120126_RRR_jp.pptx

Size: px
Start display at page:

Download "120126_RRR_jp.pptx"

Transcription

1 高磁場 NMR の利用 C 検出への期待 202 年 月 日首都大学東京秋葉原サテライトキャンパス第 回 RRR-workshop 20/2 大阪大学蛋白質研究所構造プロテオミクス研究系池上貴久

2 NMR の高磁場化に伴う利点 感度の上昇 B 0 3/2 磁気モーメント B 0 ラーモア周波数 B 0 ノイズレベル B 0 /2 (S/N) 950MHz / (S/N) 600MHz = 2 M z!=! N! 2! 2 I ( I +)! 0!=!!"B 0 3kT B 0 直接測定軸 (FID) における分解能の増加 交差相関緩和による H- 5 N TROSY 効果 磁化率の異方性による磁場配向の増加

3 核磁気モーメント N 静磁場 B 0 核スピン エネルギー Zeeman energy S β 状態 ΔE = hv = ω α 状態

4 Comparison of particular regions in the 2D NOESY spectra on Avance-I ms (t ) 239.6ms (t 2 ) Ns = 6 on Avance-III ms (t ) 240.3ms (t 2 ) Ns = 6

5 on Avance-I 800 on Avance-I 800 on Avance-III 950 on Avance-III 950

6 TROSY パルス系列による高分子量への挑戦 J HN 二次元 H- 5 N 相関スペクトル J HN 5 N 化学シフト値 (ppm) 800 kda 高分子量でも観測可? GHz NMR が理想的? H 化学シフト値 (ppm) アミド基 メチル基 芳香環に適用可 J HN H N C α C o H N C α C o H N

7 B 0 交差相関 cross-correlation between DD and CSA N S Sα Sx αβ ββ Iα J ではなく dd Iβ N Iα βα S αα Ωs 遮蔽が小さい S! XX (! = 90 ) αβ ββ αα βα! XX TROSY-peak Ωs

8 B 0 分子が 90 回転して I-S 結合が横を向くと 遮蔽が大きい ββ! ZZ S αβ βα! ZZ (! = 0) αα Ωs magic angle ββ TROSY-peak N S Iα N S Sα Sx αβ βα Iβ Iα 核磁気の永年項 (B o 方向成分 ) αα Ωs J ではなく dd

9 5 N- H の DD/CSA TROSY 効果は静磁場強度 B 0 に依存する TROSY!!!# $ R 2 CSA ( ) " R 2 ( DD) % & 2 化学シフトの異方性 2 30 緩和速度 (/sec) 双極子双極子相互作用 2 TROSY R 2 (CSA) 5 N R 2 (DD) 5 N- H N 系列 系列 2 系列 τ r = 20 ns (~50 kda), θ csa-dd = 5 双極子双極子相互作用 化学シフトの異方性 H 核の共鳴周波数 (MHz)

10 重水素化により H N 核の縦緩和が遅くなる Hα との dd 縦緩和速度が /7000 になる? ( 欠点 )repetition-delay を長くしないといけない DD Hn-,2 Hβ 5 DD Hn-,2 Hα DD Hn- 5 N DD Hn- Hn 重水素化 系列 2 軽水素化 系列 CSA Hn H D α 自己縦緩和速度 ρ (/sec) ( ただし SOFAST- HMQC のように交差緩和は無視 ) (500 MHz H) τ r =20 ns (~50 kda) 5 N D β C α C β C o D β 5 N の展開時間を 50ms とすると exp (!8" 0.05) = 0.4,!!exp (!3" 0.05) = 0.86 の割合で H N (α) と H N (β) が維持される

