物質の性質

学術俯瞰講義  137億年の「物質」の旅 ビッグバンからみどりの地球へ  第4回~第6回 物質の性質 学術俯瞰講義 2010 年 11 月 11 日学術俯瞰講義 多彩な物質の世界 宇宙から地球への遥かな旅 原子 電子 分子のふるまいが生む物質の多様性 第 6 回 量子の世界 : ナノサイエンス, 超伝導 超流動 東京大学物性研究所 家泰弘 今日のお話 量子力学について 量子干渉, トンネル効果 ナノサイエンス メゾスコピック物理 走査プローブ顕微鏡 巨視的量子現象 超流動 ボース凝縮 超伝導 まとめ

More information

研究機関とサイエンスコミュニケーション①(森田)

研究機関とサイエンスコミュニケーション①(森田) 2009 (KEK) 2001 1992 94 97 2008 (KEK) 1 (Powers of Ten) 10 ( 1 ) 10 0 m 10 3 m= 1,000 m = 1 km ( 2 ) 10 5 m= 10,000m = 100km 10 6 m= 1,000 km 10 7 m= 10,000 km 10 13 m 10 21 m ( ) 2 図2 KEK の敷地 図3 銀河系 図4

More information

Microsoft PowerPoint - hiei_MasterThesis

Microsoft PowerPoint - hiei_MasterThesis LHC 加速器での鉛鉛衝突における中性 πおよびω 中間子測定の最適化 日栄綾子 M081043 クォーク物理学研究室 目的 概要 目的 LHC 加速器における TeV 領域の鉛鉛衝突実験における中性 π および ω 中間子の測定の実現可能性の検証 および実際の測定へ向けた最適化 何故鉛鉛衝突を利用して 何を知りたいのか中性 πおよびω 中間子測定の魅力 ALICE 実験検出器群 概要予想される統計量およびバックグランドに対するシグナルの有意性を見積もった

More information

2 成果の内容本研究では 相関電子系において 非平衡性を利用した新たな超伝導増強の可能性を提示することを目指しました 本研究グループは 銅酸化物群に対する最も単純な理論模型での電子ダイナミクスについて 電子間相互作用の効果を精度よく取り込める数値計算手法を開発し それを用いた数値シミュレーションを実

2 成果の内容本研究では 相関電子系において 非平衡性を利用した新たな超伝導増強の可能性を提示することを目指しました 本研究グループは 銅酸化物群に対する最も単純な理論模型での電子ダイナミクスについて 電子間相互作用の効果を精度よく取り込める数値計算手法を開発し それを用いた数値シミュレーションを実 4. 発表内容 : 1 研究の背景 1911 年 物質の温度を非常に低い温度 ( 典型的には-260 以下 ) まで下げていくと電気抵抗が突然ゼロになる現象が発見されました この現象のことを超伝導といいます 超伝導状態は抵抗を持たないため電気を流しても熱が発生しません そのため 超伝導になる温度 ( 転移温度 ) を室温領域まで高くすることができれば 超伝導物質によるエネルギー損失のない電力輸送やデバイスに基づいた超省エネルギー社会を形成することが可能となります

More information

スライド 1

スライド 1 相対論的プラズマにおける PIC シミュレーションに伴う数値チェレンコフ不安定の特性ついて 宇宙物理学研究室 4 年池谷直樹 研究背景と目的 0 年 Ie Cube 国際共同実験において超高エネルギーニュートリノを検出 780Tev-5.6PeV 890TeV-8.5PeV 相互作用が殆んど起こらないため銀河磁場による軌道の湾曲が無く 正確な到来方向の情報 を得られる可能性がある ニュートリノから高エネルギー宇宙線の起源を追う

More information

Microsoft PowerPoint - 低温科学1.ppt

Microsoft PowerPoint - 低温科学1.ppt 金属中の電子と超伝導入門 理学部理学研究科物理学教室 池田隆介 講義日程 5/21, 5/28, 6/4 6/11 講義内容 使用するファイル I 量子力学の導入 No.2 ~ 8 II 原子と固体中の電子 7 ~ 14 III 超伝導と Bose-Einstein 凝縮 10 ~ 21 IV 磁場下の超伝導 15 ~ 24 I 量子力学の導入 古典論と量子論 ( 古典 ) 荷電粒子の加速度運動 -

More information

研究成果東京工業大学理学院の那須譲治助教と東京大学大学院工学系研究科の求幸年教授は 英国ケンブリッジ大学の Johannes Knolle 研究員 Dmitry Kovrizhin 研究員 ドイツマックスプランク研究所の Roderich Moessner 教授と共同で 絶対零度で量子スピン液体を示

研究成果東京工業大学理学院の那須譲治助教と東京大学大学院工学系研究科の求幸年教授は 英国ケンブリッジ大学の Johannes Knolle 研究員 Dmitry Kovrizhin 研究員 ドイツマックスプランク研究所の Roderich Moessner 教授と共同で 絶対零度で量子スピン液体を示 平成 28 年 7 月 1 日 報道機関各位 東京工業大学東京大学 幻の マヨラナ粒子 の創発を磁性絶縁体中で捉える - 電子スピンの分数化が室温まで生じていることを国際共同研究で実証 - 要点 量子スピン液体を示す理論模型を大規模数値計算によって解析 磁気ラマン散乱強度の温度変化を調べた結果 広い温度範囲において幻の マヨラナ粒子 の創発を発見 本研究で得られた計算結果が実験結果と非常に良い一致

More information

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

Microsoft PowerPoint - summer_school_for_web_ver2.pptx スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from http://en.wikipedia.org/wiki/disk_readand-write_head

