Duality in Bayesian prediction and its implication

Size: px
Start display at page:

Download "Duality in Bayesian prediction and its implication"

Transcription

1 $\theta$ Duality in Bayesian prediction and its implication Toshio Ohnishi and Takemi Yanagimotob) a) Faculty of Economics, Kyushu University b) Department of Industrial and Systems Engineering, Chuo University \S 1. Bayes (1) Bayes $p(x;\theta)\pi(\theta;c, \delta)$ $p(x;\theta, \tau)$ $\tau$ $\lambda(c, \delta)$ (2) $\pi(\theta \tau)$ $\lambda(\tau)$ $\xi\in\xi$ Bayes $p_{\xi}(x;\theta)\pi_{\xi}(\theta)$ $\lambda(\xi)$ Bayesian model averaging (Hoeting et al., 1999). $\lambda(\xi)$ prior averaging density $m_{\xi}(x)=e[p_{\xi}(x;\theta) \pi_{\xi}(\theta)]$ $m(x)=e[m_{\xi}(x) \lambda(\xi)]$ $E[f(y) p(y)]$ $p(y)$ $f(y)$

2 105 $x$ Bayes $\lambda(\xi x)=\frac{\lambda(\xi)m_{\xi}(x)}{m(x)}$ (1.1) posterior averaging density $p(x;\theta)\pi(\theta)$ Bayes Bayes $y$ Bayes $p(y;\theta)$ $q(y x)$ $q(y x)=p(y;\hat{\theta})$ 2 $D(q(y x),$ $p(y;\theta))$ $D(p(y;\theta),$ $q(y x))$ Bayes $D(p(y),$ $q(y));=e$ $[$log{p(y)/q(y)} $ p(y)]$ Kullback-Leibler divergence e-divergence $m$-divergence (Amari &Nagaoka, 2000). 2 1 Pythagrean difference Pythagras $PD(p_{1},p_{2},p_{3}):=D(p_{1},p_{3})-D(p_{1},p_{2})-D(p_{2},p_{3})$ $E$ $[PD(p_{1},p_{2},p_{3})]$ $E[D(p_{1},p_{3})]$ $=0$ $E[D(p_{1},p_{2})]$ $p(x;\theta)$ 1 $\hat{\theta}_{m}$ (MLE) $\leq$ $\log\frac{p(x;\hat{\theta}_{m})}{p(x;\theta)}=d(p(y;\hat{\theta}_{m}), p(y;\theta))$ (1.2) (Kullback, 1959). ) $p(x;\theta)$ (3 $\hat{\theta}_{s}$ Stein (Stein, 1981) $E[\log\frac{p(x;\hat{\theta}_{S})}{p(x;\theta)}-D(p(y;\hat{\theta}_{S}), p(y;\theta)) p(x;\theta)]=0$ (1.3)

3 106 MLE MLE Stein MLE (1.2) (1.3) $e$-divergence \S 2. $e$-divergence $e$-divergence Bayes $\min_{q(y x)}e[d(q(y x), p_{\xi}(y;\theta)) \pi_{\xi}(\theta x)\lambda(\xi x)]$ (2.1) (1.1) $\pi_{\xi}(\theta x)$ $\lambda(\xi x)$ $p_{\xi}(x;\theta)\pi_{\xi}(\theta)\lambda(\xi)=\pi_{\xi}(\theta x)\lambda(\xi x)m(x)$ posterior averaging density $\pi_{\xi}(\theta x)\lambda(\xi x)$ $(\theta, \xi)$ $x$ Corcuera &Giummole (1999) Bayes $\min_{q(y x)}e[d(q(y x), p_{\xi}(y;\theta)) \pi_{\xi}(\theta x)]$ $q_{\xi}^{e}(y x)\propto\exp\{e[\log p_{\xi}(y;\theta) \pi_{\xi}(\theta x)]\}$ (2.2) Pythagras E PD $(q(y x), q_{\xi}^{e}(y x), p_{\xi}(y;\theta)) \pi_{\xi}(\theta x)]=0$ (2.3) (Yanagimoto &Ohnishi, 2009). Bayes (2.1) $\min_{q(yx)}e[d(q(y x), q_{\xi}^{e}(y x)) h(\xi)]$ (2.4)