11 C 核の直接測定 (FID) の長所と短所! H!=!26.75!0 7!( T " s )! C!=!6.73!0 7!( T " s ) µ H :!2.79µ N µ C :!0.70µ N 磁気回転比 γ C は γ H の /4 # µ N :!the!nuclear!magneton!=!5.05!0 "27 J &!% ( ( 核ボーア磁子 ) $ T ' 長所 双極子相互作用による T 2 緩和が遅い ( 特に 2 H が付いている場合 ) したがって 線幅が狭く 高分子や常磁性金属を配位した蛋白質に適している R( dd)!!!! 2 I "! 2 S " S( S +) 短所 感度が小さい T 緩和も遅いので repetition-delay を長く待つ必要がある

12 C 核の化学シフト値の広い分布により 線形が先鋭に見える C- H の双極子双極子 C 横緩和半値幅 27 Hz = 0.8 ppm alipha c C: 0~80ppm とすると ppm C- H の双極子双極子 H 横緩和半値幅 27 Hz = ppm alipha c H: 0~6ppm とすると 化学シフト分布の広がりを考慮すると C よりも H のピークの方が 3 倍幅が広く見える 半値幅を 30 倍に拡大した等高線 C 化学シフト C- 2 H の双極子双極子 C 横緩和半値幅 2 Hz = 0.05 ppm alipha c C: 0~80ppm とすると 重水素化により C の線幅は さらに /2 程度に細く見える 6 ppm H 化学シフト 0 80 ppm 600 MHz H, τ r =20 ns (~50 kda) C-,2 H (.08 Å)

13 DD による横緩和は 静磁場強度にそれほど依存しない 横緩和速度 R 2 DD (/sec) R DD 2 =!2 2! I2! S! µ 0 $ # & 8r 6 " 4" % 磁場強度 (MHz) 2 { 4J ( 0 ) + J (! I '! S ) + 3J (! I ) + 6J (! S ) + 6J (! I +! S )} τ c (ns) 回転相関時間 ( ) = 2 5 J!! c +" 2! c 2 I ( Cα) 側を観測 FID のように 充分に長くサンプリングを行えば Hertz で表した線幅は磁場強度によってあまり変化しないため ppm 表示での分解能が上昇する Cα- Hα 2 スピン系.09 Å 双極子相互作用のみを考慮

14 立体構造を保持していない蛋白質では H N の化学シフトの散らばりは小さい 寒川作 いわゆる? ハムの崖 2D H- 5 N HSQC unfolded folded 5 N 化学シフト値 (ppm) H N 化学シフト値 (ppm) H N 化学シフト値 (ppm)

15 たとえ立体構造の無い蛋白質でも 5 N や 3 C などの異種核では 化学シフトがまだ散らばる unfolded 2D CONCO Pro ( 5 N ~4ppm) 3D HNCO の H N 軸に沿った圧縮投影 folded 5 N 化学シフト値 (ppm) Co 化学シフト値 (ppm) Co 化学シフト値 (ppm)

16 H N は交換性 (labile) なので H- 5 N HSQC などでは 水の H との交換が問題となる at 293K 水と速く交換する H N はピーク強度が小さい at 30K

17 C- 検出に伴う感度の低下 3 3 S N!!!Conc "! 2 exc "! obs " B " N scan 磁化移動の開始 : H FID 検出 : H B 0 : 600 MHz プローブ : 室温 FID 検出 : 3 C 磁化移動の開始 : 3 C B 0 : 950 MHz 0 プローブ : 極低温 (inverse かどうかは無視 ) = 00/ 濃度を 4 倍に濃くする or 積算時間を 6 倍にする or 磁化移動を H から始める (00% 重水素化では )

18 C- 極低温検出器により 3 C- 直接 FID 検出が実現可能に 分解能の向上 ( 測定時間に支配されない ) 超高磁場 感度の上昇分解能 (@ppm) の向上 ( 磁場が高い程良い ) C の化学シフト値のスペクトル分布は H よりも広いので C の線幅は H の線幅の /3 になったかのように見える H 5 N D α C α C o H β C β D β