More information

第2回 星の一生 星は生まれてから死ぬまでに元素を造りばらまく

第2回 星の一生  星は生まれてから死ぬまでに元素を造りばらまく 素粒子世界の物理 物質を形作るミクロの 世界の不思議 1. 素粒子の世界 2. 素粒子の標準模型 3. 標準模型の困難 : ニュートリノ質量と暗黒物質 4. 統一理論 1. 素粒子の世界 自然界のあらゆる物質は原子に分解される しかし 原子は最小の構成要素ではなく さらに原子核と電子に分解できる 原子核はさらに下部構造を持っており 現在 我々が到達可能な究極の構成要素が素粒子である 素粒子の世界の構造と物理は

More information

スライド タイトルなし

スライド タイトルなし 宇宙における物質の起源を解明する東北大の核物理グループ 宇宙にはなぜ物質しかないのか? クォークからどうやってハドロンや原子核ができたのか? さまざまな元素は宇宙の中でどうつくられたのか? 原子核以外の未知の物質が宇宙にあるのか? 原子核理学 ( 電子光センター ) 日本最大級の電子シンクロトロン SPring-8( 兵庫 ) 理研 RI ビームファクトリー ( 和光 ) 新奇加速器の開発 核内クォーク

More information

kagome

kagome 強相関電子系の世界 ~ 量子多体論の最前線 ~ 川上則雄 ( 物理第一教室凝縮系理論 ) Condensed Matter Physics More is Different! 物質の根源 ( ひも?) と時空の起源, それらを支配する基本法則 物理学 マクロな数の要素が集まり 相互作用することによってはじめて発現する現象の探求 物性物理学 ( 凝縮系物理学 ) 超伝導 超流動 磁性 半導体 ナノ量子系

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 市民講座 物理と宇宙 2013 年 11 月 9 日京都大学百年時計台記念館 多様な超伝導状態 新奇超伝導体の最前線 石田憲二 京都大学大学院理学研究科物理学 宇宙物理学専攻物理学第一教室固体量子物性研究室 講演内容 1. 温度とは 絶対零度とは 2. 超伝導の発見 3. 超伝導の応用 4. 金属中の電子状態 超伝導状態とは 5. なぜ起こる超伝導 ( 超伝導発現機構の説明 ) 6. 多様化する超伝導状態

More information

Microsoft Word - 01.docx

Microsoft Word - 01.docx 38 年を経て明らかになった非従来型超伝導の 先駆け 物質の電子状態 1. 発表者 : 竹中崇了 ( 東京大学大学院新領域創成科学研究科物質系専攻博士課程 1 年 ) 芝内孝禎 ( 東京大学大学院新領域創成科学研究科物質系専攻教授 ) 笠原裕一 ( 京都大学大学院理学研究科物理学 宇宙物理学専攻准教授 ) 松田祐司 ( 京都大学大学院理学研究科物理学 宇宙物理学専攻教授 ) 2. 発表のポイント :

More information

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E > 半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ

More information

本研究成果は 平成 28 年 8 月 19 日 ( 米国東部時間 ) に米国化学会誌 Journal of the American Chemical Society のオンライン速報版で公開されました 研究の背景と経緯 超伝導現象はゼロ抵抗や完全反磁性 ( 注 2) を示す科学の観点から重要な物理

本研究成果は 平成 28 年 8 月 19 日 ( 米国東部時間 ) に米国化学会誌 Journal of the American Chemical Society のオンライン速報版で公開されました 研究の背景と経緯 超伝導現象はゼロ抵抗や完全反磁性 ( 注 2) を示す科学の観点から重要な物理 平成 28 年 8 月 22 日 報道機関各位 東北大学大学院理学研究科東京大学大学院理学系研究科東京工業大学 ビスマス単原子シートの超伝導体化に成功 - 新たな超伝導体発見手法として期待 - 概要 東北大学大学院理学研究科の福村知昭教授 清良輔大学院生 ( 東北大学大学院理学研究科 東京大学大学院理学系研究科 ) らは ビスマス層状酸化物の新超伝導体を発見しました 原子層のブロックが積み重なった構造をもつ層状化合物では

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 磁性体が乱れによって量子スピン液体に生まれ変わる 1. 発表者 : 古川哲也 ( 東京理科大学理学部第一部応用物理学科助教 / 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教 ) 伊藤哲明 ( 東京理科大学理学部第一部応用物理学科准教授 ) 伊藤美穂 ( 埼玉大学大学院理工学研究科物質科学部門大学院生 : 研究当時

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

と呼ばれる普通の電子とは全く異なる仮説的な粒子が出現することが予言されており その特異な統計性を利用した新機能デバイスへの応用も期待されています 今回研究グループは パラジウム (Pd) とビスマス (Bi) で構成される新規超伝導体 PdBi2 がトポロジカルな性質をもつ物質であることを明らかにし

と呼ばれる普通の電子とは全く異なる仮説的な粒子が出現することが予言されており その特異な統計性を利用した新機能デバイスへの応用も期待されています 今回研究グループは パラジウム (Pd) とビスマス (Bi) で構成される新規超伝導体 PdBi2 がトポロジカルな性質をもつ物質であることを明らかにし 平成 27 年 10 月 9 日 国立大学法人東京大学国立大学法人東京工業大学国立大学法人広島大学トポロジカルな電子構造をもつ新しい超伝導物質の発見 ~トポロジカル新物質の探索に新たな指針 ~ 1. 発表者 : 坂野昌人 ( 東京大学大学院工学系研究科物理工学専攻博士後期課程 3 年 ) 大川顕次郎 ( 東京工業大学応用セラミックス研究所博士後期課程 2 年 ) 奥田太一 ( 広島大学放射光科学研究センター准教授

More information

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1

基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 つの質量は? 水素原子は,0.167 10-23 g 酸素原子は,2.656 10-23 g 炭素原子は,1.993 10-23 g 原子の質量は,

