page: 1 1 Club guessing sequence , 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC

Size: px
Start display at page:

Download "page: 1 1 Club guessing sequence , 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC"

Transcription

1 page: 1 1 Club guessing sequence , 1). M. Foreman ([ 7 ], [ 8 ] ). 1960,,,, ZFC,,.,,., ZFC,, 20.. G. Cantor.., Zermelo ZFC 2).,., ZFC,., ZFC ZFC, ZFC., K. Gödel [19] L P. Cohen [ 4 ], [ 5 ]., ZFC,,. K. Gödel, ZFC., Cohen ZFC., ZFC., 1970 ZFC., 1980., S. Shelah PCF 3) S. Todorcevic minimal walk. ZFC,., 1

2 page: 2 2. ZFC,.,. club guessing sequence, PCF,.,. 1.2 S. Shelah,.,,., [34] 4.2., S. Shelah [42]. 1 G. Cantor,.,,., 2 ℵ 0 = ℵ1. 2 ℵ 0 = ℵ1 (CH)., κ 2 κ = κ + (GCH)., K. Gödel [19] 2 ℵ 0 = ℵ1 P. Cohen [ 4 ] 2 ℵ 0 > ℵ1, ZFC 4). ℵ 0, (1) κ < λ, 2 κ 2 λ. (2) (König 5) ) cf(2 κ ) > κ. δ cf(δ), δ., δ, otp(x) cf(δ) δ X 6). cf(κ) = κ κ... κ κ +. ℵ ω {ℵ n : n < ω} ℵ ω, ℵ 0., ℵ ω., ZFC. W. B. Easton [12], 1.1 ZFC., J. Silver [45]. 1.2 (J. Silver [45]) κ ℵ 0 < cf(κ) < κ., λ < κ 2 λ = λ + 2 κ = κ +. 7) 2

3 page: 3 Club guessing sequence 3,, 1.1., M. Magidor (M. Magidor [33]), : n < ω 2 ℵ n = ℵn+1 2 ℵ ω = ℵω+2., ℵ ω GCH. ZFC., 2 ℵ ω., S. Shelah [39], PCF,. ℵ 1.4 ℵ 0 ω < max{ℵ ω4, (2 ℵ 0 ) + }. L. Harrington 1986, S. Shelah [42] :. 8),.., S. Shelah ZFC 9). club guessing sequence. J. Cummings [ 6 ].. (1) V K. Gödel L. (2) V, L, canonical,. (3) PCF,. (4). canonical., (1) (3)..,., [16] K. Kunen [31] ( ) T. Jech [24].,.,.,., Skolem hull.,,. 3

4 page: club guessing sequence 2.1,,. α X α β < α γ β γ X.. X, X δ δ, δ X. δ {γ : γ < δ}, X δ = {γ X : γ < δ}. lim(x) X. X,. sup(x) X, max(x) ( )X. X Y,, X = X \ ζ Y ζ < sup(x), X Y, X Y. X., X \ ζ = {α X : α ζ}, X Y X Y. X Y X Y. 2.1 δ. D δ, δ : (1) D δ. (2) γ < δ γ D, γ D., closed unbounded, club. 10) (2) D., δ, δ X, δ lim(x) δ δ cf(δ). {D α : α < µ} δ µ < cf(δ), α<µ D α δ.. α<µ D α,., ζ < δ, γ ζ γ α<µ D α. δ γ n : n < ω. γ 0 = ζ. γ n. α < µ, D α δ ξ n,α > γ ξ n,α D α. {ξ n,α : α < µ} δ µ < cf(δ), cf(δ)., α < µ ξ n,α < γ n+1 γ n+1 < δ. γ = sup n<ω γ n. cf(δ), γ < δ. α < µ D α γ γ. D α, γ D α., γ α<µ D α., γ γ 0 = ζ,. cf(δ) = ω., δ = ω, D 1 = {2n : n < ω} D 2 = {2n + 1 : n < ω} ω. 2.3 X, X F, F X. 4

5 page: 5 Club guessing sequence 5 (1) F X F. (2) A B X A F B F. (3) A F B F A B F., (X, E, µ), F = {Y E : µ(y ) = 1} X., φ(x) x X F, φ., F X. δ., F = {Y δ : Y δ }, F δ ). club X I, I X : (1) I X I. (2) A B X B I A I. (3) A I B I, A B I., (X, E, µ), I = {Y E : µ(y ) = 0} X. I, X. F X, I = {Y X : X \ Y F } X. F. I X F = {Y X : X \ Y I} X, I., 1 0,. club., δ, δ X δ D X D =. δ, δ., δ X, δ D X D. 2.2, δ S D S D., club, κ club NS κ..,. 2.5 κ, X α : α < κ κ. (1) X α : α < κ diagonal intersection κ. α<κ X α = {γ < κ : α < γ(γ X α )}. 5

6 page: 6 6 (2) X α : α < κ diagonal union κ. α<κ X α = {γ < κ : α < γ(γ X α )}.,. 2.6 κ \ α<κ X α = α<κ (κ \ X α ). κ., κ D α : α < κ diagonal intersection α<κ D α.. D = α<κ D α., D, ζ < κ, ζ D. κ γ n : n < ω. γ 0 = ζ. γ n γ n , α γ n D α., γ n α γ n D α γ n+1. γ = sup n<ω γ n. γ D. diagonal intersection, α < γ γ D α. α < γ. γ = sup n<ω γ n, α < γ m m < ω. γ n, m n < ω γ n D α., γ D α. D α γ D α. D δ D. α < δ δ D α., D \ (α + 1) D α 12)., δ D α. δ D α. α < κ D α = κ \ α, α<κ D α =., α < κ D D α κ., 2.2 κ., 2.6, κ κ,. 2.7 I X., I κ : λ < κ {Y α : α < λ} I α<λ Y α I. κ I, I : I X α : α < κ α<κ X α I ,. 2.8 κ, NS κ κ. NS κ κ κ. 2.9 κ, I κ κ κ., NS κ I. 2.2 Club guessing sequences Lim. κ, Cof(κ) κ. λ < κ, κ Cof(λ) κ 6