19 C- 検出 FID の IPAP-process D 5 N D C α C o D 5 N C β in- phase an - phase

20 in- phase + an - phase in- phase - an - phase + -

21 virtual decoupling J ± CC 2 だけ移動させる

22 SQ CON with IPAP 25 ms y Co 4J NCo t 2 4J NCo 4J NCo 4J NCo 5 N t AP IP IP AP Cα H Gr 4J C!Co = 4.5ms N (ppm) H H C o C α C o 5 N C β mm [ C, 5 N]- ubiqui n 80 Co (ppm) 70 古板恭子 藤原敏道 児嶋長次郎

23 CSA による横緩和は 静磁場の二乗で速くなる 横緩和速度 R 2 CSA (/sec) 磁場強度 (MHz) τ c (ns) 回転相関時間 ( R CSA 2 =! II!! " ) 2! 2 2 I B 0 8 { 4J ( 0) + 3J (! I )} ( ) = 2 5 J!! c +" 2! c 2 Trosy 効果 方向情報など positive な面を逆に利用する Co 化学シフトの異方性のみ考慮! xx =!5.6ppm,!! yy =!48.6ppm,!! zz = 40.6ppm

24 2D SQ CAN 22.2 ms y Cα t 2 5 N t 2 H Gr 大腸菌培養のための M9- 最少培地 [2- C]- glycerol (or [,3- C]- glycerol) NaH CO 3 D 2 O D 5 N D C α C o D 5N D C α C o C β C β アミド H の存在しない Pro でも問題無し Cα- FID での IPAP 不要 J CαCβ カップリングによる損失無し Cα の縦緩和速度を金属で促進 2D COCA と組み合わせて 主鎖の連鎖帰属が可能 Takeuchi, K. et al. (2008) J.Am.Chem.Soc. 0, 720.

25 高磁場 高分子量では dd ( Cα- Hα) は Cα の縦緩和にはあまり寄与しない 縦緩和速度 R DD (/sec) T =5 sec! 磁場強度 (MHz) τ c (ns) 回転相関時間 R DD =!2 2! I2! S! µ 0 $ # & 4r 6 " 4" % ( ) = 2 5 J!! c 2 { J (# I '# S ) + 3J (! I ) + 6J (! I +! S )} +" 2! c 2 I ( Cα) 側を観測 C- 開始よりも 縦緩和の速い H- 開始測定の方が有利では? しかし 重水素化試料では駄目 Cα- Hα 2 スピン系双極子相互作用のみ考慮

26 Cα の縦緩和では 同種核の dd ( Cα- Co), dd ( Cα- Cβ) が分子量とともに支配的になってくる 縦緩和速度 R (/sec)! DD =!2 4! I! µ 0 $ # & 4r 6 " 4" % ( ) = 2 5 J! 磁場強度 (MHz)! c 2 +" 2! c 2 { J ( 0) + 3J (! I ) + 6J ( 2! I )} τ c (ns) 回転相関時間 重水素化された Cα を観測交差緩和を無視 Co, Cβ を z に flip-back すると SOFAST の C 版が可能重水素化による影響は小さい (dd ( Cα- Hα) は R 緩和の ¼ 程度の寄与 )

27 CSA による縦緩和時間は 磁場強度にあまり依存しない R DD ( Co- Cα) 縦緩和速度 (/sec) R CSA ( Co) 磁場強度 (MHz) ( R CSA =!!! II ") 2! 2 2 I B 0 ( ) = 2 5 J!! c 3 +" 2! c 2 J (" I ) dd ( Cα- Co) が分子量とともに効いてくる 回転相関時間 τ c (ns) Co を検出 Co 化学シフトの異方性あるいは Co- Cα の双極子相互作用を考慮! xx =!5.6ppm,!! yy =!48.6ppm,!! zz = 40.6ppm Cα を z に flip-back すると仮定

28 2D SOFAST CONCO? 25 ms y Co 4J NCo t 2 4J NCo 4J NCo 4J NCo 5 N t Cα AP IP IP AP H Gr Cα 磁化を z 方向に flip-back するために ここにを入れると良い