More information

Microsoft Word - プレス原稿_0528【最終版】

Microsoft Word - プレス原稿_0528【最終版】 報道関係各位 2014 年 5 月 28 日 二酸化チタン表面における陽電子消滅誘起イオン脱離の観測に成功 ~ 陽電子を用いた固体最表面の改質に道 ~ 東京理科大学研究戦略 産学連携センター立教大学リサーチ イニシアティブセンター 本研究成果のポイント 二酸化チタン表面での陽電子の対消滅に伴って脱離する酸素正イオンの観測に成功 陽電子を用いた固体最表面の改質に道を拓いた 本研究は 東京理科大学理学部第二部物理学科長嶋泰之教授

More information

マスコミへの訃報送信における注意事項

マスコミへの訃報送信における注意事項 原子層レベルの厚さの超伝導体における量子状態を解明 乱れのない 2 次元超伝導体の本質理解とナノエレクトロニクス開発の礎 1. 発表者 : 斎藤優 ( 東京大学大学院工学系研究科物理工学専攻博士課程 1 年 ) 笠原裕一 ( 京都大学大学院理学研究科物理学 宇宙物理学専攻准教授 ) 叶劍挺 (Groningen 大学 Zernike 先端物質科学研究所准教授 ) 岩佐義宏 ( 東京大学大学院工学系研究科附属量子相エレクトロニクス研究センター

More information

講義 ppt

講義 ppt 4.!"#$ $ "#"#$ %&"'(&#"#$ )&&$ "#"#$ *&&&"#"#$$$ +,&"#$ -,&&""# %!"!#"$"!#"!" " " " %&'()*+,*+-,-*++." /0/012/4567/#178&8,9#04#:5"" http://www.ltm.kyoto-u.ac.jp/lecturenote % $ $ $ $ $ $ $ $ $ $ $ v "

More information

量子力学の基本原理

量子力学の基本原理 Edwin A. Abbott (1838-1926) 1999 年 7 月 10 日電力館科学ゼミナール 電気伝導について : 金属 絶縁体 半導体 半導体ヘテロ構造 : 高移動度 2 次元電子 磁場中の電子 : ホール効果, ランダウ量子化 量子ホール効果 : 電子局在 分数量子ホール効果 : ラフリン状態 複合フェルミオン描像 東京大学物性研究所家泰弘 なぜ 2 次元が特別か? 分子線エピタキシ装置

More information

スライド 1

スライド 1 平成 24 年度大学院共通授業科目トポロジー理工学特別講義 Ⅱ 有機導体における密度波状態 応用物理学専攻トポロジー工学研究室 DC1 上遠野一広 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology) 私の研究について 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology)

More information

Microsoft PowerPoint Aug30-Sept1基研研究会熱場の量子論.ppt

Microsoft PowerPoint Aug30-Sept1基研研究会熱場の量子論.ppt 原子核における α 粒子の Bose-Einstein 凝縮 大久保茂男 S. Ohkubo ( 高知女子大 環境理学科 ) @ 1999 クラスター模型軽い領域だけでなく重い領域 40 Ca- 44 Ti 領域での成立理論 実験 1998 PTP Supplement 132 ( 山屋尭追悼記念 ) 重い核の領域へのクラスター研究 44 Ti fp 殻領域 40 Ca α の道が切り開かれた クラスター模型の歴史と展開

More information

ひも理論で探る ブラックホールの謎

ひも理論で探る ブラックホールの謎 第 34 回知の拠点セミナー 2014 年 7 月 18 日於京都大学東京オフィス 超ひも理論のフロンティア : ブラックホールから ホログラフィー原理へ 高柳 匡 京都大学基礎物理学研究所 京都大学基礎物理研究所 当研究所は 湯川秀樹博士のノーベル物理学賞を記念して 1953 年に我が国初の共同利用研究所として創設されました 理論物理学のほぼすべての分野 ( 素粒子 原子核 宇宙 物性 ) の第一線の研究者が揃っております

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 11//'11 1 1. 復習 : 基本方程式 キャリア密度の式フェルミレベルの位置の計算ポアソン方程式電流密度の式 連続の式 ( 再結合 ). 接合. 接合の形成 b. 接合中のキャリア密度分布 c. 拡散電位. 空乏層幅 e. 電流 - 電圧特性 本日の内容 11//'11 基本方程式 ポアソン方程式 x x x 電子 正孔 キャリア密度の式

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

矢ヶ崎リーフ1.indd

矢ヶ崎リーフ1.indd U 鉱山 0.7% U 235 U 238 U 鉱石 精錬 What is DU? U 235 核兵器 原子力発電濃縮ウラン濃縮工場 2~4% 使用済み核燃料 DU 兵器 U 235 U 236 再処理 0.2~1% 劣化ウラン (DU) 回収劣化ウランという * パーセント表示はウラン235の濃度 電子 原子 10-10 m 10-15 m What is 放射能? 放射線 陽子中性子 原子核 1

More information

気体を用いた荷電粒子検出器

気体を用いた荷電粒子検出器 2009/12/7 物理学コロキウム第 2 気体を用いた荷電粒子検出器 内容 : 1. 研究の目的 2. 気体を用いた荷電粒子検出器 3. 霧箱での α 線の観察 4. 今後の予定 5. まとめ 柴田 陣内研究室 寄林侑正 2009/12/7 1 1. 研究の目的 気体の電離作用を利用した荷電粒子検出器の原理を学ぶ 実際に霧箱とスパークチェンバーを作成する 放射線を観察し 荷電粒子と気体粒子の相互作用について学ぶ

More information

スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課

スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課 スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課程 1 年 ) 顧波 ( 日本原子力研究開発機構先端基礎研究センター研究員 ) Timothy Ziman

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 203 号室 講義予定 1. イントロダクションレーザー冷却からボース アインシュタイン凝縮へ 2. 光と原子の相互作用 3. レーザー冷却 トラップの原理