7 page: 7 Club guessing sequence 7. Cof( κ) κ (S. Shelah [39]) κ, S κ., C δ : δ S, S club guessing sequence (fully club guessing sequence) : (1) δ S, C δ δ, (2) κ D, C δ D δ S. C δ : δ S, (1) (2) (2), S club guessing sequence (tail club guessing sequence). (2) κ D, C δ D δ S., club guessing sequence FCG-, club guessing sequence TCG-., A δ : δ S κ (S), S S δ A δ δ, A δ : δ S FCG-. ( κ (S) 2.3 ). (2) C δ D δ S., C FCG-, κ, S = {δ S : C δ D}., κ D S D =., D D κ, C FCG- C δ D D δ S., C δ D, δ S., δ D, δ D. S D =. TCG-. FCG- TCG-,. C δ : δ S FCG-, C δ {0} : δ S TCG- FCG-., TCG- FCG-, ( [23]) κ, S κ Lim., C δ : δ S TCG-, C δ \ ζ : δ S \ (ζ + 1) FCG- ζ < κ., S TCG- S FCG-., FCG-, ZFC (S. Shelah [39]) θ κ θ + < κ., κ Cof(θ) S, S FCG-., θ.,., X, acc(x) X α X α α., acc(x) = X lim(x). nacc(x) X \ acc(x). δ, D, acc(d) δ. 7

8 page: θ κ θ + < κ. S κ Cof(θ), C δ : δ S δ S C δ δ C δ = θ., C δ E : δ S acc(e) FCG- κ E.. E. κ D α : α θ +. D 0 = κ. β < α D β D α. α, D α = β<α D β. 2.2, D α κ. α, α = β + 1 β., δ S acc(d β ), C δ D β δ. cf(δ) > ℵ 0, C δ D β., C δ D β : δ S acc(d β ) FCG-., δ S acc(d β ) C δ D β D β+1 κ D β+1. D β+1 D β. D α : α θ +, δ S acc(d θ +)., C δ D α : α < θ +. α < θ +, D α+1 C δ D α+1 C δ D α. γ α C δ (D α \ D α+1 )., γ α : α < θ + C δ., C δ = θ.,. D β+1.,.,.,. M. Foreman ( [ 7 ] [14] ). θ = ℵ 0, cf(δ) = ℵ 0 δ,.,., S. Shelah [39], M. Kojman [28] 13) (S. Shelah [39]) θ, λ, κ θ < λ < κ. S κ Cof(θ), δ S Cof(λ)., S FCG- C δ : δ S δ S C δ Cof( λ).. δ κ Lim, otp(e δ ) = cf(δ) δ e δ. D κ, δ S., n < ω δ f δ (D, n) f δ(d, n). f δ(d, 0) = e δ. f δ (D, n) = {sup(d ξ) : ξ f δ(d, n) ξ > min(d)}. f δ(d, n + 1) = {e γ : γ f δ (D, n) Cof(<λ)}. 8

9 page: 9 Club guessing sequence 9, f δ (D) = n<ω f δ(d, n). D, n < ω, f δ (D, n) D,, f δ (D) D δ S acc(d), f δ (D, 0) δ., f δ (D) δ. δ S acc(d), ζ < δ. δ acc(d), D δ, γ D ζ < γ < δ. e δ δ, ξ e δ ξ > γ., ξ e δ = f δ (D, 0), ξ > γ min(d)., sup(d ξ) f δ (D, 0)., sup(d ξ) γ > ζ., f δ (D, 0) δ δ S n < ω, f δ (D, n) < λ f δ(d, n) < λ. δ S, n < ω., f δ (D, 0) = e δ = cf(δ) = θ < λ. f δ (D, n) < λ, f δ(d, n) f δ (D, n) < λ. f δ(d, n) < λ f δ (D, n + 1) < λ. γ f δ(d, n) Cof(<λ), e γ = cf(γ) < λ., f δ (D, n + 1) λ f δ(d, n). f δ (D, n) < λ λ, f δ (D, n + 1) < λ κ D, f δ (D) : δ S acc(d) FCG- D. κ D α : α λ. D 0 κ Cof(λ) κ.. α λ, β < α D β, D α = β<α D β. D α, D α+1., f δ (D α ) : δ S acc(d α ) FCG-. δ S acc(d α ), f δ (D α ) δ., κ D α+1 δ S acc(d α ) f δ (D α ) D α+1. D α+1 D α. δ S acc(d λ )., λ α n : n < ω n : n < ω, α n α < λ f δ (D α, n) = f δ (D αn, n). m < n α m., α n α < λ f δ (D α, n) = f n δ (D α, n) α n < λ. n = 0 α 0 = 0. f δ (D, 0) D. n > 0 α n = α n 1., α n α < λ, f δ (D α n, n 1) = f δ (D α, n 1). f, f δ (D α, n) = f n δ (D α, n). α n α < λ f δ (D α, n) = f δ (D αn, n) α n < λ., β < λ β α < λ α f δ (D α, n) f δ (D β, n)., β 0 = α n λ β ν : ν < λ, ν < λ f δ (D βν+1, n) f δ (D βν, n). ν < λ, f δ 9