4 107 $h(\xi)$ canonical weight (2.4) Bayes (2.1) (2.3) $\min_{q(y x)}e[d(q(y x), q_{\xi}^{e}(y x)) \lambda(\xi x)]$ posterior averaging density canonical $\lambda(\xi x)$ weight $h(\xi)$ Definition 2.1. (i) (2.2) $q_{\xi}^{e}(y x)$ $f^{e}(y x;h) :=\exp\{e[\log q_{\xi}^{e}(y x) h(\xi)]-\psi_{x}(h)\}$ (2.5) $\exp\{\psi_{x}($ $)\}$ $f^{e}(y x;h)$ canonical weight $h$ $q_{\xi}^{e}(y x)$ $e$-mixture (ii) canonical weight $h$ mean weight $t_{x}(\xi;h) :=E[\log q_{\xi}^{e}(y x) f^{e}(y x;h)]$. (2.6) $f^{e}(y x;h),$ $\psi_{x}(h)$ $t_{x}(\xi;h)$ $h$ $\log q(x x)$ Bayesian $\log$ -likelihood Bayesian $\log$ -likelihood ratio $e$-divergence Theorem 2.1. (2.5) $f^{e}(y x;h)$ Pythagras $E [PD(q(y x), f^{e}(y x;h), q_{\xi}^{e}(y x)) h(\xi)]=0$ (2.4) $E[\log\frac{f^{e}(x x;h)}{q_{\xi}^{e}(x x)}-d(f^{e}(y x;h), q_{\xi}^{e}(y x)) h(\xi)]=0$ (2.7)

5 108 (2.7) (2.4) $(h)$ $\psi$x $F$ Gateaux ( ) canonical weight $h$ $F$ ( ) $h_{1}$ $h_{2}-h_{1}$ Gateaux $\delta_{g}f(h_{1};h_{2}-$ $h_{1})$ $\delta_{g}f(h_{1};h_{2}-h_{1}) :=\lim_{\betaarrow 0}\frac{F(h_{1}+\beta(h_{2}-h_{1}))-F(h_{1})}{\beta}$ Canonical weight $h$ Gateaux Ohnishi &Yanagimoto (2013) Mean weight (2.6) $\psi_{x}(h)$ Gateaux $\delta_{g}\psi_{x}(h_{1};h_{2}-h_{1})=e[t_{x}(\xi;h_{1}) h_{2}(\xi)-h_{1}(\xi)].$ Shannon entropy $H[p(y)]:=E[-\log p(y) p(y)]$ $p(y)$ Shannon entropy Theorem 2.2. $s(\xi)=t_{x}(\xi;h)$ Shannon entropy $\max H[q(y x)]$ subject to $E[\log q_{\xi}^{e}(y x) q(y x)]=s(\xi)$ (2.4) $f^{e}(y x;h)$ $p_{1}(y),p_{2}(y)$ $p(y; \eta)=\exp\{\eta\log\frac{p_{1}(y)}{p_{2}(y)}-\psi(\eta)\}p_{2}(y)$ 2 $\mu=\psi (\eta)$

6 109 $)$ 1 Shannon entropy $\max E[-\frac{q(y)}{p_{2}(y)}\log\frac{q(y)}{p_{2}(y)} p_{2}(y)],$ subject to $E[\log\frac{p_{1}(y)}{p_{2}(y)} q(y)]=\mu.$ 2 $)$ $e$-divergence $\min_{q(y1x)}\{\eta D(q(y), p_{1}(y))+(1-\eta)d(q(y), p_{2}(y))\}.$ Bayesian $\log$ -likeliho $od$ Theorem 2.3. Canonical weight $h_{x}^{\uparrow}(\xi)$ $\delta_{g}\log f^{e}(x x;h_{x}^{1};h-h_{x}^{\dagger})=0$ for any $h$. (2.8) $f^{e}(y x;h_{x}\dagger)$ $\log\frac{f^{\epsilon}(x x;h_{x}\dagger)}{q_{\xi}^{e}(x x)}=d(f^{e}(y x;h_{x}^{\uparrow}), q_{\xi}^{e}(y x))$ for any $\xi.$ $h_{x}^{*}(\xi)$ (1.1) posterior $h_{x}^{*}(\xi)$ averaging density $:=\lambda(\xi x)$ Theorem 2. 1 $f^{e}(y x;h_{x}^{*})$ Bayes (2. 1) Theorem 2.3 $\mathcal{q}^{e}$ Theorem 2.4. $E[\log\frac{f^{e}(x x;h)}{q_{\xi}^{e}(x x)}-d(f^{e}(y x;h), q_{\xi}^{e}(y x)) \lambda(\xi x)m(x)]=0$. (2.9) (2.8) Bayesian -likelihood $h_{x}^{\uparrow}(\xi)$ $\log$ $\log f^{e}(x x;h)$ $\mathcal{q}^{e}$ $f^{e}(y x;h_{x}^{*})$ $f^{e}(y x;h_{x}^{\uparrow})$ Bayesian -likelihood $\log$ Theorem 2.3 MLE