More information

有機4-有機分析03回配布用

有機4-有機分析03回配布用 NMR( 核磁気共鳴 ) の基本原理核スピンと磁気モーメント有機分析化学特論 + 有機化学 4 原子核は正の電荷を持ち その回転 ( スピン ) により磁石としての性質を持つ 外部磁場によって核スピンのエネルギー準位は変わる :Zeeman 分裂 核スピンのエネルギー準位 第 3 回 (2015/04/24) m : 磁気量子数 [+I,, I ] I: スピン量子数 ( 整数 or 半整数 )]

More information

QOBU1011_40.pdf

QOBU1011_40.pdf 印字データ名 QOBU1 0 1 1 (1165) コメント 研究紹介 片山 作成日時 07.10.04 19:33 図 2 (a )センサー素子の外観 (b )センサー基板 色の濃い部分が Pt 形電極 幅 50μm, 間隔 50μm (c ),(d )単層ナノ チューブ薄膜の SEM 像 (c )Al O 基板上, (d )Pt 電極との境 界 熱 CVD 条件 触媒金属 Fe(0.5nm)/Al(5nm)

More information

う特性に起因する固有の量子論的効果が多数現れるため 基礎学理の観点からも大きく注目されています しかし 特にゼロ質量電子系における電子相関効果については未だ十分な検証がなされておらず 実験的な解明が待たれていました 東北大学金属材料研究所の平田倫啓助教 東京大学大学院工学系研究科の石川恭平大学院生

う特性に起因する固有の量子論的効果が多数現れるため 基礎学理の観点からも大きく注目されています しかし 特にゼロ質量電子系における電子相関効果については未だ十分な検証がなされておらず 実験的な解明が待たれていました 東北大学金属材料研究所の平田倫啓助教 東京大学大学院工学系研究科の石川恭平大学院生 質量がゼロの電子がしめす新規なスピンのゆらぎを発見 ~ 電子が自発的に質量を獲得する新現象の解明に期待 ~ 1. 発表者 : 平田倫啓 ( 東北大学金属材料研究所助教 ) 石川恭平 ( 東京大学大学院工学系研究科物理工学専攻修士課程 ( 研究当時 )) 松野元樹 ( 名古屋大学大学院理学研究科物質理学専攻物理系博士課程 3 年生 ) 小林晃人 ( 名古屋大学大学院理学研究科物質理学専攻物理系准教授

More information

銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する上純物効果

銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する上純物効果 トポロジー理工学特別講義 Ⅱ 2011 年 2 月 4 日 銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する丌純物効果 理学院量子理学専攻博士課程 3 年 黒澤徹 supervisors: 小田先生 伊土先生 アウトライン 走査トンネル顕微鏡 (STM: Scanning Tunneling Microscopy) 角度分解光電子分光 (ARPES: Angle-Resolved

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

Microsoft PowerPoint - meta_tomita.ppt

Microsoft PowerPoint - meta_tomita.ppt メタマテリアルの光応答 量子物性科学講座 冨田知志 メタマテリアルとは meta-: higher, beyond Oxford ALD Pendry, Contemporary Phys. (004) メタマテリアル (meta-material): 波長 λ に対して十分小さい要素を組み合わせて 自然界には無い物性を実現した人工物質 ( 材料 ) 通常の物質 :, は構成原子に起因 メタ物質 :

More information

PRESS RELEASE (2015/10/23) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL:

PRESS RELEASE (2015/10/23) 北海道大学総務企画部広報課 札幌市北区北 8 条西 5 丁目 TEL FAX URL: PRESS RELEASE (2015/10/23) 北海道大学総務企画部広報課 060-0808 札幌市北区北 8 条西 5 丁目 TEL 011-706-2610 FAX 011-706-2092 E-mail: kouhou@jimu.hokudai.ac.jp URL: http://www.hokudai.ac.jp 室温巨大磁気キャパシタンス効果の観測にはじめて成功 研究成果のポイント

More information

磁気でイオンを輸送する新原理のトランジスタを開発

磁気でイオンを輸送する新原理のトランジスタを開発 同時発表 : 筑波研究学園都市記者会 ( 資料配布 ) 文部科学記者会 ( 資料配布 ) 科学記者会 ( 資料配布 ) 磁気でイオンを輸送する新原理のトランジスタを開発 ~ 電圧をかけずに動作する電気化学デバイス実現へ前進 ~ 配布日時 : 平成 29 年 9 月 7 日 14 時国立研究開発法人物質 材料研究機構 (NIMS) 概要 1.NIMS は 電圧でなく磁気でイオンを輸送するという 従来と全く異なる原理で動作するトランジスタの開発に成功しました

More information

Microsoft PowerPoint EM2_3.ppt

Microsoft PowerPoint EM2_3.ppt ( 第 3 回 ) 鹿間信介摂南大学工学部電気電子工学科 4.3 オームの法則 4.4 金属の電気抵抗 4.5 ジュール熱 演習 4.3 オームの法則 E 電池 電圧 V 抵抗 電流 I 可変抵抗 抵抗両端の電圧 V [V] と電流 I [A] には比例関係がある V =I (: 電気抵抗 ; 比例定数 ) 大 電流が流れにくい 抵抗の単位 : オーム [Ω] 1[Ω]=1[V/A] 1V の電圧を加えたときに

More information

それを矛盾なくこの世の問題として解決できるような知恵が必要となる この世 ( 宇宙 ) のはじまり 1 はじまり より前 : 特異点 はじまりとは 時間の区切りの中で 終わりと共に特異な点となる 宇宙のはじまりにおいても この特異点は問題となっている この世のはじまりも 特異点で ビックバンと呼ばれ