10 page: f δ (D β ν+1, n) = f δ (D β ν, n) = f δ (D α, n), n (1) min(d βν ) < ξ ν min(d βν+1 ) (2) min(d βν+1 ) < ξ ν sup(d βν+1 ξ ν ) < sup(d βν ξ ν ) ξ ν f δ (D β ν, n). f δ (D β ν, n) < λ, ξ f δ (D β ν, n) {ν < λ : ξ ν = ξ} λ. X = {ν < λ : ξ ν = ξ}., min(d βν ) < ξ ν min(d βν+1 ) ν X., ν < µ < λ µ X., D βµ D βν+1, ξ µ = ξ min(d βµ )., ξ µ., ν X min(d βν+1 ) < ξ sup(d βν+1 ξ) < sup(d βν ξ)., ν < µ X, sup(d βµ ξ) sup(d βν+1 ξ) < sup(d βν ξ)., sup(d βν ξ) : ξ X.., α n. α ω = sup n<ω α n. λ, α ω < λ., β < λ n < ω, α n, β α ω f δ (D β, n) = f δ (D αω, n). f δ (D β ) = f δ (D αω ).,, f δ (D αω +1) = f δ (D αω ) D αω. D αω +1. S f δ (D) acc(d) δ S acc(d)., δ S, C δ = nacc(f δ (D)). 2.17, S, C δ : δ S FCG-., δ S, C δ Cof( λ). δ S γ C δ. cf(γ) < λ. γ f δ (D)., γ nacc(f δ (D)). ζ < γ, ζ < ξ < γ ξ f δ (D). f δ (D) = n<ω f δ(d, n), γ f δ (D, n) n < ω., γ f δ (D, n) Cof(<λ), e γ f δ (D, n). S, f δ (D) acc(d), γ acc(d)., D γ γ. ζ < ζ < γ D ζ. e γ γ, ξ > ζ ξ e γ. e γ f δ (D, n), ξ f δ (D, n)., sup(d ξ) f δ(d, n + 1) f δ (D). ζ D ξ, sup(d ξ) ζ > ζ., γ f δ (D) θ + < κ, A. Ros lanowski S. Shelah [37]., κ κ ℵ 2, κ Lim FCG-. 10

11 page: 11 Club guessing sequence 11 κ ℵ 2 S. Shelah [41]. 2.3 FCG- θ κ θ + < κ, κ Cof(θ), club guessing sequence,., diamond κ, S κ., κ (S) A δ : δ S : (1) δ S, A δ δ. (2) X κ, {δ S : X δ = A δ } κ., κ(s) A δ : δ S : (1) δ S, A δ P(δ) A δ δ. (2) X κ, κ D, δ D S X δ A δ. S, S = κ κ S, κ(s) κ (S) (D. Jensen [26]) V = L, κ, κ κ ineffable 14)., κ κ. κ S κ (S). V = L,. κ 2 <κ = κ., S. Shelah, κ ℵ (S. Shelah [43]) κ = λ + = 2 λ, S κ. α S cf(α) cf(λ) κ (S) (S. Shelah [43]) κ = λ +, 2 λ = λ + κ.. λ J. Gregory, λ S. Shelah (J. Gregory [21], S. Shelah [40]) GCH. κ = λ +, T = {α < κ : cf(α) cf(λ)}., κ(t ). square λ. λ, C α : α λ + Lim. (1) α λ + Lim, C α α. (2) α λ + Lim, cf(α) < λ otp(c α ) < λ. (3) β < α C α, C β = C α β. C α : α λ + Lim λ. (2) (3), α λ + Cof(λ) otp(c α ) = λ. λ + 11

12 page: 12 12, α λ + Lim, cf(α) λ, α λ. λ, (3) α λ + Lim. V = L (D. Jensen [26]) V = L, λ λ. S. Shelah λ θ < λ, S λ + Cof(θ). C α : α S, S square : (1) α S, C α α otp(c α ) = θ. (2) α, β S, γ C α C β, C α γ = C β γ. square. λ λ, λ θ λ λ + Cof(θ) square., S. Shelah ZFC (S. Shelah [39]) θ < λ., λ + Cof(θ) λ square λ, 2.29 λ. θ κ, κ Cof(θ).,. 3 ℵ 2 club guessing sequence, M. Gitik S. Shelah., club guessing sequence,.,. I κ. 3.1 P(κ) I. X I Y (X \ Y ) (Y \ X) I. P(κ)/I = {[X] I : X P(κ) \ I}. P(κ)/I I. [X] I X I. [X] I I [Y ] I X \ Y I. well-defined. 12

13 page: 13 Club guessing sequence P(κ)/I [X] I [Y ] I, [X] I [Y ] I compatible : [Z] I I [X] I [Z] I I [Y ] I [Z] I P(κ)/I. [X] I [Y ] I compatible, incompatible. [X] I [Y ] I imcompatible, X Y I. 3.3 A P(κ)/I A P(κ)/I : A A B incompatible. P(κ)/I A, A P(κ)/I A A, A = A. A, [X] I P(κ)/I [X] I compatible [A] I A. 3.4 P(κ)/I A A κ, I 15)., generic embedding,., R. Solovay [46]. generic embedding, M. Foreman [13]. NS ω1, J. Steel R. Van Wesep [47] ZF + DC + AD R + Θ, M. Foreman, M. Magidor S. Shelah [15] supercompact. 16), ω 1.,. 3.5 X I S I S. I S = {Y X : Y S I}. 3.6 (M. Gitik and S. Shelah [17]) (1) κ ℵ 2 κ, NS κ. (2) θ κ θ + < κ, NS κ (κ Cof(θ)). κ ℵ 3 (1), M. Gitik S. Shelah [17] TCG-. NS κ, NS κ (κ Cof(θ)). 3.7 (S. Shelah [39]) C = Cδ : δ S κ S TCG-. κ TCG( C) X κ : κ D, C δ D δ δ X. TCG( C) TCG( C). κ X TCG( C), κ D δ X C δ D. 3.8 C = C δ : δ S κ S TCG-. TCG( C) κ κ.. X κ, X TCG( C). X, X ζ ζ < κ. κ \ ζ κ, {δ S : C δ κ \ ζ} TCG( C). X {δ S : C δ κ \ ζ}, X TCG( C). 13