7 110 Yanagimoto & Ohnishi (2011) (2.9) (2.4) $-\psi_{x}$ ( ) $h$ Theorem 2.5. Canonical weight $h_{x}^{c}(\xi)$ $\delta_{g}\psi_{x}(h_{x}^{c};h-h_{x}^{c})=0$ for any $h.$ $f^{e}(y x;h_{x}^{c})$ $D(f^{e}(y x;h_{x}^{c}), q_{\xi}^{e}(y x))=-\psi_{x}(h_{x}^{c})$. $f^{e}(y x;h_{x}^{c})$ $q_{\xi}^{e}(y x)$ prior averaging density $-\psi_{x}(h_{x}^{c})$ \S 3. $m$-divergence $e$-divergence $m$-divergence Bayes $\min_{q(y x)}e[d(p_{\xi}(y;\theta), q(y x)) \pi_{\xi}(\theta x)\lambda(\xi x)]$ (3.1) Shannon entropy $m$-divergence \S 2 Shannon entropy Aitchson (1975) Bayes $\min_{q(y x)}e[d(p_{\xi}(y;\theta), q(y x)) \pi_{\xi}(\theta x)]$ $q_{\xi}^{m}(y x) :=E[p_{\xi}(y;\theta) \pi_{\xi}(\theta x)]$ (3.2)

8 111 Pythagras $E[PD(p_{\xi}(y;\theta), q_{\xi}^{m}(y x), q(y x)) \pi_{\xi}(\theta x)]=0$ (3.3) (Yanagimoto &Ohnishi, 2009). \S 2 $\min_{q(y x)}e[d(q_{\xi}^{m}(y x), q(y x)) h(\xi)]$ (3.4) $h(\xi)$ canonical weight (3.4) (3.3) (3.1) $\min_{q(y1x)}e[d(q_{\xi}^{m}(y x), q(y x)) \lambda(\xi x)]$ $\lambda(\xi x)$ $h(\xi)$ Definition 3.1. (i) (3.2) $q_{\xi}^{m}(y x)$ $f^{m}(y x;h):=e[q_{\xi}^{m}(y x) h(\xi)]$ (3.5) $f^{m}(y x;h)$ canonical weight $h$ $q_{\xi}^{m}(y x)$ (ii) canonical weight $h$ $m$ -mixture entropy weight $t_{x}(\xi;h)=-\log f^{m}(x x;h)-d(q_{\xi}^{m}(y x), f^{m}(y x;h))$ (3.6) (3.4) Shannon entropy $m$-divergence Theorem 3.1. (i) (3.5) $f^{m}(y x;h)$ Pythagras $E [PD(q_{\xi}^{m}(y x), f^{m}(y x;h), q(y x)) h(\xi)]=0$ (3.7)

9 112 (3.4) $f^{m}(y x;h)$ $E[H[f^{m}(y x;h)]-h[q_{\xi}^{m}(y x)]-d(q_{\xi}^{m}(y x), f^{m}(y x;h)) h(\xi)]=0$. (3.8) $\psi_{x}$ ( ) $-\psi_{x}(h) :=H[f^{m}(y x;h)]-e[h[q_{\xi}^{m}(x x)] h(\xi)]$ - $\psi$x( ) (3.8) (3.4) $\psi$x( ) Gateaux entropy weight $\delta_{g}\psi_{x}(h_{1};h_{2}-h_{1})=e[t_{x}(\xi;h_{1}) h_{2}(\xi)-h_{1}(\xi)].$ (3.4) Theorem 3.2. $s(\xi)=t_{x}(\xi;h)$ Bayesian $\log$-likelihood $\max\log q(x x)$ $q(y x)$ subject to $-\log q(x x)-d(q_{\xi}^{m}(y x), q(y x))=s(\xi)$ (3.4) $f^{m}(y x;h)$ Shannon entropy (3.8) Theorem 3.3. Canonical weight $h_{x}\dagger(\xi)$ $\delta_{g}h[f^{m}(y x;h_{x}^{\dagger};h-h_{x}^{\uparrow})]=0$ for any $h$. (3.9) $f^{m}(y x;h_{x}\dagger)$ $H[f^{m}(y x;h_{x}^{\dagger})]-h[q_{\xi}^{m}(y x)]=d(q_{\xi}^{m}(y x), f^{m}(y x;h_{x}^{\dagger}))$ for any $\xi.$

10 113 $h_{x}^{*}(\xi)=\lambda(\xi x)$ \S 2 $\mathcal{q}^{m}$ Theorem 3.4. $E[H[f^{m}(y x;h)]-h[q_{\xi}^{m}(y x)]-d(q_{\xi}^{m}(y x),$ $f^{m}(y x;h)) \lambda(\xi x)m(x)]=0.$ (3.9) Shannon entropy $H[f^{m}(y x;h)]$ $h_{x}\dagger(\xi)$ $\mathcal{q}^{m}$ $f^{m}(y x;h_{x}^{*})$ $f^{m}(y x;h_{x}\dagger)$ (3.4) $-\psi_{x}$ ( ) $h$ Theorem 3.5. Canonical weight $h_{x}^{c}(\xi)$ $\delta_{g}\psi_{x}(h_{x}^{c};h-h_{x}^{c})=0$ for any $h.$ $f^{m}(y x;h_{x}^{c})$ $D(q_{\xi}^{m}(y x), f^{m}(y x;h_{x}^{c}))=-\psi_{x}(h_{x}^{c})$ for any $\xi.$ \S 4. \S 4.1. Mean weight entropy weight Definition 2.1 (ii) (2.6) mean weight $t_{x}(\xi;h)$ $t_{x}(\xi;h)=-h[f^{e}(y x;h)]-d(f^{e}(y x;h), q_{\xi}^{e}(y x))$

