( ) I( ) TA: ( M2)

Size: px
Start display at page:

Download "( ) I( ) TA: ( M2)"

Transcription

1 ( ) I( ) TA: ( M)

2 , 7 ( ) I( ).., M. (hatomura@spin.phys.s.u-tokyo.ac.jp).,,.. Keywords: 1. (gas-liquid phase transition). (critical point) 3. (lattice gas model) (Ising model) H = ϕ 0 i,j n i n j µ i n i, n = 0 (for vacancy), n = 1 (for occupation). (1) σ i = ±1, n i = σ i + 1. () H = J i,j σ i σ j h i σ i, σ i = 0 (for vacancy), σ i = 1 (for occupation), (J = ϕ 0 /4, h = (zϕ 0 +µ)/4) 4. L. Onsager (1944), C. N. Yang (195) 5. (Monte Carlo simulation) 6. XY, Potts (3),,,., ( ).

3 (phenomenological free energy, Ginzburg-Landau (GL) ) f(m, T, H) Bragg-Williams Berezinskii-Kosterlitz-Thouless [3] Monte Carlo Monte Carlo ,, , /06/

4

5 , Ising Hamiltonian : Z = Tre βh, (1.1) H = J σ i σ j H σ i, i,j σ i = ±1, (1.) σi = M. (1.3) J = 0,,, : Z = e βh σi = ( ) e βhσi = ( cosh(βh)) N, σ i =±1 i σ i =±1 (1.4) F = k B T N ln[ cosh(βh)]. (1.5) J 0, Z = e βj i,j σ iσ j +βh σ i, (1.6) σ 1=±1 σ N =±1,.,., 1.1, i, σ j σ j = m., (1.), J i,j σ iσ j H σ i (Jzm + H) σ i H (1) MF., z., z =

6 6 1 1.,.,, m = σ i = Trσ ie βh (1) MF Tre βh(1) MF. : = σ σeβ(jzm+h)σ σe β(jzm+h)σ = tanh(βjzm + βh), (1.7) m = tanh(βjzm + βh). (1.8), H = 0 1., βjz < 1 ( ) m = 0, βjz > 1 ( ) m = 0, ±m s.,. (1.8) H = 0, m = tanh(βjzm) = βjzm 1 3 (βjzm)3 +, (1.9), m s (T c T ) 1/ = (T c T ) β, (1.10)., β = 1/, (1.11)., m = m s + χh (1.8) H, m s + χh = tanh(βjzm s ) + β(jzχ + 1)H cosh (βjzm s ) +, (1.1), χ (T T c ) 1 = (T T c ) γ, (1.13).,.. γ = 1, (1.14)

7 H = 0. σ i = (σ i m) + m, (σ i m), H = J σ i σ j = J i m + m)(σ j m + m) i,j i,j (σ = J i,j [(σ i m)(σ j m) + m(σ j m) + m(σ i m) + m ] J i,j [m(σ i + σ j ) m ] = Jzm N σ i + JzN m H MF, (1.15).,, H 0 Z MF = Tre βh MF = Tre βjzm σ i βjzn m = [ cosh(βjzm)] N e βjzn m βjz = e { m ln[ cosh(βjzm)]}n, (1.16) F (m, T, H) = F (m) = k B T ln Z MF = Jz m k B T ln[ cosh(βjzm + βh)], (1.17). F (m, T, H), F (T, H). m, F (m) m = 0 Jzm k BT tanh(βjzm + βh)βjz = 0, (1.18), m = tanh(βjzm + βh), (1.19),. 1.3 (phenomenological free energy, Ginzburg-Landau (GL) ) f(m, T, H),., m, f(m) = am + bm 4 + cm 6 + hm, (1.0)., f(m) m = am + 4bm3 h + o(m 3 ), (1.1)., b > 0, a > 0, a < 0 ( 1.3)., a (T T c )., (1.13) 1,,

8 Bragg-Williams a = a 0 (T T c ) : a > 0, am h = 0, m = h a = χh, χ = 1 a = 1 a 0 (T T c ), (1.) a a < 0, a = 4bm, m = b T T c 1. (1.3) T = T c, 4bm 3 = h, m h 1 3 = h 1 δ δ = Bragg-Williams Bragg-Williams ( 1.4)., F = E T S, (1.4)., E, S. p(s) E = N Jz m HNm, (1.5) S = k B s:all states p(s) ln p(s), (1.6) N p(s) p i (σ i ), (1.7) p i (σ i ) = { pi (+) p i ( ), (1.8)