それを矛盾なくこの世の問題として解決できるような知恵が必要となる この世 ( 宇宙 ) のはじまり 1 はじまり より前 : 特異点 はじまりとは 時間の区切りの中で 終わりと共に特異な点となる 宇宙のはじまりにおいても この特異点は問題となっている この世のはじまりも 特異点で ビックバンと呼ばれ 科学 技術の世界深く地球を考える - 科学と哲学と地質学と - 2006 年 5 月 16 日小出良幸 第 6 講はじまり : この世のはじまり 不可能を可能にする知恵 1 この世とあの世の境界 ありえないものを 考えることはできるだろうか 普通はできない 例えば はじまりの瞬間を考えるとき それは 限りなくゼロに近い時間や大きさ無限大の密度 温度などを 考えなければならないかもしれない これは いってみれば物理学の適用範囲を越えた場面となることもあるであろう

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構

原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構 原子核物理学概論 物理 原子核理論研究室大西明 第二回 (11/12): 原子核の構造と元素合成 原子核の基本的な構造である Shell 構造と 宇宙における元素合成について解説します あわせて 量子力学 についてお話します Shell 構造 量子力学とシュレディンガー方程式 原子の Shell 構造 原子核の Shell 構造と魔法数 元素合成 太陽系の元素組成 様々な元素合成過程 元素合成における核構造の役割まとめ資料は

More information

平成22年11月15日

平成22年11月15日 広島大学 産総研共同プレス発表資料解禁日時 (Web): 平成 24 年 7 月 28 日 0 時 ( 日本時間 ) 報道関係者各位 平成 24 年 7 月 26 日国立大学法人広島大学独立行政法人産業技術総合研究所 ポイント 金属酸化物デバイス材料の新機能探索に新たな指針 - 金属酸化物における電子同士の避け合いの効果を解明 - 放射光を利用した光電子分光実験により 金属酸化物中の電子同士の避け合いの効果が明らかに

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 低温科学 A (6/16, 6/3) レーザーによる希薄原子気体の冷却と ボース アインシュタイン凝縮 物理第一教室量子光学研究室 http://yagura.scphys.kyoto-u.ac.jp 高橋義朗 yitk@scphys.kyoto-u.ac.jp 5 号館 03 号室 講義予定 1. イントロダクションレーザー冷却からボース アインシュタイン凝縮へ. 光と原子の相互作用 3. レーザー冷却

More information

Microsoft PowerPoint - H30パワエレ-3回.pptx

Microsoft PowerPoint - H30パワエレ-3回.pptx パワーエレクトロニクス 第三回パワー半導体デバイス 平成 30 年 4 月 25 日 授業の予定 シラバスより パワーエレクトロニクス緒論 パワーエレクトロニクスにおける基礎理論 パワー半導体デバイス (2 回 ) 整流回路 (2 回 ) 整流回路の交流側特性と他励式インバータ 交流電力制御とサイクロコンバータ 直流チョッパ DC-DC コンバータと共振形コンバータ 自励式インバータ (2 回 )

More information

Microsoft PowerPoint - many-particle-quantum-summary090611c

Microsoft PowerPoint - many-particle-quantum-summary090611c 多体系の量子力学的記述 目次. 量子力学的多粒子系の種類. 粒子系の量子力学 3. 異種の粒子から構成される有限多粒子系 4. 同種粒子の不可識別性 5. スピン自由度をもつ同種の多粒子系の波動関数の ( 位置 スピン ) 交換に対する対称性 6. フェルミ粒子に対するパウリの排他原理 6. 電子の量子状態の占有の仕方 6. スレーター行列式 6.3 どのような場合に 反対称化が重要になるか? 7.

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

予定 (川口担当分)

予定 (川口担当分) 予定 ( 川口担当分 ) (1)4 月 13 日 量子力学 固体の性質の復習 (2)4 月 20 日 自由電子モデル (3)4 月 27 日 結晶中の電子 (4)5 月 11 日 半導体 (5)5 月 18 日 輸送現象 金属絶縁体転移 (6)5 月 25 日 磁性の基礎 (7)6 月 1 日 物性におけるトポロジー 今日 (5/11) の内容 ブロッホ電子の運動 電磁場中の運動 ランダウ量子化 半導体

More information

量子の世界

量子の世界 学術俯瞰講義 2013.05.20 @ 駒場 KOMCEE 物質科学ことはじめ ( その 3) 奇妙な量子の世界 物性研究所 家泰弘 物質科学ことはじめ 第 4 回 (5 月 7 日 ) 現代社会と物質科学 第 5 回 (5 月 13 日 ) 原子 分子 物質の構造物質の個性 ( 物性 ) はどこから生まれるか 第 6 回 (5 月 20 日 ) 奇妙な量子の世界 今日のおはなし 量子論の成立 量子力学のサワリ

More information

配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25

配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 日 東北大学材料科学高等研究所 (AIMR) 東北大学金属材料研究所科学技術振興機構 (JST) スピン流スイッチの動作原理を発見

More information

大宇宙

大宇宙 大宇宙 銀河団 大規模構造 膨張宇宙 銀河群 数個 ~ 数十個の銀河の群れ 天の川銀河 250 万光年 アンドロメダ銀河 局所銀河群 http://www.astronomy.com/en/web%20extras/2005/02/ Dominating%20the%20Local%20Group.aspx 銀河団 100 個程度以上の集まり 銀河群との明確な区別はない 天の川銀河 6200 万光年

More information

研究の背景有機薄膜太陽電池は フレキシブル 低コストで環境に優しいことから 次世代太陽電池として着目されています 最近では エネルギー変換効率が % を超える報告もあり 実用化が期待されています 有機薄膜太陽電池デバイスの内部では 図 に示すように (I) 励起子の生成 (II) 分子界面での電荷生