11 114 $h_{x}^{\uparrow}$ (2.8) mean weight Theorem 2.3 Corollary 4.1. Canonical weight $h_{x}^{\uparrow}$ mean weight $t_{x}(\xi;h_{x}^{\uparrow})=\log q_{\xi}^{e}(x x)-a_{x}[f^{e}(y x;h_{x}^{\dagger})]$ $A_{x}[p(y)]$ $:=\log p(x)+h[p(y)]$ $p_{\xi}(x;\theta)$ $\hat{\theta}_{m\xi}$ MLE $\log q_{\xi}^{e}(x x)=\log p_{\xi}(x;\hat{\theta}_{m\xi})-d(p_{\xi}(y;\hat{\theta}_{m\xi}), q_{\xi}^{e}(y x))$ $t_{x}(\xi;h_{x}^{\uparrow})=\log p_{\xi}(x;\hat{\theta}_{m\xi})-\{d(p_{\xi}(y;\hat{\theta}_{m\xi}), q_{\xi}^{e}(y x))+a_{x}[f^{e}(y x;h_{x}^{\uparrow})]\}$ AIC (Akaike, 1973) ( ) ( ) Definition 3.1 (ii) (3.6) entropy weight Entropy weight (3.6) Theorem 3.3 $h_{x}\dagger$ Corollary 4.2. (3.9) canonical weight entropy weight $t_{x}(\xi;h_{x}^{1})=h[q_{\xi}^{m}(y x)]-a_{x}[f^{m}(y x;h_{x}^{\uparrow})]$ $p_{\xi}(y;\theta)$ Corollary 4.2 $\theta_{m\xi}=$ $H[p_{\xi}(y;\theta)]$ $H[q_{\xi}^{m}(y x)]=h[p_{\xi}(y;\theta_{m\xi})]-d(p_{\xi}(y;\theta_{m\xi}), q_{\xi}^{m}(y x))$

12 115 $t_{x}(\xi;h_{x}^{\uparrow})=h[p_{\xi}(y;\theta_{m\xi})]-\{d(p_{\xi}(y;\theta_{m\xi}), q_{\xi}^{m}(y x))+a_{x}[f^{m}(y x;h_{x}^{\uparrow})]\}$ ( Shannon entropy) ( ) \S $\alpha-d$ ivergence $\alpha$-divergence $D_{\alpha}(p(y;\theta), q(y x)):=e[u_{\alpha}(\frac{q(y x)}{p(y;\theta)}) p(y;\theta)],$ $u_{\alpha}(r):= \frac{4}{1-\alpha^{2}}(1-r$ $)$. $-1<\alpha<1$ $\alpha$-divergence $e$-divergence $m$-divergence $u_{1}(r):=r\log r$ $u_{-1}(r):=-\log r$ $e$-divergence $\alpha=+1,$ $m$-divergence $\alpha=-1$ $\alpha$-divergence $B$ayes $\min_{q(y x)}e[d_{\alpha}(p_{\xi}(y;\theta), q(y x)) \pi_{\xi}(\theta x)\lambda(\xi x)]$ (4.1) \S 2 \S 3 Yanagimoto &Ohnishi (2009) $\min_{q(y x)}e[d_{\alpha}(q_{\xi}^{\alpha}(y x), q(y x)) h(\xi)]$ (4.2) $q_{\xi}^{\alpha}(y x)$ Bayes $\min_{q(y x)}e[d_{\alpha}(p_{\xi}(y;\theta), q(y x)) \pi_{\xi}(\theta x)]$ $q_{\xi}^{\alpha}(y x)\propto(e[\{p(y;\theta)\}^{\frac{1-\alpha}{2}} \pi_{\xi}(\theta x)])^{\frac{2}{1-\alpha}}$