9 1.5 9, S = k B {σ i=±1} p 1 p p N ln p 1 p N = k B N[p(+) ln p(+) + p( ) ln p( )] { 1 + m = k B N ln 1 + m + 1 m ln 1 m }, (1.9) F = N Jz { 1 + m m HNm + k B T N ln 1 + m + 1 m ln 1 m }, (1.30). { pi (+) + p i ( ) = 1 p i (+) p i ( ) = m, (1.31),. p i (+) = 1 + m p i ( ) = 1 m, (1.3), 1.1, 1.. F (m) m = 0, (1.33), f = F/N { f 1 m = Jzm H + k BT ln 1 + m m m 1 ln 1 m + 1 m } 1 1 m = Jzm H + 1 k BT ln 1 + m = 0, (1.34) 1 m. m = tanh(βjzm + βh), (1.35), Bragg-Williams.,. tanh 1 X = 1 ln 1 + X 1 X, (1.36) , 0.,., 1.5,.,, (metastable state).,,. (spinodal point)., (magnetization process) m(h),. 1.6, s.p.,., m(h) H, H m

10 ,., H m = tanh(βjzm + βh), (1.37) H(m) = k BT ln 1 + m Jzm, (1.38) 1 m, m. 1.6,, ( 1.7). i., m i = σ i = Trσ ie βj(mj 1 + +mj z )σi+βhiσi Tre βj( )σi+βhiσi, (1.39) m i = tanh[βj(m j1 + + m jz ) + βh i ], (1.40)

11 T > T c, m i 1, m i βj(m j1 + + m jz ) + βh i, (1.41), Fourier σ k = 1 N σ j = k N σ j e i k r j j=1 σ k e i k r j, (1.4), σ k e i k ri = βj σ k (e i k rj1 + + e i k rjz ) + βhi, (1.43) k k., e i k r i i, σ k = 1 βh i e i k r i + βj(e i k δ e i k δ z ) σ k, (1.44) N i., σ k = 1 N i βh ie i k r i 1 βj, (1.45) m e i k δ m., 1 βj m e i k δ m = 1 βj z/ m=1 cos( k δ m ) = 1 βjz + βj(k x + k y + ) + = 1 βjz + βjk +, (1.46), k = k H k σ k β 1 βjz + βjk, (1.47).,. H k 1 H i e i k r i, (1.48) N i G ij = σ i σ j σ i σ j, (1.49). (1.39), σ j = βtrσ jσ i e [ ] βtrσ je [ ] Trσ i e [ ] H i Tr (Tr ) = β[ σ i σ j σ i σ j ], (1.50) G( r j ) G 0j = σ 0 σ j σ 0 σ j = σ j H 0 1 β, (1.51)

12 1 1. Fourier G( k) = 1 G( r j )e i k r j N j = 1 β H 0 σ k, (1.5), (1.47) G( k) = 1 N ei k 0 1 βjz + βjk = 1 1 N 1 βjz + βjk, (1.53). Fourier, G( r) = k e i k r G( k) = 1 (π) d e i k r d k 1 βjz + βjk, (1.54). k = N (π) d d k, (1.55)., 1 (π) d e i k r a + k d k = 1 r e ar, r = r, (1.56). (correlation length) ξ, r ξ Ornstein-Zernike ξ = a 1 = 1 βjz, (1.57) βj G( r) 1 e r/ξ, (1.58) r d 1 r ξ., G( r) 1 r d 1 r d e r/ξ, (1.59) ξ = 1 βjz βj T T c, (1.60), ξ (T T c ) 1 = (T Tc ) ν, ν = 1, (1.61)., η 1 G( r), rd +η η = 0 (1.6)., C (T T c ) α, α = 0, (1.63) m (T T c ) β, β = 1, (1.64) m H 1 δ, δ = 3, T = Tc, (1.65)