29 B 0 双極子双極子相互作用 Dipole-dipole coupling 電子の緩和が遅い場合 (Gd 3+, Mn 2+ ) e α ββ Sx αβ βα e α e β αα ωs ββ e β e α e α Sx αβ βα αα 分子の遅い回転運動により大きな splitting が平均化される ωs

30 B 0 双極子双極子相互作用 Dipole-dipole coupling 電子の縦緩和が速い場合 (Ni 2+ ) Sx e α e β e α ββ αβ βα ωs Sx αα e β ωs 分子の遅い回転ではなく 電子の速い縦緩和により大きな splitting が平均化される

31 H-NMR よりも 3 C-NMR が有利な場合 u γ H は大きいので それに伴って双極子相互作用による緩和も大きい γ C は小さいので 線幅が狭く 高分子や常磁性金属を配位した蛋白質に適している u 重水素化した大きな蛋白質では検出すべき H の数が少ない 四級炭素からも情報を得れる u 構造をとっていないような蛋白質においては H の化学シフト値の散らばりが小さいのに対して C ではそれほどでもない u 水溶液の場合 水の信号を消す努力が不要 したがって 水消しに伴うアーティファクが無い u HN は labile なので H- 5 N-HSQC などでは 水との交換が問題となる 例えば 水と速く交換する HN は感度が悪い u 化学交換や構造交換においても H は幅広化が顕著な場合が多い u 双極子相互作用による横緩和は 磁場強度にあまり依存しないので 高磁場の直接測定 (FID) による高い感度と分解能を享受できる u 高塩濃度による感度の低下の率が小さい

32 逆に 3 C-NMR の方が不利な点 n γ C が小さいので 感度が小さい n FID の検出の際に J C-C を除く必要がある n T 緩和が長いので interscan-delay を長く待つ必要がある 寒川作 C-NMR の将来 n 重水素化した高分子量の蛋白質を高磁場で C- 検出するのが適しているであろう ( 水素が 2 H 化されているので dd による T 2 緩和は遅く 線形が先鋭化される ) H 5 N D α C α C o n 現時点での感度を考慮すると H N から磁化移動を開始し C で検出するのが妥協策か?( その方が interscan-delay も短くて済む?) D β C β D β

NMR_wakate_ ppt

NMR_wakate_ ppt NMR 基礎講義 & 2 第 0 回若手 NMR 研究会 2009 年 9 月 4 日 ( 金 )-6 日 ( 日 ) IPC 生産性国際交流センター ( 湘南国際村 ) 大阪大学蛋白質研究所構造プロテオミクス研究系 池上貴久 化学シフトの直積演算子 (product-operator) I " I cos (#t) + I sin (#t) x x y ω : 角速度 (rad/s) z 一周の長さ

More information

チュートリアル6.pptx

チュートリアル6.pptx 第 54 回 NMR 討論論会 チュートリアルコース NMR 教科書のここがよく分からない ご静聴をどうもありがとうございました これが当 日の講演で使わせていただきましたスライドです どうぞよろしくお願いいたします 平成 27 年年 月 5 日 3:00~ 4:30 千葉葉 工業 大学津 田沼キャンパス 4 号館 43 講義室 ( 横浜市 立立 大学 ) 池上貴久 フーリエ変換とは? 初学者は講義や教科書を通して

More information

Chap. 1 NMR

Chap. 1   NMR β α β α ν γ π ν γ ν 23,500 47,000 ν = 100 Mz ν = 200 Mz ν δ δ 10 8 6 4 2 0 δ ppm) Br C C Br C C Cl Br C C Cl Br C C Br C 2 2 C C3 3 C 2 C C3 C C C C C δ δ 10 8 6 4 δ ppm) 2 0 ν 10 8 6 4 δ ppm) 2 0 (4)