13 116 (Corcuera&Giummole, 1999). (4.2) $h(\xi)$ canonical weight Definition 4.1. (i) canonical weight $h$ $q_{\xi}^{\alpha}(y x)$ $\alpha$-mixture $f^{\alpha}(y x;h):= \frac{1}{c_{x}(h)}(e[\{q_{\xi}^{\alpha}(y x)\}^{\frac{1-\alpha}{2}} h(\xi)])^{\frac{2}{1-\alpha}}$ (4.3) $c_{x}(h)$ (ii) canonical weight $h$ divergence weight $t_{x}(\xi;h)=u_{\alpha}(f^{\alpha}(x x;h))-d_{\alpha}(q_{\xi}^{\alpha}(y x), f^{\alpha}(y x;h))$ (4.4) \S 2 \S 3 Theorem 4.1. (4.3) $f^{\alpha}(y x;h)$ (4.2) $E[u_{-\alpha}(\frac{q_{\xi}^{\alpha}(x x)}{f^{\alpha}(x x;h)})-d_{\alpha}(q_{\xi}^{\alpha}(y x), f^{\alpha}(y x;h)) h(\xi)]=0$. (4.5) (4.5) (4.2) $u_{-\alpha}(c_{x}$ $)$ ( ) $\psi_{x}(h)$ $\psi_{x}(h):=-u_{-\alpha}(c_{x}(h))$ (4.6) Theorem 4.2. $s(\xi)=t_{x}(\xi;h)$ $\min u_{\alpha}(q(x x))$ $q(y x)$ subject to $-D_{\alpha}(q_{\xi}^{\alpha}(y x),$ $q(y x))+u_{\alpha}(q(x x))=s(\xi)$ (4.2) $f^{\alpha}(y x;h)$ $u_{\alpha}(r)$ Bayesian -likelihood $\log$ $\log q(x x)$

14 $ $ $\mathcal{q}^{\alpha}$ 117 $\alpha=-1$ $\alpha=+1$ (4.5) $u_{-\alpha}( \frac{q_{\xi}^{\alpha}(x x)}{f^{\alpha}(x x;h)})$ canonical weight $h_{x}\dagger(\xi)$ $u_{-\alpha}(1/r)$ $r$ $\delta_{g}\log f^{\alpha}(x x;h_{x}\dagger;h-h_{x}^{\dagger})=0$ for any. (4.7) $h$ Theorem 4.2 $\alpha=+1$ $\alpha=-1$ $h_{x}^{\uparrow}$ Theorem 4.3. (4.7) $f^{\alpha}(y x;h_{x}\dagger)$ $u_{-\alpha}( \frac{q_{\xi}^{\alpha}(x x)}{f^{\alpha}(x x;h_{x}^{\dagger})})=d_{\alpha}(q_{\xi}^{\alpha}(y x),$ $f^{\alpha}(y x;h_{x}^{\uparrow}))$ for any. (4.8) Theorem4.3 $h_{x}^{*}(\xi)=\lambda(\xi x)$ $\mathcal{q}^{\alpha}$ Theorem 4.4. $E[u_{-\alpha}(\frac{q_{\xi}^{\alpha}(x x)}{f^{\alpha}(x x;h)})-d(q_{\xi}^{\alpha}(y x), f^{\alpha}(y x;h)) \lambda(\xi x)m(x)]=0.$ $h_{x}\dagger$ (4.7) Bayesian $\log$ -hkelihood $f^{\alpha}(y x;h_{x}^{*})$ $\log f^{\alpha}(x x;h)$ $f^{\alpha}(y x;h_{x}^{\uparrow})$ (4.6) $\psi_{x}(h)$ $h$ prior

15 118 averaging density Theorem 4.5. Canonical weight $h_{x}^{c}(\xi)$ $\delta_{g}\psi_{x}(h_{x}^{c};h-h_{x}^{c})=0$ for any $h.$ $f^{\alpha}(y x;h_{x}^{c})$ $D(q_{\xi}^{\alpha}(y x), f^{\alpha}(y x;h_{x}^{c}))=-\psi_{x}(h_{x}^{c})$ for any $\xi.$ REFERENCES Akaike, H. (1973). Information theory as an extension of the maximum hkelihood principle. Pages in B.N. Petrov and F. Csaki (editors) Second Intemational Symposium on Information Theory. Akademiai Kiado, Budapest. Aitchison, J. (1975). Goodness of prediction fit. Biometrika, 62, Amari, S-$I$. and Nagaoka, H. (2000). Methods of Information Geometry. American Mathematical Society, Load Island. Corcuera, J. $M$. and Giummole, F. (1999). $A$ generalized Bayes rule for prediction. Scandinavian Joumal of Statistics, 26, Hoeting, J. $A$., Madigan, D., Raftery, A. $E$. and Volinsky, C. $T$. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, Kullback, S. (1959). Information Theory and Statistics. Wiley, New York. Ohnishi, T. and Yanagimoto, T. (2013). Twofold structure of duality in Bayesian model averaging. Joumal of the Japan Statistical Society, to appear. Stein, C. $M$. (1981). Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9, Yanagimoto, T. and Ohnishi, T., (2009). Bayesian prediction of a density function