13 χ (T T c ) γ, γ = 1, (1.66)., GL., f(m) = am + bm 4 + hm, (1.67), m m( r)., GL ϕ 4 f(m) F [{m( r)}] = d r[( m) + am + bm 4 hm], m( r), (1.68)., 1. δf = 0, (1.69) δm,. h = 0, m + am + 4bm 3 h = 0, (1.70) m + am + 4bm 3 = 0, (1.71), a < 0, T < T c, (a T T c ),. m(x) = A tanh(x/ξ), ξ = a a, A = b, ξ a (T T c ) 1, ν = 1/, (1.7)

14

15 15.1 A, A, A A., = Tr e βh, (.1) Tre βh., H = H 0 aa, a A ( ), A.,. Z(a) = Tre βh 0+βaA, (.) A = TrAe βh Z(a) = ln Z(a), (.3) (βa) A A = TrA e βh ( ) TrAe βh = ln Z, (.4) Z Z (βa) χ AA = a A = β (βa) (βa) ln Z(a) = A A, (.5) k B T, Kirkwood., χ (m) = m A = βm m+1 am (βa) m+1 ln Z(a) = βm A m+1 c, (.6)., A m+1 c (m + 1) (cumulant)., A 3 c = A 3 3 A A + A 3, (.7)., ln Z(a) = βf O(N).,., A = M = N σ i, a = H, (.8)

16 16, = 1 k B T χ MM = M M k B T = 1 N k B T = 1 k B T N N j=1 N σ i j=1 N j=1 N N σ j σ i σ j j=1 N (σ i σ i )(σ j σ j ), (.9) (σ 1 σ 1 )(σ j σ j ) = 1 N k B T N C(1, j), (.10)., 1 j r 1j = r C(1, j) 1 r d +η e r/ξ, = N d d r e r/ξ k B T V r d +η N k B T V ξ η d d x e x, (.11) xd +η., 1 χ 0, χ MM = Nχ 0. j=1 χ 0 ξ η, (.1). (Husimi-Temperley ) :, Z =., = = σ 1 =±1 N M= N 1 1 ( H = Jz N ) ( N ) σ i H σ i. (.13) N σ N =±1 e βh N C N+ e β Jz N M +βhm dme β Jz N N m +βhnm N[ 1+m ln 1+m + 1 m ln 1 m ], (.14) { N+ + N = N N + N = M, N ± = N ± M, N! N N e N, m = M/N, (.15)., N T > T c O(N) M N = T = T c O(N 3/ ), (.16) T < T c O(N )

17 ,., Z = Tre β Jz N ( σ i ) +βh σ i 1 = Tr π = 1 π dxe x ( +x βjz N N )+βh σi N σi dxe x N cosh N (x ) βjz N + βh, (.17) x = Ny,. = N dye Ny +N ln( cosh[y βjz+βh]), (.18) π 1 π dxe x +ax = e 1 a, (.19)., K = βjz M = N Z Z K = N π Z K,., (6.). (.0) N tanh( ( y Ky) y ) K e N ln cosh( Ky) dy, H = 0, (.1),,..3,. 1 Ising : H = J H = 0. Z = Tre βh = = σ 1=±1 {τ i =±1} N 1 σ N =±1 σ i σ i+1 H N σ i. (.) e βj(σ1σ+ +σ N 1σ N ) e βj(τ1+ +τ N 1) = [ cosh βj] N 1, (.3)., σ i σ i+1 = τ i = ±1, (.4)

18 18.., : σ i σ j = τ i τ i+1 τ j 1 = e βjτ1 e βjτ i 1 τ i e βjτi τ j 1 e βjτ j 1 e βjτj e βjτ N 1 /Z {τ i =±1} = [ cosh βj]n 1 (j i) [ sinh βj] (j i) [ cosh βj] N 1 = (tanh βj) j i ln[tanh βj](j i) = e = e (j i)/ξ. (.5), ξ ξ = ln tanh βj, (.6)., 1 XY : H = J N 1 cos(θ i θ j ) H N cos θ i. (.7) XY Ising,. ( ), XY : H = J i,j cos(θ i θ j ) H N cos θ i E 0 + J (θ i θ j ) + H = E 0 + k i,j,., J E 0 = Jz N NH, θ k = 1 N θ i [ cos k x cos k y + H N j θ j e i k r j, θ j = 1 N ] θ k θ k, (.8) k θ k e i k rj, (.9). π < θ i < π < θ i <,, cos θ j = e iθ j = e 1 θ j (.30)