14 page: κ, {X α : α < µ} TCG( C) µ < κ., α < µ κ D α δ X α C δ D α. D = α<µ D α., µ < κ 2.2 D. X = α<µ X α TCG( C) δ X C δ D. δ X, δ X α α < µ. C δ D α., D D α, C δ D. X α : α < κ TCG( C). α < κ, δ X α C δ D α κ D α. D = α<κ D α. 2.6 D. X = α<κ X α TCG( C), δ X C δ D. diagonal union, δ X α α < δ. D α C δ D α., 2.6, D \ (α + 1) D α., C δ D. 3.9 (J. Baumgartner, A. Taylor, and S. Wagon [ 2 ]) I J κ. I, I J., J = I X X P(κ) \ I. NS κ, κ κ I, κ S, I = NS κ S. S κ., {[X α ] NSκ S : α < µ} P(κ)/NS κ S, {[X α S] NSκ : α < µ} P(κ)/NS κ., NS κ NS κ S (folklore) I κ κ. {[X α ] I : α < κ} P(κ)/I., P(κ) \ I X α : α < κ, (1) α < κ [X α ] = [X α] (2) β < α < κ X β X α =. disjointing property. (P, P ) D, D I κ. D P(κ)/I : [X] I P(κ)/I, [D] I D [D] I I [X] I., A D P(κ)/I A., κ ℵ 3 3.6(1). ( 3.6). κ ℵ 3, NS κ. S κ Cof(ω) Cof( ℵ 2 ). 2.14, S S S TCG- C = C δ : δ S δ S C δ Cof( ℵ 2 ). 3.8 TCG( C) κ 14

15 page: 15 Club guessing sequence 15., 2.9 NS κ TCG( C). NS κ κ, 3.9 S T, TCG( C) = NS κ T. 3.11, S S α : α < κ. (1) {[S α ] NSκ S : α < κ} P(κ)/NS κ S. (2) α < κ TCG- C α δ : δ S α TCG( C α δ : δ S α ) = NS κ S α. δ S α otp(c α δ ) = ω. NS κ, NS κ S. 3.10, κ S α : α < κ α < κ [S α ] NSκ S = [S α] NSκ S β < α < κ S β S α =. α < κ S α S α., [S α ] NSκ S = [S α] NSκ S S α S α, TCG( C δ α : δ S α ) = NS κ S α, TCG( C δ α : δ S α ) = NS κ S α. C δ : δ S : δ S α α < κ, C δ = C α δ. α < κ, C δ δ Cof( ℵ 2 ) ω., δ S otp(c δ ) = ω. C δ : δ S TCG κ D, κ E : δ S E C δ D. D κ. S = {δ S : C δ D}. S (κ \ S), E., κ \ (S (κ \ S)). κ \ (S (κ \ S)) = (κ \ S) S = S \ S. S \ S S, {[S α ] NSκ S : α < κ}, S α ( S \ S) α < κ. S α S, S α ( S \ S) = S α \ S. TCG( C δ α : δ S α ), S α \ S = {δ S α : Cδ α D} TCG( C δ α : δ S α )., TCG( C δ α : δ S α ) = NS κ S α, S α \ S NS κ S α. S α \ S S α, S α \ S... κ D α : α ω 1. D 0 Cof( ℵ 2 ) κ. α ω 1 D β : β < α D α = β<α D β. D α D α+1. D α κ, 3.12 κ D α+1 δ D α+1 S C δ D α. D α+1 acc(d α ). δ D ω1 ω., otp(d ω1 δ) = ω D ω1. cf(δ) = ω, δ D 0, D 0 δ Cof( ω 2 )., δ S. α < ω 1 δ D α+1 S, C δ D α. C δ \ ζ α D α ζ α < δ. ζ α C δ. C δ = ℵ 0 15

16 page: 16 16, {α < ω 1 : ζ α = ζ} ζ C δ., β < ω 1, ζ α = ζ β α < ω 1 C δ \ ζ D α D β., C δ \ ζ D ω1. γ C δ \ ζ., α < ω 1 γ D α+1 acc(d α )., D α γ γ. cf(γ) ω 2 > ω 1, α<ω 1 (D α γ) γ. α<ω 1 (D α γ) = α<ω 1 D α γ = D ω1 γ., otp(d ω1 δ) otp(d ω1 γ) ω 2., δ D ω1 ω. 4 PCF club guessing sequence S. Shelah [39] PCF,. club guessing sequence. ℵ, PCF ℵ 0 ω < max{ℵ ω4, (2 ℵ 0 ) + }, club guessing sequence X, X U :, F X U F, F = U., Y X Y U X \ Y U. A. ΠA, dom(f) = A α A f(α) < α f. U A, ΠA = U U. f = U g {α A : f(α) = g(α)} U. f U g {α A : f(α) g(α)} U., = U, U. X, X X. Y X, X x, x X y Y y, X Y (X, X ) (cofinal). X (X, X ) cf(x, X ). X cf(x, X ). 4.2 A, pcf(a). pcf(a) = {cf(πa, U ) : U A }. non-principal, principal 17). pcf possible cofinality, PCF. S. Shelah, pcf,. 18) 16

17 page: 17 Club guessing sequence 17 pcf. 4.3 (1) A, A (+) = {κ + : κ A}. (2) A A < min A, progressive. (3), A : µ κ A, µ < λ < κ λ A., A = {ℵ n : n < ω or n = ω + 1}. ℵ ω ℵ 1 ℵ ω+1 A, ℵ ω. 4.4 A progressive. (1) A pcf(a). (2) A A, pcf(a ) pcf(a). (3) pcf(a) max pcf(a). (4) B = A + β B max pcf(b β) < β pcf(a) B. 19) 4.5 X, κ, [X] κ X κ. 4.6 A progressive. (1) pcf(a). (2) cf([sup A] A, ) = max pcf(a)., S. Shelah scale. 4.4(1)(3) 4.6(1), A = {ℵ n : 0 < n < ω} ℵ ω+1 pcf(a)., cf(πa, U) = ℵ ω+1 A U., S. Shelah [39]. f g ΠA, f < fin g {κ A : f(κ) g(κ)} < ℵ 0., κ A f(κ) < g(κ). 4.7 A = {ℵ n : 0 < n < ω}. B A ΠB f α : α < ω ω+1. (1) f α : α < ω ω+1 < fin -. (2) {f α : α < ω ω+1 } (ΠB, < fin )., f ΠB, f < fin f α α < ω ω+1. ΠA/fin ω ω+1 scale. pcf. 4.8 µ., µ D µ + = max pcf(d (+) )., [ 1 ]. 4.9 A = {ℵ n : 0 < n < ω}., pcf(a) < ℵ 4.. pcf(a) ℵ 4. A, 4.6(1) pcf(a). 4.4(1), ℵ 1 A pcf(a)., ℵ ω4 17