More information

SE法の基礎

SE法の基礎 SE 法の基礎 近畿大学医学部奈良病院阪本貴博 本日の内容 Principle of MRI SE 法の基礎 MRI とは SE 法とは 縦緩和と横緩和 TR と TE コントラスト MRI とは Magnetic Resonance Imaging: 核磁気共鳴画像法 MRI に必要な 3 つの要素 N S + + + 静磁場 ( 磁石 ) 水素原子 電波 (RF) 静磁場と電波 (RF) を使って水素原子の様子を画像化している

More information

機器分析化学 3.核磁気共鳴(NMR)法(1)

機器分析化学 3.核磁気共鳴(NMR)法(1) 機器分析化学 3. 核磁気共鳴 (NMR) 法 (1) 2011 年度 5. 核磁気共鳴スペクトル法 (Nucler Mgnetic Resonnce:NMR) キーワード原子核磁気共鳴 ⅰ) 原子核 ( 陽子 + 中性子 ) 原子番号 (= 陽子数 ) 質量数 (= 陽子数 + 中性子数 ) もし原子番号も質量数も偶数の場合その原子核はスピンを持たない そうでない場合 ( どちらか あるいは一方が奇数

More information

有機4-有機分析03回配布用

有機4-有機分析03回配布用 NMR( 核磁気共鳴 ) の基本原理核スピンと磁気モーメント有機分析化学特論 + 有機化学 4 原子核は正の電荷を持ち その回転 ( スピン ) により磁石としての性質を持つ 外部磁場によって核スピンのエネルギー準位は変わる :Zeeman 分裂 核スピンのエネルギー準位 第 3 回 (2015/04/24) m : 磁気量子数 [+I,, I ] I: スピン量子数 ( 整数 or 半整数 )]

More information

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D>

<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D> 前回の復習 医用生体計測磁気共鳴イメージング :2 回目 数理物質科学研究科電子 物理工学専攻巨瀬勝美 203-7-8 NMRとMRI:( 強い ) 静磁場と高周波 ( 磁場 ) を必要とする NMRとMRIの歴史 :952 年と2003 年にノーベル賞 ( 他に2 回 ) 数学的準備 : フーリエ変換 ( 信号の中に, どのような周波数成分が, どれだけ含まれているか ( スペクトル ) を求める方法

More information

120308_interaction.pptx

120308_interaction.pptx NMR による蛋白質と低分子リガンドとの 相互作用の解析法 202 年 弥生 8-9 日 木 金 蛋白質研究所 先端研究施設共用促進事業 先端核磁気共鳴装置群の産業利用支援プログラム NMR による蛋白-薬剤相互作用検出実験法 池上貴久 大阪大学蛋白質研究所 分子運動の回転の速さの分布 高分子ではゆっくり回転している分子の割合が大きい 高分子 ω 0 τ c = (rad) = 57 J (") =

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 東北大学サイクロトロン ラジオアイソトープセンター測定器研究部内山愛子 2 電子の永久電気双極子能率 EDM : Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率 標準模型 (SM): クォークを介した高次の効果で電子 EDM ( d e ) が発現 d e SM < 10 38 ecm M. Pospelov and A. Ritz,

More information

Microsoft Word - 4NMR2.doc

Microsoft Word - 4NMR2.doc 4 NMR 4.1 Zeeman 1, 13 C, 19 F, 31 P NMR 1 13 C 1/2 4.1 7%&'- 89:;'

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

130206_sapporo.pptx

130206_sapporo.pptx 残余双極 子相互作 用の解析はどのような情報をどこまで引き出せるのか? 0 年 0 月 4 日 ( 水 ) 日本分光学会 NMR 分光部会集中講義 産業利 用を 目指す最新 NMR 手法の実践的講義 東 大薬学部講堂 大阪 大学蛋 白質研究所 構造プロテオミクス研究系 池上貴久 NMR の双極 子相互作 用をもとにした 方向情報の取得とその応 用 核磁気共鳴法により 分 子の距離情報や 二 面 角情報を

More information

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

Microsoft PowerPoint - summer_school_for_web_ver2.pptx スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from http://en.wikipedia.org/wiki/disk_readand-write_head