19 .3 19., θ j = 1 N = 1 N = 1 N = 1 N N θj j=1 N 1 θ k e i k rj θ k e i k r j N j=1 N j=1 1 N k k e i( k+ k ) r j θ k θ k k, k k θ k θ k, (.31),, 1 θ k θ k = J ( cos k x cos k y ) + H/, (.3) θj = 1 (π) πk BT (π) d k 0 J k B T ( cos k x cos k y ) + H/ 4k Jk, (.33) + H cos θ j = e 1 θ j 0 (H 0), (.34)., 1, (infrared divergence). 3, Λ 0 d d k k, (.35), S k S k < k B T J(3 cos k x cos k y cos k z ) < k BT 1, (.36) Jk 1 = 1 N N S j = 1 S k N S k j=1 k = m + 1 (π) d k S k S k, (.37) k 0 m > 1 k BT (π) 3 d k 1 k, (.38). T m > 0,., [1, ].

20 0.4,., T T c, ξ t = T T c T c, ξ t ν (.39). ν., b (βj). b,., ξ(t ), ξ(t ) = ξ(t )/b T, ξ ξ/b (.40) ξ = ξ/b = 1 b t ν = t ν, (.41),.,., Ising : t ν t = b, (.4) ν ν = ln b ln t, (.43) t e βh = e βj σ iσ j+βh σ i, (.44)., K = βj. Rb 1 K (K 1,, K M ) = R b (K) = = K 1.. K M. R M b (K 1,, K M ), (.45). K 1 = βj, K = βh,, K M =. (fixed point)k K = R b (K ), (.46)., ξ = 0, ( )., δk = K K, (.47)., δk = R b (δk) = K K, (.48). K,., T, δk = T δk, (.49) T ij = Ri b (K 1,, K M ) K j, (.50) K=K T u i = λ i u i, i = 1,, M, (.51)

21 .4 1. u i, λ i > 1 (relevant), λ i < 1 (irrelevant), λ i = 1 marginal. marginal,., λ i = b y i, y i =, ln λi ln b > 0, y i < 0. b e δl, δl 1, (.5)., u = R b (u) = T u = b y y 1 δl... u b ym... u, (.53) 1 + ym δl, δu = u u = y 1... uδl, (.54), δu δl = y 1... y M y M u, (.55).,. Ising : Z = e K(σ 1σ +σ σ 3 + +σ N σ 1 ). (.56) σ 1=±1 σ N =±1 K = βj., : ( ) ( ) Z = e K( ) (.57) σ 1=±1 σ =±1 = Tr cosh[k(σ 1 + σ 3 )] (.58) = Tr Ãe K (σ 1σ 3+ ). (.59), Tr, Ã K., K = 1 ln cosh(k), b = (.60). K, K 1 (T ) K = K 1 ln 1 e 4K, K 1 (T 0), (.61)., K, K K = 0.,.,.,., σ 0 : e Kσ 0(σ 1 +σ +σ 3 +σ 4 ) = Ae K 1(σ 1 σ +σ σ 3 +σ 3 σ 4 +σ 4 σ 1 )+K (σ 1 σ 3 +σ σ 4 )+K 4 σ 1 σ σ 3 σ 4. (.6) σ 0=±1

22 , σ i (i = 1,, 4) σ 0, K 1, K, K 4., K K 1 = 1 ln cosh(4k) 8 0 K = 1 ln cosh(4k) 8 0 K 4 = 1 8 ln cosh(4k) 1, (.63) ln cosh(k) 0 A = cosh 1/8 (4K) cosh 1/ (K).,.,., factor 4 K K = 4 1 ln cosh(4k), (.64) 8, K.,.,..5 φ 4 : H = J ij m i m j λ i (m i 1), (.65)., m(r ) = m(r) + (r r ) m(r) + 1 r r m(r) +, (.66), H = [ ] 1 Ja R ( m(r)) (λ + J)m(r) + λm(r) 4 + dr, (.67). a, : m(r) ad JR ϕ(r), (.68), H = [ 1 ( ϕ) + 1 ] ta ϕ(r) + ua d 4 ϕ(r) 4 dr, (.69). t = λ+j JR, u = λ JR. Fourier : ϕ k = drϕ(r)e ik r, ϕ(r) = 1 (π) d dkϕ k e ik r, (.70), H = 1 (π) d ta dk 1 k ϕ k ϕ k + 1 (π) d dkϕ k ϕ k + uad 4 (π) 3 dk 1 dk dk 3 ϕ k1 ϕ k ϕ k3 ϕ k1 k k 3, (.71)., 1, ϕ k ζϕ k : ϕ k ϕ k ζ ϕ k ϕ k. (.7)