16 119 in terms of $e$ -mixture. Journal of Statistical Planning and Inferen ce, 139, Yanagimoto, T. and Ohnishi, T., (2011). Saddlepoint condition on a predictor to reconfirm the need for the assumption of a prior distribution. Journal of Statistical Planning and Inference, 141,

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i kubostat2018d p.1 I 2018 (d) model selection and kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)

More information

1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI 平均に対する平滑化ブートストラップ法におけるバンド幅の選択に関する一考察 (A Study about

More information

Mathematical Foundation of Statistical Learning

Mathematical Foundation of Statistical Learning Statistical Learning Theory Part I 8. Knowledge Discovery and Free Energy Sumio Watanabe Tokyo Institute of Technology Review : Unified Framework of Statistical Learning Training data X 1, X 2,, X n q(x)

More information

(= ) ( Web-GIS

(= ) ( Web-GIS Stochastic Analyses of Site Amplifications for Providing Digital Hazard Maps of Strong Ground Motion at the Areas in the City of Owariasahi ~ An Analysis of the Accuracies Based on the Observations~ ***********

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

k2 ( :35 ) ( k2) (GLM) web web 1 :

k2 ( :35 ) ( k2) (GLM) web   web   1 : 2012 11 01 k2 (2012-10-26 16:35 ) 1 6 2 (2012 11 01 k2) (GLM) kubo@ees.hokudai.ac.jp web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 : 2 2 4 3 7 4 9 5 : 11 5.1................... 13 6 14 6.1......................

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib kubostat2015e p.1 I 2015 (e) GLM kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2015 07 22 2015 07 21 16:26 kubostat2015e (http://goo.gl/76c4i) 2015 (e) 2015 07 22 1 / 42 1 N k 2 binomial distribution logit

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM kubo@ees.hokudai.ac.jp https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

<8CA48B8694EF8E E E816991E C5816A5F8DC58F4994C52E706466>

<8CA48B8694EF8E E E816991E C5816A5F8DC58F4994C52E706466> 3 4 5 7 8 9 13 14 15 16 17 18 19 21 23 25 27 28 29 30 1 KYUSHU UNIVERSITY KYUSHU UNIVERSITY 2 KYUSHU UNIVERSITY KYUSHU UNIVERSITY 2 3 4 KYUSHU UNIVERSITY KYUSHU UNIVERSITY 3 5 6 KYUSHU UNIVERSITY KYUSHU

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

ブック

ブック ARMA Estimation on Process of ARMA Time Series Model Sanno University Bulletin Vol.26 No. 2 February 2006 ARMA Estimation on Process of ARMA Time Series Model Many papers and books have been published

More information

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation : kubostat2017b p.1 agenda I 2017 (b) probabilit distribution and maimum likelihood estimation kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 1 : 2 3? 4 kubostat2017b (http://goo.gl/76c4i)

More information

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

Natural Language Processing Series 1 WWW WWW 1. ii Foundations of Statistical NLPMIT Press 1999 2. a. b. c. 25 3. a. b. Web WWW iii 2. 3. 2009 6 v 2010 6 1. 1.1... 1 1.2... 4 1.2.1... 6 1.2.2... 12 1.2.3...

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

山形大学紀要

山形大学紀要 x t IID t = b b x t t x t t = b t- AR ARMA IID AR ARMAMA TAR ARCHGARCH TARThreshold Auto Regressive Model TARTongTongLim y y X t y Self Exciting Threshold Auto Regressive, SETAR SETARTAR TsayGewekeTerui

More information

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i

,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 200520866 ( ) 19 1 ,.,.,,. [15],.,.,,., 2003 3 2006 2 3. 2003 3 2004 2 2004 3 2005 2, 1., 2005 3 2006 2, 1., 1,., 1,,., 1. i 1 1 1.1..................................... 1 1.2...................................

More information

1 4 2 4 3 5 4? 7 5 9 6 10 7 11 8 13 9 16 10 17 11 19 12 20 13 21 2

1 4 2 4 3 5 4? 7 5 9 6 10 7 11 8 13 9 16 10 17 11 19 12 20 13 21 2 78-2 (2002) p.172-193 1 1 4 2 4 3 5 4? 7 5 9 6 10 7 11 8 13 9 16 10 17 11 19 12 20 13 21 2 ( ) ( )? 3 1 N i p i log p i i p i log p i i N i q i N i p i log q i N i p i { ( log q i ) ( log p i ) } = N i

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Vol. 29, No. 2, 125 139 (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of Information Systems and Mathematical Sciences, Faculty

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

CHUO UNIVERSITY 3

CHUO UNIVERSITY 3 2 CHUO UNIVERSITY 3 4 CHUO UNIVERSITY 5 6 CHUO UNIVERSITY 7 8 Journal of Economic Behavior and Orgnanization Games and Economic Behavior Journal of Comparative Economics CHUO UNIVERSITY 9 10 CHUO UNIVERSITY