18 page: pcf(a) ω 3 Cof(ω 1 ) FCG- C δ : δ ω 3 Cof(ω 1 ). δ ω 3 Cof(ω 1 ) C δ otp(c δ ) = ℵ 1., ℵ ω4 κ α : α < ω 3. κ 0 = ℵ 1. α, β < α κ β, κ α = sup β<α κ β. β α κ β, κ α+1. δ ω 3 Cof(ω 1 ), B α,δ = {κ + β : β nacc(c δ ) β α}, λ α,δ = max pcf(b α,δ ). λ α = sup{λ α,δ : δ ω 3 Cof(ω 1 ) λ α,δ < ℵ ω4 }. λ α ℵ ω4 ℵ 3, ℵ ω4. κ α+1 = (max{κ α, λ α }) +. D 0 = {κ α : α < ω 3 }, η = sup D 0., D 0 η, cf(η) = ω 3 ω η D 1, max pcf(d (+) 1 ) = η +. D 2 = D 0 D 1, D 2 η, D 2 D 0, 4.4(2) max pcf(d (+) 2 ) η +. D (+) 2 η max pcf(d (+) 2 ) η., max pcf(d (+) 2 ) η., max pcf(d (+) 2 ) η +., max pcf(d (+) 2 ) = η +. E = {α < ω 3 : κ α D 2 }., E ω 3. C δ : δ ω 3 Cof(ω 1 ) FCG-, C δ E δ ω 3 Cof(ω 1 ). B = {κ + γ : γ nacc(c δ )}. B 4.4(4). B = ℵ 1 = A +. pcf(a) ℵ ω4, B pcf(a)., κ B max pcf(b κ) < κ. κ B, B κ = κ + γ γ nacc(c δ ). γ nacc(c δ ), α = max(c δ γ) α < γ 20)., B κ = {κ + β : β nacc(c δ ) β α} = B α,δ., λ α,δ = max pcf(b α,δ ) = max pcf(b κ) max pcf(b) max pcf(d (+) 2 ) = η + < ℵ ω4., λ α,δ λ α < κ α+1 κ γ < κ., max pcf(b κ) < κ. 4.4(4). ℵ 4.10 ℵ 0 ω < max{ℵ ω4, (2 ℵ 0 ) + }.., 2 ℵ 0 ℵω, ℵ ℵ 0 ω (2 ℵ 0 ) ℵ 0 = 2 ℵ 0. 2 ℵ 0 < ℵω. A = {ℵ n : 0 < n < ω} (2), cf([ℵ ω ] ℵ 0, ) = max pcf(a) < ℵω4. λ = cf([ℵ ω ] ℵ 0, ), Xα : α < λ ([ℵ ω ] ℵ 0, )., X [ℵω ] ℵ 0 X X α α < λ., ℵ ω ℵ 0 λ 2 ℵ 0 = λ < ℵ ω4 18

19 page: 19 Club guessing sequence 19. pcf FCG-,., pcf,., ZFC, S. Shelah. PCF, M. Burke M. Magidor [ 3 ] U. Abraham M. Magidor [ 1 ]. 5 Universality M. Džamonja, M. Kojman, S. Shelah universality, club guessing sequence.., A. A, B A, A B A B., A B A B., A., U A A universal family, A A A B B U. universal family A universality., B A basis, A A B A B B., A. A A A Q G. Cantor., {Q} A universal family, A universality 1. singleton universal family, universal., A A ω A ( ω) A., ω ω reverse, ω n ( ω) m m n., {ω, ω} basis., A., A, B A A B A B., A B., universal family basis. A., universal family basis,. universality, club guessing sequence. 5.1 (M. Kojman, S. Shelah [29]) θ κ θ < κ < 2 θ.,. (1) θ = ℵ 0, κ = ℵ 1, ω 1 TCG-. (2) θ + < κ, κ universality 2 θ. 19

20 page: 20 20, 2 <κ = κ universality 1 21)., ZFC universality., universality. 5.1, (1) ω 1 TCG- universality.., S = κ Cof(θ). (1) (2), S FCG- C δ : δ S δ S otp(c δ ) = θ. (2), TCG- truly tight, P ξ : ξ < κ. (1) ξ < κ P ξ P(ξ) P ξ < κ. (2) δ S γ nacc(c δ ) C δ γ ξ<γ P ξ. θ + < κ κ Cof(θ) truly tight FCG-, S. Shelah [38]. δ S i < θ, otp(c δ γ) = i γ C δ C δ (i)., C δ (0) C δ, C δ (1) C δ. L, L κ., L = L γ : γ < κ. (1) γ < κ L γ < κ. (2) γ < γ < κ L γ L γ, L γ : γ < κ. (3) γ < κ L γ = ξ<γ L ξ ( ). (4) γ<κ L γ = L. L filtration 22). δ S, inv L, C (δ, x) i < θ : {y L Cδ (i) : y < L x } = {y L Cδ (i) : y < L x} x L Cδ (i+1) \ L Cδ (i). filtration., L = L γ : γ < κ L = L γ : γ < κ L filtration, {γ < κ : L γ = L γ}., filtration A θ, κ L, L L filtration L : {δ κ Lim : x L(inv L, C (δ, x) = A)}. 5.3 L, L L, L κ, L L filtration, f : L L,., κ E : δ S x L, C δ E inv L, C (δ, x) = inv L, C (δ, f(x))., C truly tight FCG construction lemma., A θ (club ) δ x A. 5.3 preservation lemma 20