23 k Λ, b., Λ/b k Λ, Λ/b Λ., H = H 0 + g i H i (.73), Tre H = Tre H Tre H 0 i g ih i 0 Tre H 0 = Tre H 0 e g i H i = Tre H 0 e g i H i 0 gi g j H i H j c + (.74)., H 0 = 1 k ϕ k ϕ k., 1 ta Λ (π) d dkϕ k ϕ k = 1 tb (a ) ( 1 (π) d Z 0 (a ) 0 0 < Dϕ < ) k e H(a, a 1 b(a ) 1 t tb., u k ) dkϕ < k ϕ< k + const. (.75) ua d 4 Λ 0 Λ Λ dk 1 dk dk 3 ϕ k1 ϕ k ϕ k3 ϕ k1 k k 3 0 (.76) 0, k 1, k, k 3 < Λ/b u ub 4 d, k 1 > Λ/b( ) u 0, k 1, k > Λ/b 0 ϕ k1 ϕ k e 1 k ϕ k ϕ k /Z 0 = (π)d k 1 δ(k 1 + k), (.77).,., ( 6ua d 4 1 Λ/b ) > Z 0 (a Dϕ < ) k ϕ < ) e H0(a k 1 ϕ < 1 k 1 k, (.78) t., Λ Λ/b 0 dk 1 1 k = a (d ) dx 1 1 1/b x a (d ) A b, (.79)., k = Λx, Λ = 1/a., { t t = b t + 1uA b b + u u = ub 4 d, (.80)., ϕ ζϕ, ζ = b η { t = b η (t + 1uA b ) u = b 4 d η u. t = u = 0 (Gauss ). t = t + δt, u = u + δu ( ) δt δu = ( b b ua b 0 b 4 d ) ( δt δu k, (.81) ), (.8). { yt = y u = 4 d, (.83), 4 > d.,, u., O(u) Gauss fixed point ( ), O(u ), (, ).

24 4.6 Berezinskii-Kosterlitz-Thouless [3] n =, d = ( XY )., H = J N cos(θ i θ j ) H cos θ i (.84) i,j. θ i θ j 1, H J (θi θ j ) + H θ i (.85). Fourier θ k = 1 θ j e i k r i, θ j = 1 N N j k θ k e i k rj (.86), H E g + J (4 cos(k x a x ) cos(k y a y ))θ k θ k k E g + J k θ k θ k, (.87). a ba,,,.,., cos(θ i θ j ) = S i S j = e i(θ i θ j ) = e 1 (θ i θ j ), (.88), (θ j θ 0 ) = 1 (θ j(n) θ n ) N,., g(r) = π/a 0 = k BT J n π/a 0 d k 1 e i k r (π) k = k BT πj ln r a, (r a), r = r j r 0, (.89) S 0 S r = e 1 k B ( T πj ln r r ) k B T πj a =, (.90) a d k 1 e i k r (π) k = 1 π ln r + const., r a, (.91) a., exp., (vortex).,. n : θ i = πn. (.9)

25 .6 Berezinskii-Kosterlitz-Thouless [3] 5, θ(r) θ(r + 1) 1 r, (.93),., E V = L 0 L ( θ) 1 d r = π rdr A ln L, (.94) 0 r S = k B ln L = k B ln L, (.95) E T S = A ln L k B T ln L = (A k B T ) ln L, (.96)., T > A/k B, T < A/k B., θ( r) = θ SW ( r) + θ V ( r), (.97), (irrotional part) ( θ SW ( r)) = 0 (Sourse-free) ( θ V ( r)) = 0 d r θ r = πn, (.98).,. θ V ( r) = πδ( r r 0 )n e z, (.99) ( θ V ( r)) = (πρ( r) e z ), (.100) θ( r) = V d r a g( r r )πρ( r) e z, (.101) g = δ( r), (.10)., βh = K d r( θ) = K d r( θ SW ) + (π) K = K d r1 d r d r a g(r) = 1 π ln r a, (.103) a ρ( r 1)ρ( r )( g( r r 1 ))( g( r r )) d r( θ SW ) d rd r πk r r >a a 4 ρ( r)ρ( r ) ln r r + πk a C r r <a d rd r a 4 ρ( r)ρ( r ) π CK { d r a ρ( r) (.104) }, r a g( r), r < a C., βh = K d r( θ SW ) πk i j n i n j ln r i r j a + πk C i n i π CK{ i n i }, (.105)