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

Microsoft PowerPoint - 多核NMRへの応用_提出版.pptx

Microsoft PowerPoint - 多核NMRへの応用_提出版.pptx 多核 NMR の応用 ~ 19 F NMRを用いた定量分析 ~ 第 1 回定量 NMRクラブ (2012/12/4) 産業技術総合研究所計測標準研究部門有機分析科バイオディカル標準研究室山﨑太一 1 定量 19 FNMR 法の開発目的 フッ素化合物は生化学におけるスクリーニングや材料科学におけるポリマー分析等幅広く用いられている 分子構造解析や酵素活性等の速度論解析に使用 19 FNMR を用いた高精度な定量法開発は重要!

More information

130206_sapporo.pptx

130206_sapporo.pptx 残余双極 子相互作 用の解析はどのような情報をどこまで引き出せるのか? 0 年年 0 月 4 日 ( 水 ) 日本分光学会 NMR 分光部会集中講義 産業利利 用を 目指す最新 NMR 手法の実践的講義 東 大薬学部講堂 大阪 大学蛋 白質研究所 構造プロテオミクス研究系 池上貴久 NMR の双極 子相互作 用をもとにした 方向情報の取得とその応 用 核磁気共鳴法により 分 子の距離離情報や 二 面

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

8.1 有機シンチレータ 有機物質中のシンチレーション機構 有機物質の蛍光過程 単一分子のエネルギー準位の励起によって生じる 分子の種類にのみよる ( 物理的状態には関係ない 気体でも固体でも 溶液の一部でも同様の蛍光が観測できる * 無機物質では規則的な格子結晶が過程の元になっているの

8.1 有機シンチレータ 有機物質中のシンチレーション機構 有機物質の蛍光過程 単一分子のエネルギー準位の励起によって生じる 分子の種類にのみよる ( 物理的状態には関係ない 気体でも固体でも 溶液の一部でも同様の蛍光が観測できる * 無機物質では規則的な格子結晶が過程の元になっているの 6 月 6 日発表範囲 P227~P232 発表者救仁郷 シンチレーションとは? シンチレーション 蛍光物質に放射線などの荷電粒子が当たると発光する現象 材料 有機の溶液 プラスチック 無機ヨウ化ナトリウム 硫化亜鉛 など 例えば以下のように用いる 電離性放射線 シンチレータ 蛍光 光電子増倍管 電子アンプなど シンチレーションの光によって電離性放射線を検出することは非常に古くから行われてきた放射線測定法で

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

ダイポールアンテナ標準:校正の実際と不確かさ

ダイポールアンテナ標準:校正の実際と不確かさ ダイポールアンテナ標準 校正の実際と不確かさ ( 独 ) 産業技術総合研究所 森岡健浩 概要 アンテナ係数 3アンテナ法 ( 半自由空間と自由空間 ) 置換法 不確かさ積算 異なるアンテナ校正によるアンテナ係数の一意性 まとめ アンテナ係数の定義 z 波源 V 付属回路 受信アンテナ図 アンテナ係数の定義 V 測定量 : アンテナ係数 ( 水平偏波.0 m 高 または自由空間 ) 校正方法 : 3アンテナ法

More information

09_organal2

09_organal2 4. (1) (a) I = 1/2 (I = 1/2) I 0 p ( ), n () I = 0 (p + n) I = (1/2, 3/2, 5/2 ) p ( ), n () I = (1, 2, 3 ) (b) (m) (I = 1/2) m = +1/2, 1/2 (I = 1/2) m = +1/2, 1/2 I m = +I, +(I 1), +(I 2) (I 1), I ( )

More information

 