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

Recent Developments and Perspectives of Statistical Time Series Analysis /ta) : t"i,,t Q) w (^ - p) dp *+*ffi t 1 ] Abraham, B. and Ledolter, J. (1986). Forecast functions implied by autoregressive

More information

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon Recovery Theorem Forward Looking Recovery Theorem Ross [2015] forward looking Audrino et al. [2015] Tikhonov Tikhonov 1. Tikhonov 2. Tikhonov 3. 3 1 forward looking *1 Recovery Theorem Ross [2015] forward

More information

Abstract Gale-Shapley 2 (1) 2 (2) (1)

Abstract Gale-Shapley 2 (1) 2 (2) (1) ( ) 2011 3 Abstract Gale-Shapley 2 (1) 2 (2) (1) 1 1 1.1........................................... 1 1.2......................................... 2 2 4 2.1................................... 4 2.1.1 Gale-Shapley..........................

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

AMR日本語版書式

AMR日本語版書式 MMRC DISCUSSION PAPER SERIES No. 229 顧 客 嗜 好 の 時 間 的 変 化 を 組 み 込 んだ 音 楽 CD 選 好 モデルの 構 築 と CRM への 応 用 東 京 大 学 大 学 院 経 済 学 研 究 科 経 営 専 攻 博 士 課 程 勝 又 壮 太 郎 東 京 大 学 大 学 院 経 済 学 研 究 科 教 授 阿 部 誠 2008 年 4 月 東

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

土木学会論文集 D3( 土木計画学 ), Vol. 71, No. 2, 31-43,

土木学会論文集 D3( 土木計画学 ), Vol. 71, No. 2, 31-43, 1 2 1 305 8506 16 2 E-mail: murakami.daisuke@nies.go.jp 2 305 8573 1 1 1 E-mail: tsutsumi@sk.tsukuba.ac.jp Key Words: sampling design, geostatistics, officially assessed land price, prefectural land price

More information

dvi

dvi 2017 65 2 201 215 2017 1 2 2 2 3 2017 1 31 3 22 3 30 AIC 1 1 Lasso 1. MLB 2015 1 Whiteside et al., 2016 1 112 8551 1 13 27 2 112 8551 1 13 27 3 522 8522 1 1 1 202 65 2 2017 1 MLB 4 1 Lyman et al., 2002

More information

<966B91E58C6F8DCF8A77959493AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E9790462E696E6464>

<966B91E58C6F8DCF8A77959493AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E9790462E696E6464> 1 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 2 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 3 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

More information

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]] 30 4 2016 3 pp.195-209. 2014 N=23 (S)AdvOV (S)OAdvV 2 N=17 (S)OAdvV 2014 3, 2008 Koizumi 1993 3 MP IP VP 1 MP 2006 2002 195 Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb

More information

1405350.indd

1405350.indd Guidebook Faculty of Engineering, The University of Tokushima http://www.tokushima-u.ac.jp/e/ Guidebook Faculty of Engineering, The University of Tokushima http://www.ce.tokushima-u.ac.jp Civil and

More information

情報理論 第5回 情報量とエントロピー

情報理論  第5回 情報量とエントロピー 5 () ( ) ( ) ( ) p(a) a I(a) p(a) p(a) I(a) p(a) I(a) (2) (self information) p(a) = I(a) = 0 I(a) = 0 I(a) a I(a) = log 2 p(a) = log 2 p(a) bit 2 (log 2 ) (3) I(a) 7 6 5 4 3 2 0 0.5 p(a) p(a) = /2 I(a)

More information

1 1979 Carter Wegman[8] [1] error-correctiong code[9] [6] [14]( ) Impagliazzo,Levin,Luby [17] leftover hash lemma ( leftover hash lemma Impagliazzo Zu

1 1979 Carter Wegman[8] [1] error-correctiong code[9] [6] [14]( ) Impagliazzo,Levin,Luby [17] leftover hash lemma ( leftover hash lemma Impagliazzo Zu Leftover Hash Lemma M1 Universal hash families and the leftover hash lemma, and applications to cryptography and computing D.R.Stinson Department of Combinatorics and Optimization University of Waterloo

More information

東アジアへの視点

東アジアへの視点 8 8 1955 1 2 3 1. Sakamoto 2012 2012a b 8 8 2. 2.1 AGI Industrial Structure of the Prefectural Economy in Kyushu Area in Japan: Trend and Future Prediction 56th European Regional Science Association Congress

More information

toukei08.dvi

toukei08.dvi 2004 52 1 117 134 c 2004 1 2 2003 8 4 2004 3 19 Piecewise Constant Intensity Model Piecewise Constant Intensity Model 1. the oldest-old Carey et al.1992 1 168 8508 2 19 1; sibuyam@takachiho.ac.jp 2 350