研究の背景有機薄膜太陽電池は フレキシブル 低コストで環境に優しいことから 次世代太陽電池として着目されています 最近では エネルギー変換効率が % を超える報告もあり 実用化が期待されています 有機薄膜太陽電池デバイスの内部では 図 に示すように (I) 励起子の生成 (II) 分子界面での電荷生 報道関係者各位 平成 6 年 8 月 日 国立大学法人筑波大学 太陽電池デバイスの電荷生成効率決定法を確立 ~ 光電エネルギー変換機構の解明と太陽電池材料のスクリーニングの有効なツール ~ 研究成果のポイント. 太陽電池デバイスの評価 理解に重要な電荷生成効率の決定方法を確立しました. これにより 有機薄膜太陽電池が低温で動作しない原因が 電荷輸送プロセスにあることが明らかになりました 3. 本方法は

More information

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子

解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 解法 1 原子の性質を周期表で理解する 原子の結合について理解するには まずは原子の種類 (= 元素 ) による性質の違いを知る必要がある 原子の性質は 次の 3 つによって理解することができる イオン化エネルギー = 原子から電子 1 個を取り除くのに必要なエネルギー ( イメージ ) 電子 原子 いやだ!! の強さ 電子親和力 = 原子が電子 1 個を受け取ったときに放出するエネルギー ( イメージ

More information

<4D F736F F D C668DDA97705F81798D4C95F189DB8A6D A8DC58F4994C5979A97F082C882B581798D4C95F189DB8A6D A83743F838C83585F76325F4D F8D488A F6B6D5F A6D94468C8B89CA F

<4D F736F F D C668DDA97705F81798D4C95F189DB8A6D A8DC58F4994C5979A97F082C882B581798D4C95F189DB8A6D A83743F838C83585F76325F4D F8D488A F6B6D5F A6D94468C8B89CA F 電子波の位相変化は人工原子の内部構造を反映することを世界で初めて実証 20 年来の電子の散乱位相に関する問題に決着 1. 発表者 : 樽茶清悟 ( 東京大学大学院工学系研究科物理工学専攻教授 / 理化学研究所創発物性科学研究センター量子情報エレクトロニクス部門部門長 ) 山本倫久 ( 東京大学大学院工学系研究科附属量子相エレクトロニクス研究センター特任准教授 / 理化学研究所創発物性科学研究センター量子電子デバイス研究ユニットユニットリーダー

More information

前回の復習 (1) 原子を操る, 量子を操る 原子を見る, 操る 走査プローブ顕微鏡 (STM, AFM) ナノサイエンス 巨視的量子現象 量子統計 ボース粒子とフェルミ粒子 4 He と 3 He 液体ヘリウム ( 4 He) の超流動 原子気体のボース アインシュタイン凝縮

前回の復習 (1) 原子を操る, 量子を操る 原子を見る, 操る 走査プローブ顕微鏡 (STM, AFM) ナノサイエンス 巨視的量子現象 量子統計 ボース粒子とフェルミ粒子 4 He と 3 He 液体ヘリウム ( 4 He) の超流動 原子気体のボース アインシュタイン凝縮 2005 年 12 月 12 日学術俯瞰講義 物質の科学 第 6 回第 7 回 第 8 回 第 9 回 : このマークが付してある著作物は 第三者が有する著作物ですので 同著作物の再使用 同著作物の二次的著作物の創作等については 著作権者より直接使用許諾を得る必要があります 物性物理学とは何をする学問か量子力学と人工構造物質 - ハイテクと先端物理原子を操る, 量子を操る -ナノサイエンスと量子情報

More information

<4D F736F F D D CE81408E9F90A291E A82CC93AE8DEC8CB4979D82F08CB48E E71838C B82C589F096BE815B2E646F63>

<4D F736F F D D CE81408E9F90A291E A82CC93AE8DEC8CB4979D82F08CB48E E71838C B82C589F096BE815B2E646F63> 同時発表 : 文部科学記者会 ( 資料配布 ) 筑波研究学園都市記者会 ( 資料配布 ) 科学記者会 ( 資料配布 ) 解禁日時テレビ ラジオ インターネット :12 月 6 日午後 11 時から 現地時間 :6 日午前 9 時 新聞 :12 月 7 日 ( 月 ) 朝刊から 平成 21 年 11 月 30 日筑波大学 次世代メモリの書き込み のメカニズムを原子レベルで解明 概要 1. 筑波大学大学院数理物質研究科の村上浩一研究科長を中心に進めている

More information

福島原子力事故を教訓に 原子力開発の将来を展望 -大局的視点に立ってー

福島原子力事故を教訓に 原子力開発の将来を展望 -大局的視点に立ってー 環境とエネルギーを考える エネルギー確保と放射性廃棄物ゼロは可能か 2014.11.26 藤家洋一 小さな自然と大きな自然 科学は目に見えない世界を切り拓いてきました 小さすぎて目に見えない世界と大きすぎて目に見えない世界とがあり その間に私たちが目にする自然があります 原子の世界は小さすぎて見えません 逆に宇宙は大きすぎて目に入りません しかしこの二つは密接に関連して私たちの自然環境を創っているのです

More information

Microsoft PowerPoint - LTScienceA2maeno ppt

Microsoft PowerPoint - LTScienceA2maeno ppt 低温物理学入門 理学研究科物理学教室 前野悦輝 1. 低温の世界 (2006. 4/12) 2. 低温研究の発展と冷凍技術 (2006. 4/19) 3. 超流動 (2006. 4/26) ( 超流動 He ビデオ ) 4. 超伝導 (2006. 5/24) ( 高温超伝導実演 ) 低温研究の発展と冷凍技術 1. 基礎物理学 基礎科学としての重要性 2. 応用面での有用性 3. 冷凍技術の発展 1