26 6., n i = ±1., Coulomb gas (πk = J, πk C = µ ).,., (Coulomb gas ) τ τ τ + dτ, τ = a. e βπk C ˆK, Z = ( 1 n ˆK d r (n i!) n d r 1 exp β p i p j ln r i r j {n i } D n D 1 τ., p i = πjn i. Kosterlitz [3],. ( βp βp 1 (π) (βp )( ˆKτ ) dτ τ ˆKτ ˆKτ ( 1 (βp ) dτ τ ), (.106) ), (.107) ), (.108) x = βp, (.109) y = π ˆKτ, (.110) dx ( d ln τ = (π) (βp) y ) ( ) βp = y y (.111) 4π dy d ln τ = xy (.11) x 0, βp., x y = const.., ln τ = l dl dx = 1 y = 1 x + Ct, Ct = x y, (.113), l(x) = 1 tan 1 x + const., (.114) Ct Ct, ln τ 0 τ ( ) 1 x = l(x) + l(0) = tan 1, (.115) Ct Ct. ( ( τ 1 = e l(x) l(xi) = exp tan 1 τ i Ct x i Ct tan 1 )) x, (.116) Ct, x = 0, τ ξ. tan 1 ( ) Ct x i ) ξ (tan = e 1 1 x i Ct Ct e π t α Ct = e, (.117) τ i ( ) = tan 1 Ct = π., ξ t ν, ν =., KT exp., S 0 S r r 1/4.

27 , d d + 1.,. d,, M, : Z = Tre βĥ = φ 0 e βĥ φ 0 φ 0 = {φ} φ 0 e βĥ φ M 1 φ M 1 e βĥ φ M φ M φ 1 φ 1 e βĥ φ 0. (3.1),.,, β = M β, (3.) φ i e βĥ φ i 1 e W (φi,φi 1), (3.3) Z = {φ} e M 1 i=0 W (φi+1,φi), (3.4)., e d + 1, W (φ i+1, φ i ) φ i+1, φ i..., 1 Ising : H = J N 1 σ i σ i+1 h, 1., Z = {σ j=±1} = {σ j=±1} e βh N σ i. (3.5) e βh σ 1 e βh σ 1+βJσ 1 σ + βh σ e βh σ +βjσ σ 3 + βh σ3 e βh σ N 1+βJσ N 1 σ N + βh σ N e βh σ N, (3.6)

28 8 3,, Z = {σ j =±1} e βh σ i+βjσ i σ i+1 + βh σ i+1 σ i ˆT σ i+1, (3.7) e βh σ 1 σ 1 ˆT σ σ ˆT σ 3 σ N 1 ˆT σ N e βh σ N, (3.8). ˆT,., Z = σ1 σ 1 ˆT N 1 σ N e βh σ N, (3.9) σ 1,σ N e βh.,, Z PBC = σ 1 ˆT N σ 1 = Tr ˆT N, (3.10) σ 1 =±1., σ = +1 = ( ) 1, σ = 1 = 0 ( e β(j+h) e ˆT = βj e βj e β(j+h) ( ) 0, (3.11) 1 ), (3.1). ( ) λ1 0 ˆT = U U, (λ 0 λ 1 > λ ), (3.13), Z = σ,σ =±1 ( ) e βh (σ+σ ) λ N 1 σ U λ N 1 U σ, (3.14)., N λ N 1 1 λ N 1, c Z cλ N 1 1., f = k BT N ln Z k BT ln λ 1, (3.15)., N., Pauli : ( ) σ x 0 1 =, σ y = 1 0 ( ) ( ) 0 i, σ z 1 0 =. (3.16) i 0 0 1,.., σ ˆT σ = e βh σ e βjσσ e βh σ σ ˆT 1 ˆT ˆT3 σ, (3.17) ˆT 1 = ˆT 3 = e βh σz, ˆT = ( e βj e βj e βj e βj ), (3.18) tanh K = e βj, (3.19) 1 ˆT = sinh K cosh K e Kσ x, (3.0)