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

2002 31 3 4 5 6 10 12 15 1 18 19 20 1

2002 31 3 4 5 6 10 12 15 1 18 19 20 1 2002 31 3 4 5 6 10 12 15 1 18 19 20 1 2002 31 2 21 NATO 22 NATO 23 1 24 25 26 27 2 Soviet Industrial Location: A Reexamination 28 29 Department of History and Classics, University of Alberta 30 31 2 2002

More information

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応

ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応 VaR VaR VaR VaR GARCH E-mail : yoshitaka.andou@boj.or.jp VaR VaR LTCM VaR VaR VaR VaR VaR VaR VaR VaR t P(t) P(= P() P(t)) Pr[ P X] =, X t100 (1 )VaR VaR P100 P X X (1 ) VaR VaR VaR VaR VaR VaR VaR VaR

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

:EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ), Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag.

:EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ), Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag. :EM,,. 4 EM. EM Finch, (AIC)., ( ), ( ),. 1. 1990. Web,,.,., [1].,. 2010,,,, 5 [2]., 16,000.,..,,. (,, )..,,. (socio-dynamics) [3, 4]. Weidlich Haag. [5]. 606-8501,, TEL:075-753-5515, FAX:075-753-4919,

More information

1

1 1 , Cross-Entropy Cross-Entropy ( ) (Coin flipping, finding max) 2 , ( ).. X = (X 1,, X n ) : R n - H : R n R f : X., l = H(x)f(x)dx = E f [H(X)] R n., E f : f X. 3 (CMC),, X 1,, X N, i.i.d, f, ˆl CMC

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6]) Generalized Recovery Theorem Ross[11] Recovery Theorem(RT) RT forward looking Kiriu and Hibiki[8] Generalized Recovery Theorem(GRT) Jensen et al.[6] GRT RT Kiriu and Hibiki[8] 1 backward looking forward

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

(note-02) Rademacher 1/57

(note-02) Rademacher 1/57 (note-02) Rademacher 1/57 (x 1, y 1 ),..., (x n, y n ) X Y f : X Y Y = R f Y = {+1, 1}, {1, 2,..., G} f x y 1. (x 1, y 1 ),..., (x n, y n ) f(x i ) ( ) 2. x f(x) Y 2/57 (x, y) f(x) f(x) y (, loss) l(f(x),

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

1) K. J. Laidler, Reaction Kinetics, Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, Catalysis and Inhibition of Chemical Reactio 1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactions", Butterworths, London (1963) Chap. 7, p. 185. 2)

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

Q A Q Q Q Q 50

Q A Q Q Q Q 50 Faculty of Engineering 1. 2. 3. 4. keyword 49 Q A Q Q Q Q 50 Faculty of Engineering 51 Q A Q A Q Q Q Q 52 Faculty of Engineering 53 Q A Q A Q Q Q Q 54 Faculty of Engineering 55 Q A Q A Q Q Q Q 56 Faculty

More information

分布

分布 (normal distribution) 30 2 Skewed graph 1 2 (variance) s 2 = 1/(n-1) (xi x) 2 x = mean, s = variance (variance) (standard deviation) SD = SQR (var) or 8 8 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 8 0 1 8 (probability

More information

10 2016 5 16 1 1 Lin, P. and Saggi, K. (2002) Product differentiation, process R&D, and the nature of market competition. European Economic Review 46(1), 201 211. Manasakis, C., Petrakis, E., and Zikos,

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

2 fukui@econ.tohoku.ac.jp http://www.econ.tohoku.ac.jp/~fukui/site.htm 200 7 Cookbook-style . (Inference) (Population) (Sample) f(x = θ = θ ) (up to parameter values) (estimation) 2 3 (multicolinearity)

More information

Meas- urement Angoff, W. H. 19654 Equating non-parallel tests. Journal of Educational Measurement, 1, 11-14. Angoff, W. H. 1971a Scales, norms and equivalent scores. In R. L. Thorndike (Ed.) Educational

More information

( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model Partial Credit Model Tetrachoric Correlation ( ) 2 x y x y s r 1 x 2

( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model Partial Credit Model Tetrachoric Correlation ( ) 2 x y x y s r 1 x 2 1 (,2007) SPSSver8 1997 (2002) 1. 2. polychoric correlation coefficient (polyserial correlation coefficient) 3. (1999) M-plus R 1 ( ) 1.1 Polychoric Correlation Polyserial Correlation Graded Response Model

More information

所得税と課税最低限に関する一考察

所得税と課税最低限に関する一考察 1. 2. 2.1 2.2 2.2.1 2.2.2 3. 3.1 3.2 3.3 4. 4.1 4.2 5. 1 1. 1 14 2 1985 3 1981 4 1997 5 2005 325 6 1 2005 19942000 2 http://www.mof.go.jp/singikai/zeicho/tosin/140614c.htm 3 1985p.107 4 1981p.122 5 1997p.232

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information