More information

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k

B. モル濃度 速度定数と化学反応の速さ 1.1 段階反応 ( 単純反応 ): + I HI を例に H ヨウ化水素 HI が生成する速さ は,H と I のモル濃度をそれぞれ [ ], [ I ] [ H ] [ I ] に比例することが, 実験により, わかっている したがって, 比例定数を k 反応速度 触媒 速度定数 反応次数について. 化学反応の速さの表し方 速さとは単位時間あたりの変化の大きさである 大きさの値は 0 以上ですから, 速さは 0 以上の値をとる 化学反応の速さは単位時間あたりの物質のモル濃度変化の大きさで表すのが一般的 たとえば, a + bb c (, B, は物質, a, b, c は係数 ) という反応において,, B, それぞれの反応の速さを, B, とし,

More information

MT2-Slides-08.pptx

MT2-Slides-08.pptx 計測工学 II 第 8 回 温度の計測 (2) 今日の内容 シラバスから 温度の計測 (2) 接触式測温による様々な中温の測定 非接触式測温による中温の測定 常温の測定 サーミスタ ブルドン管 低温の測定 温度の基準について学ぶ 教科書では P141 P154 です 温度範囲の分類 産業応用などの分類から 以下のように便宜的に分類 高温 : 1000 ~3000 (P127) 中温 : 350 ~1000

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

【資料2-1】量子シミュレーターの概念と研究動向

【資料2-1】量子シミュレーターの概念と研究動向 資料 2-1 科学技術 学術審議会先端研究基盤部会量子科学技術委員会 ( 第 4 回 ) 平成 28 年 6 月 20 日 科学技術 学術審議会先端研究基盤部会量子科学技術委員会 ( 第 4 回 ) 参考資料 量子シミュレーターの概念と研究動向 自然科学研究機構分子科学研究所大森賢治 1 量子シミュレーターとは? 2 量子多体問題 多体相互作用は多くの重要な物理 化学現象を支配している 超伝導 磁性

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 : 金属. 復習. 電気伝導度 3. アンペールの法則の修正 4. 表皮効果 表皮深さ 5. 鏡の反射 6. 整理 : 電子振動子模型 注意 : 整理しましょう! 前回 : 付録 (4) のアプローチ. 屈折率と損失について記述するために分極振動 ( 電気双極子の集団運動 ) による電気双極子放射を考慮. 誘電率は 真空中の値 を採用 オリジナル光

More information

の実現は この分野の最大の課題となってい (a) た ゲージ中の 酸素イオンを 電子で置換 筆 者 ら の 研 究 グ ル ー プ は 23 年 に 12CaO 7Al2O3 結 晶 以 下 C12A7 を用 い て 安定なエレクトライド C12A7: を実現3) Al3+ O2 Cage wall O2 In cage その電子状態や物性を解明してきた4) 図 1 のように C12A7 の結晶構造は

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

2014 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 H

2014 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 H 01 年度大学入試センター試験解説 化学 Ⅰ 第 1 問物質の構成 1 問 1 a 1 g に含まれる分子 ( 分子量 M) の数は, アボガドロ定数を N A /mol とすると M N A 個 と表すことができる よって, 分子量 M が最も小さい分子の分子数が最も多い 分 子量は, 1 = 18 N = 8 3 6 = 30 Ne = 0 5 = 3 6 l = 71 となり,1 が解答 (

More information

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく BET 法による表面積測定について 1. 理論編ここでは吸着等温線を利用した表面積の測定法 特に Brunauer,Emmett Teller による BET 吸着理論について述べる この方法での表面積測定は 気体を物質表面に吸着させた場合 表面を 1 層覆い尽くすのにどれほどの物質量が必要か を調べるものである 吸着させる気体分子が 1 個あたりに占める表面積をあらかじめ知っていれば これによって固体の表面積を求めることができる

More information

8.1 有機シンチレータ 有機物質中のシンチレーション機構 有機物質の蛍光過程 単一分子のエネルギー準位の励起によって生じる 分子の種類にのみよる ( 物理的状態には関係ない 気体でも固体でも 溶液の一部でも同様の蛍光が観測できる * 無機物質では規則的な格子結晶が過程の元になっているの

8.1 有機シンチレータ 有機物質中のシンチレーション機構 有機物質の蛍光過程 単一分子のエネルギー準位の励起によって生じる 分子の種類にのみよる ( 物理的状態には関係ない 気体でも固体でも 溶液の一部でも同様の蛍光が観測できる * 無機物質では規則的な格子結晶が過程の元になっているの 6 月 6 日発表範囲 P227~P232 発表者救仁郷 シンチレーションとは? シンチレーション 蛍光物質に放射線などの荷電粒子が当たると発光する現象 材料 有機の溶液 プラスチック 無機ヨウ化ナトリウム 硫化亜鉛 など 例えば以下のように用いる 電離性放射線 シンチレータ 蛍光 光電子増倍管 電子アンプなど シンチレーションの光によって電離性放射線を検出することは非常に古くから行われてきた放射線測定法で

More information

Microsoft PowerPoint - 東大講義09-13.ppt [互換モード]

Microsoft PowerPoint - 東大講義09-13.ppt [互換モード] 物性物理学 IA 平成 21 年度前期東京大学大学院講義 東京大学物性研究所高田康民 2009 年 4 月 10 日 -7 月 17 日 (15 回 ) 金曜日 2 時限 (10:15-11:45) 15 11 理学部 1 号館 207 号室 講義は自己充足的 量子力学 ( 第 2 量子化を含む ) 統計力学 場の量子論のごく初歩を仮定 最後の約 10 分間は関連する最先端の研究テーマを雑談風に紹介する

More information

第3類危険物の物質別詳細 練習問題

第3類危険物の物質別詳細 練習問題 第 3 類危険物の物質別詳細練習問題 問題 1 第 3 類危険物の一般的な消火方法として 誤っているものは次のうちいくつあるか A. 噴霧注水は冷却効果と窒息効果があるので 有効である B. 乾燥砂は有効である C. 分子内に酸素を含むので 窒息消火法は効果がない D. 危険物自体は不燃性なので 周囲の可燃物を除去すればよい E. 自然発火性危険物の消火には 炭酸水素塩類を用いた消火剤は効果がある