21 page: 21 Club guessing sequence 21., L L, (TCG( C) ) L L., 5.1. ( 5.1). universality 2 θ µ. µ universal family U. {L α : α < µ} U. α < µ L α filtration L α., B = {inv Lα, C (δ, x) : δ S, x L α α < µ}., B max{κ, µ} B P(θ)., max{κ, µ} < 2 θ, B A θ. 5.2, κ L, L, filtration L κ D : δ S D inv L, C (δ, x) = A x L. U universal family, α < µ f : L L α. 5.3 κ E. E D. C FCG-, Cδ E δ S. δ E D., inv L, C (δ, x) = A x L., inv Lα, C (δ, f(x)) = inv L, C (δ, x) = A., A B. A.,., universality,., M. Džamonja [10]. club guessing sequence, basis. S. Todorcevic minimal walk, J. T. Moore. 5.4 (J. T. Moore [36]) basis ℵ 1. L,. S. Shelah PCF, minimal walk, ZFC. minimal walk S. Todorcevic [48]., J. T. Moore. 5.5 Proper Forcing Axiom(PFA) 23)., {R, ω 1, ω 1, C, C} basis., (1) R R ℵ 1 ℵ 1-24), (2) ω 1 ω 1, (3) ω 1 ω 1 reverse, (4) C Countryman line 25), (5) C C reverse., ZFC, 5 21

22 page: CH, basis 2 ℵ 1 B. Dushnik E. W. Miller [ 9 ]., basis 5. universality,. 6 precipitous, ZFC.,,.,,., κ precipitous.. [16] K. Kunen [31]. I κ. P(κ)/I, V [G]., G P(κ)/I. V κ V G (V κ V )/G., I precipitous. 26), precipitous, R. Solovay [46]., I precipitous, G P(κ)/I, j : V M (V κ V )/G 27).. I, critical point 28) κ. κ κ precipitous., T. Jech, M. Magidor, W. Mitchell, K. Prikry. 6.1 (T. Jech, M. Magidor, W. Mitchell, K. Prikry [25]). (1). (2) ω 1 precipitous. (3) NS ω1 precipitous., critical point. precipitous. precipitous., j., κ TCG- C = C δ : δ κ Lim TCG( C) precipitous. j : V M V [G] TCG( C)., M κ C, : V κ D, C D., outside 22

23 page: 23 Club guessing sequence 23 club guessing, M. Džamonja S. Shelah [11]., precipitous., M. Foreman, M. Magidor, S. Shelah [15]. 6.2 (M. Foreman, M. Magidor, and S. Shelah [15]) κ, λ > κ 29)., λ κ + Levy, NS κ precipitous. precipitous,,., 6.2,.,. 6.3 ( [23]) κ, λ > κ Woodin. λ κ + Levy, κ TCG- C, TCG( C) precipitous., κ + TCG-., κ + precipitous 30). K. Kunen J. Paris [32], κ, 2 2κ κ. precipitous, precipitous., precipitous, 6.3.,,. 7 S. Shelah J. Steel 60 Very Informal Gathering 31) UCLA.,.,,., 4 S. Shelah PCF 5 J. T. Moore ZFC L,.,. ( ),. 8 :,, 23

24 page: 24 24,,,,,,, (, ). ( ). 32) 1) natural structure, canonical structure. 2), ZFC. ZFC, ZFC. 3) pcf, PCF. 4) K. Gödel [18], ZFC. W. H. Woodin.,. 5) Julius König Dénes König, König. 6) X, X otp(x) f : X otp(x). 7), 2 λ = λ + λ < κ κ, 8) Cardinal arithmetic? Yes, it had been a great problem, but now... 9) [39], S. Shelah.,. 10) Kunen [31] c.u.b.. 11) δ,., 12) α + 1 α, D \ (α + 1) = {γ D : γ > α}. 13) [22],. 14) κ ineffable, f : [κ] 2 2 κ X {f({a, b}) : a b X} = 1. [X] 2 X. ineffable. 15), P(κ)/I κ ),, [34] A. Kanamori [27]. 17) X F principal X 0 X F = {Y X : X 0 Y }. 18), pcf, pcf(a)., scattered. 19) localization. A progressive, B progressive pcf(a)., λ pcf(b), B B 0, B 0 A λ pcf(b 0 ) 20), α C δ γ. 21) 2 <θ = θ, T θ T universality 1. 22) γ < κ L γ L.,. 23) PFA T. Jech [24]. 24) X L, L., X, X ℵ 1 - : x y X x < L y, {z X : x < L z < L y} ℵ 1. 25) C, C Countryman line : C 2 chain., X C 2 chain, C 2 coordinate-wise, X, (c 1, c 2 ), (d 1, d 2 ) X c 1 d 1 c 2 d 2, d 1 c 1 d 2 c 2. 26) precipitous, [34]. 27) j : V M, ( ) φ(v 1, v 2,..., v n ) a 1, a 2,..., a n V, V φ(a 1, a 2,..., a n ) M φ(j(a 1 ), j(a 2 ),..., j(a n )). 28) j critical point j(κ) > κ κ. 29) Woodin, N. Goldring [20] 30) I κ precipitous I κ + precipitous., I I,. κ + precipitous 24