29 ˆT = ˆT 1 ˆT ˆT3 = 1 sinh K cosh K e βh σz e Kσ x e βh σz, (3.1)., z x., ˆT,., h = 0 :, 1 h = 0, ˆT = sinh K cosh K e Kσ x. (3.) x = 1 ( + ), λ 1 = x = 1 ( ), λ =.,. σ i σ j = 1 σ i σ j e βh, (i < j) Z PBC {σ} = 1 Z PBC Tr ˆT i 1 σ z ˆT j i σ z ˆT N j+1 e K sinh K cosh K e K sinh K cosh K, (3.3), (3.4) = 1 Z PBC {λ N+i j 1 x σ z ˆT j i σ z x + λ N+i j x σ z ˆT j i σ z x }, (3.5) σ z x = x, σ z x = x, (3.6),. Z PBC λ N 1 σ i σ j = 1 Z PBC {λ N+i j 1 λ j i + λ N+i j λ j i 1 }, (3.7) σ i σ j ( λ1 λ ) i j = exp( i j /ξ), ξ 1 = ln λ 1 λ, (3.8).,.,,. σ i = ( λ λ 1 ) i 1 ( λ λ 1 ) N i = e (i 1)/ξ e (N i)/ξ, (3.9) Ising., : H = J j (σ 1j σ 1,j+1 + σ j σ,j+1 ) J j σ 1j σ j. (3.30), 4 4 ˆT = e K+K 1 1 e K+K 1 e K K e K K 1 1 e K K e K K 1 e K+K 1 1 e K+K, K = βj, K = βj, (3.31)

30 30 3., { + 1, +1, + 1, 1, 1, +1, 1, 1 }, (3.3)., 4 4., Perron-Frobenius,.,., σ 1 σ ˆT σ 1σ = e K σ1σ+k(σ1σ 1 +σσ ) e K σ 1 σ, (3.33) 1 ˆT = sinh K cosh K e K σz 1 σz x e K(σ 1 +σx ) e K σz 1 σz (3.34)., z x. M N., M Ising. 1 Perron-Frobenius d d A; 1. i, j A ij 0, A ij R. n (A n ) ij > 0,,. λ 1 λ 1 > λ i, i.

31 , F = E T S, (4.1) E S., 0,.., S(0)/Nk B = , Villain S(0)/Nk B = 0.916, S(0)/Nk B = 0.50.,,,,.,., H = J nn σ i σ j J nnn σ i σ k, (4.) i,j i,k., nn (nearest neighbor), nnn (next nearest neighbor),., m A = σ A = tanh( βj nn (3m B + 3m C ) + 6J nnn m A + βh) m B = σ B = tanh( βj nn (3m C + 3m A ) + 6J nnn m B + βh), (4.3) m C = σ C = tanh( βj nn (3m A + 3m B ) + 6J nnn m C + βh)., m A = m B = m C disordered phase, m A = m B, m C = 0 partially disordered phase, 3-sublattice phase, -sublattice phase..

32

33 33 5 Monte Carlo 5.1 Monte Carlo Z = e βei, (5.1) all states {i},., i., A = e βe i Z, (5.) B = sample sample E i e βe i E i Z, (5.3), B/A E, (5.4).., N.,,., i e βe i., E i sampling sampling 1 = E i, (5.5)..,. 5.,, {w i j }., i p i, i = 1,, M,, p = (p 1,, p M )., 1 p = (p +, p ), { p+ (t + t) = p + (t)(1 w + t) + p (t)w + t p (t + t) = p + (t)w + t + p (t)(1 w + t), (5.6)