  1) 放射光による元素選択的磁気測定とそのナノ物質科学への期待 堀秀信 1) 山本良之 北陸先端科学技術大学院大学 マテリアルサイエンス研究科, 923-1292 石川県能美市旭台 1-1 2) 秋田大学 工学資源学部, 010-8502 秋田市手形学園町 1-1 2) 1. はじめに最近ナノサイズの科学研究が盛んである 我々は ナノ科学の最大の特徴が イオンなど原子の電子構造が中心となって表現される物性とも

More information

『今からでも大丈夫!! MRI入門Part3』 アーチファクトの基礎 ・ケミカルシフトアーチファクト ・磁化率アーチファクトの基礎

『今からでも大丈夫!! MRI入門Part3』 アーチファクトの基礎 ・ケミカルシフトアーチファクト ・磁化率アーチファクトの基礎 第 26 回神奈川 MRI 技術研究会 今からでも大丈夫!! MRI 入門 Part3 アーチファクトの基礎 ケミカルシフトアーチファクト 磁化率アーチファクトの基礎 横浜市立大学附属病院平野恭正 2014 年 2 月 7 日 アーチファクトの種類 1 動きによるアーチファクト (motion artifact) 拍動 脳脊髄液の流れによるもの体動によるもの 2 ケミカルシフトアーチファクト (chemical

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電子スピン共鳴 :Electron pin Reonance (ER) 1. 歳差運動 (preceion). スピン角運動量 : 電子 3. ゼーマン効果 : スピン 4. 平行 反平行状態 5. ラーモア歳差運動 6. 電子スピン共鳴 7. 緩和過程 注意 1. 本付録 : 電子スピン共鳴 について 原理 概略を説明. 但し 電子スピン共鳴装置 の特徴や使用法の説明はしません

More information

Microsoft PowerPoint - 臨床医工学田中2011Dec

Microsoft PowerPoint - 臨床医工学田中2011Dec 臨床医工学融合研究教育センター 画像医学 MRI の原理と臨床および 基礎医学研究への応用 大阪大学医学系研究科放射線医学講座 田中壽 (X線)CT X-ray computed tomography 磁気共鳴画像 MRI Magnetic Resonance Imaging 参考書籍 MRI 再 入門荒木力著南江堂 MRI 完全解説荒木力著秀潤社 MRI の基礎 1.NMR 現象 2. 磁場中の水素原子核の挙動

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点 09 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F K, L) = AK α L β 5) と定義します. ) F KK, F KL, F LK, F LL を求めましょう. ) 第 象限のすべての点 K, L) R ++ に対して F KK K, L) < 0, かつ dethf )K, L) > 0 6) を満たす α,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション MS NMR で検索 http://lab.agr.hokudai.ac.jp/ms-nmr/ N379 室図書室の上情報処理室の向かい窓なし金属ドア 高田祐輔平日 8:30-17:00 55 73 2017 年本試験 85 113 1727 1194 6.40 (1H, dd, J = 17.4, 1.8) 6.12 (1H, dd, J = 17.4, 10.4) 5.81 (1H, dd, J

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

6

6 000 (N =000) 50 ( N(N ) / = 499500) μm.5 g cm -3.5g cm 3 ( 0 6 µm) 3 / ( g mo ) ( 6.0 0 3 mo ) =.3 0 0 0 5 (0 6 ) 0 6 0 6 ~ 0 000 000 ( 0 6 ) ~ 0 9 q R q, R q q E = 4πε 0 R R (6.) -6 (a) (b) (c) (a) (b)

More information

15分でわかる(?)MRI

15分でわかる(?)MRI 講義ノート https://www5.dent.niigata-u.ac.jp/~nisiyama/mri-lecture-note.pdf https://www5.dent.niigata-u.ac.jp/~nisiyama/mri-15-min-p2.pdf 15 分で分かる (?)MRI 古典力学的説明 MRI 原理へのいざない Part 2 1 個のプロトンから 15 分単位で理解できる