25 page: 25 Club guessing sequence 25,, precipitous κ +. 31) Very Informal Gathering(VIG) UCLA 1976, ) This material is based upon work supported by the National Science Foundation under Grant No [ 1 ] U. Abraham and M. Magidor, Cardinal Arithmetic, to appear in the Handbook of Set Theory, [ 2 ] J. E. Baumgartner, A. D. Taylor, and S. Wagon, On Splitting Stationary Subsets of Large Cardinals, J. Symbolic Logic, 42(1977)(2), [ 3 ] M. Burke and M. Magidor, Shelah s pcf theory and its applications, Ann. Pure Appl. Logic, 50(1990)(3), [ 4 ] P. Cohen, The independence of the continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A., 50(1963), [ 5 ] P. Cohen, The independence of the continuum hypothesis. II, Proc. Nat. Acad. Sci. U.S.A., 51(1964), [ 6 ] J. Cummings, Notes on singular cardinal combinatorics, Notre Dame J. Formal Logic, 46(2005)(3), [ 7 ] J. Cummings, M. Foreman, and M. Magidor, Canonical structure in the universe of set theory. I, Ann. Pure Appl. Logic, 129(2004), [ 8 ] J. Cummings, M. Foreman, and M. Magidor, Canonical structure in the universe of set theory. II, Ann. Pure Appl. Logic, 142(2006), [ 9 ] B. Dushnik, and E. Miller, Partially ordered sets, Amer. J. Math., 63(1941), [10] M. Džamonja, Club guessing and the universal models, Notre Dame J. Formal Logic 46(2005)(3), [11] M. Džamonja and S. Shelah, On squares, outside guessing of clubs and I <f [λ], Fund. Math, 148(1995)(2), [12] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic, 1(1970), [13] M. Foreman, Ideals and generic embeddings, to appear in the Handbook of Set Theory [14] M. Foreman, Introduction to the Special Issue on Singular Cardinals Combinatorics, Notre Dame J. Formal Logic 46(2005)(3), 249 [15] M. Foreman, M. Magidor, and S. Shelah, Martin s maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math., 127(1988)(1), 1 47 [16],, 20 4 I, ,, 2007 [17] M. Gitik and S. Shelah, Less saturated ideals, Proc. Amer. Math. Soc., 125(1997)(5), [18] K. Gödel, What is Cantor s continuum problem?, Amer. Math. Monthly, 54(1947), [19] K. Gödel, The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, no. 3, Princeton University Press, Princeton, N. J., 1940 [20] Woodin cardinals and presaturated ideals, N. Goldring, Ann. Pure Appl. Logic, 55(1992)(3), [21] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic, 41(1976)(3), [22] Y. Hirata, Nonsaturation of the club filter on P k λ, Master s Thesis at University of Tsukuba, [23] T. Ishiu, Club guessing sequences and filters, J. Symbolic Logic, 70(2005)(4), [24] T. Jech, Set Theory, Springer Monographs in Mathematics, The third millennium edition, revised and expanded, Springer-Verlag, Berlin, 2003 [25] T. Jech, M. Magidor, W. Mitchell, and K. Prikry, Precipitous ideals, J. Symbolic Logic, 45(1980)(1), 1 8 [26] R. B. Jensen, The fine structure of the constructible hierarchy, With a section by Jack Silver, Ann. Math. Logic 4(1972), ; erratum ibid. 4(1972), 443 [27] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, 2nd edition, Springer-Verlag(2003). :,, (1998) [28] M. Kojman, The A, B, C of PCF: A companion to pcf theory, preprint. [29] M. Kojman and S. Shelah, Nonexistence of universal orders in many cardinals, J. Symbolic Logic, 57(1992)(3), [30] B. König, P. Larson, J. T. Moore, and B. Veličković, Bounding the consistency strength of a five element linear basis, Israel J. Math., 164(2008), 1 18 [31] K. Kunen, Set Theory, An introduction to independence proofs, Reprint of the 1980 original, Studies in Logic and the Foundations of Mathematics 102, North-Holland Publishing Co., Amsterdam, 1983, :,,, 2008 [32] K. Kunen and J. B. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic, 2(1970/1971)(4), [33] M. Magidor, On the singular cardinals problem. II., Ann. Math. (2), 106(1977)(3), [34],, 20 4 II, ,,

26 page: [35] J. T. Moore, A five element basis for the uncountable linear orders, Ann. of Math., 163(2006)(2), [36] J. T. Moore, A solution to the L space problem, J. Amer. Math. Soc., 19(2006)(3), [37] A. Ros lanowski and S. Shelah, Iteration of λ- complete forcing notions not collapsing λ +, Int. J. Math. Math. Sci., 28(2001)(2), [38] S. Shelah, Advances in cardinal arithmetic, In: Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411, Kluwer Acad. Publ., Dordrecht, 1993 pp [39] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, The Clarendon Press Oxford University Press, New York, 1994 [40] S. Shelah, On successors of singular cardinals, Logic Colloquium 78 (Mons, 1978), Stud. Logic Foundations Math. 97, [41] S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, 2nd edition, Perspectives in Mathematical Logic, Springer-Verlag, Berline, 1998 [42] S. Shelah, You can enter Cantor s paradise!, Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud. 11, , János Bolyai Math. Soc., Budapest, 2002 [43] S. Shelah, Diamonds, preprint, 2008, [44] M. Shioya, Splitting P κ λ into maximally many stationary sets, Israel J. Math., 114(1999), [45] J. Silver, On the singular cardinals problem, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, , Canad. Math. Congress, Montreal, Que., 1975 [46] R. Solovay, Real-valued measurable cardinals, In Axiomatic Set Theory (edited by D. Scott), , American Mathematical Society, 1971 [47] J. Steel and R. Van Wesep, Two consequences of determinacy consistent with choice. Trans. Amer. Math. Soc. 272(1982)(1), [48] S. Todorcevic, Coherent Sequences, to appear in the Handbook of Set Theory ( ) ( Miami University) 26

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e

Lebesgue可測性に関するSoloayの定理と実数の集合の正則性=1This slide is available on ` `%%%`#`&12_`__~~~ౡ氀猀e Khomskii Lebesgue Soloay 1 Friday 27 th November 2015 1 This slide is available on http://slideshare.net/konn/lebesguesoloay 1 / 34 Khomskii 1 2 3 4 Khomskii 2 / 34 Khomskii Solovay 3 / 34 Khomskii Lebesgue

More information

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11]

( ) 7 29 ( ) meager (forcing) [12] Sabine Koppelberg 1995 [10] [15], [2], [3] [15] [2] [3] [11] (Sakaé Fuchino) fuchino@isc.chubu.ac.jp 2002 8 24 2002 11 11 2002 11 23 2002 11 29 2003 10 30 footnote 0 2 1 3 1.1...................... 3 1.2....................... 5 1.3.......................... 6 1.4..........................

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

i iii 1 ZFC Skolem

i iii 1 ZFC Skolem i iii 1 ZFC 1 1.1................... 2 1.2........................... 4 1.3 Skolem..................... 6 1.4...................... 8 11 2 13 2.1..................... 13 2.2........ 15 2.3.........................