34 34 5 Monte Carlo. Master equation, {w i j } Markov., p(t + t) = L( t) p(t), (5.7) L( t)., L( t) L ij = w j i t, for i j L ii = 1 w i j t, (5.8) j i., i L ij = 1., L p, p(t + n t) = (L( t)) n p(t), p(t) = p(t), (5.9). L( t) ϕ i = λ i ϕ i, (5.10), p(0) = i c i ϕ i, (5.11) M M p(n t) = L n p(0) = L n c i ϕ i = c i λ n i ϕ i c max λ n max ϕ max, for large n, (5.1). λ max L. ( λi ) n 0, as n, (5.13) λ max., λ max.., L ij = w j i t 0 =, ; n (L n ) ij > 0., (i j)., n j=1 p j(t) = 1 n j=1 p j(t + t) = 1, p(0) p(t) = p(n t) = L n p(0) = p stationary, (5.14) λ max = 1, c max = 1., M j=1 ϕ (j) max = 1, M j=1 ϕ (j) k max = 0, (5.15)., p(n t) = p st + M c i λ n i ϕ i = p st + M c i e n ln λi ϕ i, p st = ϕ max, (5.16), max, max., ϕ i i, c i, τ i = 1/ ln λ i.,., p st = p eq L., p eq = L p eq = (p 1 eq,, p M eq), (5.17)

35 5.3, 35, p (m) eq = p (m) eq (1 w m l t) + p (l) eq w l m t, (5.18) l m l m. 0 = (w m l tp (m) eq l m w l m tp (l) eq ), p (m) eq = 1 Z e βem, (5.19), detailed balance w m l p (m) eq = w l m p (l) eq, (5.0)., (Glauber ) Metropolis., p(t), p(t) t.. = L p(t) (5.1) 5.3,, p(i) i e βh i = m i E m E m i e βem (5.), i e βh i = i e βh/m e βh/m e βh/m i = i e βh/m j 1 j 1 j M 1 e βh/m i, (5.3) j 1,,j M 1. M e βh/m 1 β H, (5.4) M, j k e βh/m j k+1 j k (1 βm ) ( H j k+1 = δ jk j k+1 β ) M j k H j k+1, (5.5).,., d, (d + 1).,. W jp j p W j p j p β = j p 1 e M H j p j p e β M H j p+1 j p 1 e β M H j p j p e β M H j p+1, (5.6),., N H = J σi z σi+1 z Γσi x, (5.7)

36 36 5 Monte Carlo., J > Γ (T = 0 σ z = 0), J < Γ (T = 0 σ z = 0)., ( ) e β M H e β M (J σ z i σz i+1 ) e β M Γ σ x β + o, (5.8) M. Suzuki-Trotter., e A+B = (e A/n e B/n ) n, as n, (5.9) Trotter., σ i e βγ M σx i σ i = Ae KSTσiσ i, (5.30),, e βγ M σx = cosh βγ M + σx sinh βγ M, (5.31) cosh βγ M = AeKST sinh βγ, (5.3) M = Ae K ST A = cosh βγ M K ST = 1 sinh βγ M ln tanh βγ M, (5.33).,,., 1 Heisenberg., H = J N σ i σ i+1, (5.34) e βh = e βj(σ1σ+σσ3+ +σ N σ 1) = e βj[(σ 1σ +σ 3 σ 4 + )+(σ σ 3 +σ 4 σ 5 + )], (5.35) Suzuki-Trotter.,, negative sign problem.

37 /06/01 1. (Husimi-Temperley ) : ( H = Jz N ) ( N ) σ i H σ i. (6.1) N N T > T c O(N) M N = T = T c O(N 3/ ), (6.) T < T c O(N )... : α + β + γ = γ = β(δ 1) γ = ( η)ν α + β(1 + δ) = α = dν Rushbrook Widom Fisher Griffis Josephson, (6.3) : f(u) = b d f(u ) = b d f(b y1 u 1, b y u, ), (6.4).

38

39 39 [1] J. Frölich et al., Phys. Rev. Lett. 36, 804 (1976). [] F. J. Dyson et al., J. Stat. Phys. 18, 335 (1978). [3] J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 4.2 4.2.1 [ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 S i S j (4.39) i, j z 5 2 z = 4 z = 6 3 z = 6 z = 8 zn/2 1 2 N i z nearest neighbors of i j=1

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k) 19 1 14 007 3 1 1 Ising 4.1................................. 4................................... 5 3 9 3.1........................ 9 3................... 9 3.3........................ 11 4 14 4.1 Legendre..............................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a 009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

(Onsager )

(Onsager ) 05819311 (Onsager ) 1 2 2 Onsager 4 3 11 3.1................ 11 3.2............ 14 3.3................... 16 4 18 4.1........... 18 4.2............. 20 5 25 A 27 A.1................. 27 A.2..............

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information