More information

実験題吊  「加速度センサーを作ってみよう《

実験題吊  「加速度センサーを作ってみよう《 加速度センサーを作ってみよう 茨城工業高等専門学校専攻科 山越好太 1. 加速度センサー? 最近話題のセンサーに 加速度センサー というものがあります これは文字通り 加速度 を測るセンサーで 主に動きの検出に使われたり 地球から受ける重力加速度を測定することで傾きを測ることなどにも使われています 最近ではゲーム機をはじめ携帯電話などにも搭載されるようになってきています 2. 加速度センサーの仕組み加速度センサーにも様々な種類があります

More information

背景と経緯 現代の電子機器は電流により動作しています しかし電子の電気的性質 ( 電荷 ) の流れである電流を利用した場合 ジュール熱 ( 注 3) による巨大なエネルギー損失を避けることが原理的に不可能です このため近年は素子の発熱 高電力化が深刻な問題となり この状況を打開する新しい電子技術の開

背景と経緯 現代の電子機器は電流により動作しています しかし電子の電気的性質 ( 電荷 ) の流れである電流を利用した場合 ジュール熱 ( 注 3) による巨大なエネルギー損失を避けることが原理的に不可能です このため近年は素子の発熱 高電力化が深刻な問題となり この状況を打開する新しい電子技術の開 平成 25 年 5 月 2 日 東北大学金属材料研究所東北大学原子分子材料科学高等研究機構 塗るだけで出来上がる磁気 - 電気変換素子 - プラスチックを使った次世代省エネルギーデバイス開発に向けて大きな進展 - 発表のポイント 電気を流すプラスチックの中で 磁気 ( スピン ) の流れが電気信号に変換されることを発見 この発見により 溶液を塗るだけで磁気 ( スピン )- 電気変換素子が作製可能に

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

がら この巨大な熱電効果の起源は分かっておらず 熱電性能のさらなる向上に向けた設計指針 は得られていませんでした 今回 本研究グループは FeSb2 の超高純度単結晶を育成し その 結晶サイズを大きくすることで 実際に熱電効果が巨大化すること またその起源が結晶格子の振動 ( フォノン 注 2) と

がら この巨大な熱電効果の起源は分かっておらず 熱電性能のさらなる向上に向けた設計指針 は得られていませんでした 今回 本研究グループは FeSb2 の超高純度単結晶を育成し その 結晶サイズを大きくすることで 実際に熱電効果が巨大化すること またその起源が結晶格子の振動 ( フォノン 注 2) と 鉄化合物における巨大な熱電効果の起源解明 - 低温で高い性能を示す熱電変換素子の新たな設計指針 - 1. 発表者 : 高橋英史 ( 東京大学大学院工学系研究科物理工学専攻助教 研究開始時 : 名古屋大学大学院理学研究科日本学術振興会特別研究員 PD) 岡崎竜二 ( 東京理科大学物理工学部物理学科講師 研究開始時 : 名古屋大学大学院理学研究科助教 ) 石渡晋太郎 ( 東京大学大学院工学系研究科物理工学専攻准教授

More information

60 秒でわかるプレスリリース 2008 年 5 月 15 日 独立行政法人理化学研究所 モット先生 (1977 年ノーベル物理学賞受賞 ) の謎を解明 - 酸化ニッケルはなぜ金属ではないのか? - 銀白色の金属として知られるニッケルは 耐食性が高くステンレス鋼や硬貨などの原料として広く利用されてい

60 秒でわかるプレスリリース 2008 年 5 月 15 日 独立行政法人理化学研究所 モット先生 (1977 年ノーベル物理学賞受賞 ) の謎を解明 - 酸化ニッケルはなぜ金属ではないのか? - 銀白色の金属として知られるニッケルは 耐食性が高くステンレス鋼や硬貨などの原料として広く利用されてい 60 秒でわかるプレスリリース 2008 年 5 月 15 日 独立行政法人理化学研究所 モット先生 (1977 年ノーベル物理学賞受賞 ) の謎を解明 - 酸化ニッケルはなぜ金属ではないのか? - 銀白色の金属として知られるニッケルは 耐食性が高くステンレス鋼や硬貨などの原料として広く利用されています 一方 ニッケルが酸化した酸化ニッケルは電気を通しにくい絶縁体です しかし 1930 年頃 金属や絶縁体を記述する固体物理の基本理論である

More information

中性子関連技術解説書 1. はじめに 中性子利用技術名 ; 粉末中性子線回折解説書作成者 ; 技術士氏名伊東亮一 粉末中性子線回折は試料に中性子を当て 散乱される中性子線を測定して試料中の原 子構造を調べる分析法です 粉末のままで結晶構造解析ができます 2. 概要 2.1 粉末中性子線回折従来 結晶

中性子関連技術解説書 1. はじめに 中性子利用技術名 ; 粉末中性子線回折解説書作成者 ; 技術士氏名伊東亮一 粉末中性子線回折は試料に中性子を当て 散乱される中性子線を測定して試料中の原 子構造を調べる分析法です 粉末のままで結晶構造解析ができます 2. 概要 2.1 粉末中性子線回折従来 結晶 中性子関連技術解説書 1. はじめに 中性子利用技術名 ; 粉末中性子線回折解説書作成者 ; 技術士氏名伊東亮一 粉末中性子線回折は試料に中性子を当て 散乱される中性子線を測定して試料中の原 子構造を調べる分析法です 粉末のままで結晶構造解析ができます 2. 概要 2.1 粉末中性子線回折従来 結晶構造を調べる目的では中性子線回折装置は X 線回折法と同様に使われてきました この度 J-PARC に高性能の粉末中性子線回折装置が新設されて産業へのより一層の応用が期待されています

More information