More information

kanai.ppt

kanai.ppt Wandering around a corner of Axiomatic Set Theory Deepest Appreciations to Dr. Kakuda By Yasuo Kanai Yamato University 1 Bibliography 1 Introduction to Mathematical Logic, Elliott Mendelson, Chapman and

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o dif engine 2017/12/08 Math Advent Calendar 2017(https://adventar.org/calendars/2380) 12/8 IST(Internal Set Theory; ) 1 1.1 (nonstandard analysis, NSA) ε ε (a) ε 0. (b) r > 0 ε < r. (a)(b) ε sin(x) d sin(x)

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès,

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès, Title < 特別寄稿 > 数学の無尽蔵性 と二つの哲学 -- カヴァイエスとゲーデル -- Author(s) 中村, 大介 Citation 哲学論叢 (2016), 43: 27-39 Issue Date 2016 URL http://hdl.handle.net/2433/219150 Right Type Departmental Bulletin Paper Textversion

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2 6 2 6.1 2 2, 2 5.2 R 2, 2 (R 2, B, µ)., R 2,,., 1, 2, 3,., 1, 2, 3,,. () : = 1 + 2 + 3 + (6.1.1).,,, 1 ,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = 1 + 2 + 3 +,

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

第8章 位相最適化問題

第8章 位相最適化問題 8 February 25, 2009 1 (topology optimizaiton problem) ( ) H 1 2 2.1 ( ) V S χ S : V {0, 1} S (characteristic function) (indicator function) 1 (x S ) χ S (x) = 0 (x S ) 2.1 ( ) Lipschitz D R d χ Ω (Ω D)

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

Shonan Institute of Technology MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 38, No. 1, b9 199d8 1 * False Belief and Recognition of a Object

Shonan Institute of Technology MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 38, No. 1, b9 199d8 1 * False Belief and Recognition of a Object MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 38, No. 1, 2004 195b9 199d8 1 * False Belief and Recognition of a Object An Interpretation of the Aviary Model : Plato s Theaetetus: 195b9 199d8 Satsuki TASAKA*

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

218.8.21 1 2, (Theorem 1) (Theorem 2) 1 2, (Theorem 1) (Theorem 2) . (c.f. De Donno and Praelli, 24) (Ω, F, (F ) [,T ], P):, usual condiions, T < P : predicable σ-field on Ω [, T ] H 2 = { } X : (index

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G

sequentially Cohen Macaulay Herzog Cohen Macaulay 5 unmixed semi-unmixed 2 Semi-unmixed Semi-unmixed G V V (G) V G V G e (G) G F(G) (G) F(G) G dim G G Semi-unmixed 1 K S K n K[X 1,..., X n ] G G G 2 G V (G) E(G) S G V (G) = {1,..., n} I(G) G S square-free I(G) = (X i X j {i, j} E(G)) I(G) G (edge ideal) 1990 Villarreal [11] S/I(G) Cohen Macaulay G 2005

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [ Vol.2, No.x, April 2015, pp.xx-xx ISSN xxxx-xxxx 2015 4 30 2015 5 25 253-8550 1100 Tel 0467-53-2111( ) Fax 0467-54-3734 http://www.bunkyo.ac.jp/faculty/business/ 1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n ) Talk/7Akita-cont.tex Dated: 7/Feb/ wikipedia Pafnuty Lvovich Chebyshev 8 6-89 8 6 Chebychev Chebyshov Tchebycheff Tschebyscheff https://ja.wikipedia.org/wiki/ wikipediaa) 96 cos π 7 cos π 7 cos π 7 = x

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

II

II II 2016 7 21 computer-assisted proof 1 / 64 1. 2. 3. Siegfried M. Rump : [1] I,, 14:3 (2004), pp. 214 223. [2] II,, 14:4 (2004), pp. 346 359. 2 / 64 Risch 18 3 / 64 M n = 2 n 1 (n = 1, 2,... ) 2 2 1 1

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO , 3, 2012 9 STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO 1 950-2181 2 8050 2 950-2181 2 8050 Numerical computation of river flows

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

微分方程式の解を見る

微分方程式の解を見る ( ) norikazu[at]ms.u-tokyo.ac.jp http://www.infsup.jp/saito/materials/829gairon.pdf 28 2 9 NS ( ) 28 2 9 / 5 Newton 2 3 Navier-Stokes 4 5 6 NS ( ) 28 2 9 2 / 5 2 x 2 + bx + c = x = b ± b 2 4c 2 3 x 3 +

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

支持力計算法.PDF

支持力計算法.PDF . (a) P P P P P P () P P P P (0) P P Hotω H P P δ ω H δ P P (a) ( ) () H P P n0(k P 4.7) (a)0 0 H n(k P 4.76) P P n0(k P 5.08) n0(k P.4) () 0 0 (0 ) n(k P 7.56) H P P n0(k P.7) n(k P.7) H P P n(k P 5.4)

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B

a m 1 mod p a km 1 mod p k<s 1.6. n > 1 n 1= s m, (m, = 1 a n n a m 1 mod n a km 1 mod n k<sn a 1.7. n > 1 n 1= s m, (m, = 1 r n ν = min ord (p 1 (1 B 10 004 Journal of the Institute of Science and Engineering. Chuo University Euler n > 1 p n p ord p n n n 1= s m (m B psp = {a (Z/nZ ; a n 1 =1}, B epsp = { ( a (Z/nZ ; a n 1 a }, = n B spsp = { a (Z/nZ

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 1 PCF (Programming language for Computable Functions) PCF adequacy adequacy 2 N X Y X Y f (x) f x f x y z (( f x) y) z = (( f (x))(y))(z) X Y x e X Y λx. e x x 2 + x + 1 λx. x 2 + x + 1 3 PCF 3.1 PCF PCF

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

II

II II 2009 1 II Euclid Euclid i 1 1 2 7 3 11 4 18 5 20 6 22 7 26 8 Hausdorff 29 36 1 1 1.1 E n n Euclid E n n R n = {(x 1,..., x n ) x i R} x, y = x 1 y 1 + + x n y n (x, y E n ), x = x, x 1/2 = { (x 1 )

More information

CVS Symposium, October 2005 p.1/22

CVS Symposium, October 2005 p.1/22 CVS Symposium, October 2005 p.1/22 Characteristica universalis CVS Symposium, October 2005 p.2/22 G. Boole, The Mathematical Analysis of Logic being an essay towards a calculus of deductive reasoning,

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information