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

01-表紙.ai

01-表紙.ai B 0 5 0-5 双極子核 I=1/ 2 四極子核 I 1 e Li Be B C N F Ne Na Mg 黒字はNMR 観測不可 Al Si P S Cl Ar K Ca Sc Ti V Cr MnFe Co Ni Cu ZnGaGe As Se Br Kr RbSr Y Zr NbMoTc RuRhPdAgCd In Sn SbTe I Xe Cs Ba La f Ta W Res Ir Pt

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

Introduction

Introduction 我 日常的関 用 半導体大半 用 近年 化進 小 半導体求 量子 開発活発 開発必要材 料 薄膜半導体必要 材料 期待 物質盛 研究 物質中 今回私黒 物性研究行 黒 次元層状構造 半導体 薄膜半導体 実用期待 物質一 現在 様 実験手法用 物性研究行 物質対 理解深 一方 測定用 研究 行 量子 実現 測定 実験手法非常重要 量子 特 量子 量子状態観測 方法 測定用 材料 物質 測定観測 物性必要

More information

Microsoft Word - lecture.doc

Microsoft Word - lecture.doc 有機構造解析講義資料 1)J-カップリングの求め方 (ppm から z への変換方法 ) 規定の長さの材木を切り出す際の誤差の定義式 実際の長さ 規定の長さ 誤差 (%) = 規定の長さ 100 残差 = 100 規定の長さ ( 式 1) 実際の長さ 規定の長さ 誤差 (ppm) = 規定の長さ 残差 = 規定の長さ ( 式 2) NMR の化学シフト値 (δ) の定義式 測定核の共鳴周波数 基準周波数

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

偏極ターゲット開発の現状 @ 山形大学 Current status of development of polarized targets @Yamagata Univ. 山形大学松田洋樹 Yamagata Univ. H. MATSUDA Index 1. 偏極標的と偏極度 (Pol. Target and DoP) 2. 能動核偏極 (Dynamic Nuclear Polarization)

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

zsj2017 (Toyama) program.pdf

zsj2017 (Toyama) program.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf

_170825_<52D5><7269><5B66><4F1A>_<6821><4E86><5F8C><4FEE><6B63>_<518A><5B50><4F53><FF08><5168><9801><FF09>.pdf 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88 th Annual Meeting of the Zoological Society of Japan Abstracts 88

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

CSR報告書2005 (和文)

CSR報告書2005 (和文) A 250 200 150 100 50 0 25,000 20,000 15,000 10,000 5,000 0 1,000 800 600 400 200 0 168 14 14 27 54 60 2000 16,975 1,314 1,207 8,977 5,477 2000 698 112 115 292 178 2000 223 24 28

More information

ブック 1.indb

ブック 1.indb 21 1211 27 11 27 12 16 20 11 27 10 20 28 29 30 12 10 11 12 30 13 30 14 10 30 15 11 16 12 17 13 18 14 19 15 20 16 10 21 11 27 106 21 107 108 109 110 21 111 28 112 28 10 113 29 11 11421 30 12 11521 32 13

More information

P1(タイトル).md2

P1(タイトル).md2 四極子の固体 NMR NMR の特徴 : 核種毎の情報を得ることが出来る 双極子核 I=1/2 四極子核 I 1 e Li Be B C N F Ne Na Mg 黒字はNMR 観測不可 Al Si P S Cl Ar K Ca Sc Ti V Cr MnFe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr NbMo Tc Ru Rh Pd Ag Cd In Sn

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

untitled

untitled D nucleation 3 3D nucleation Glucose isomerase 10 V / nm s -1 5 0 0 5 10 C - C e / mg ml -1 kinetics µ R K kt kinetics kinetics kinetics r β π µ π r a r s + a s : β: µ πβ µ β s c s c a a r, & exp exp

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα = 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a + b α (norm) N(α) = a + b = αα = α α (spure) (trace) 1 1. a R aα = aα. α = α 3. α + β = α + β 4. αβ = αβ 5. β 0 6. α = α ( ) α = α

More information

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds) 1 1 CP 1.1 SU() U(1) U(1) W ±,Z 1 [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (1.1a) (1.1b) u d u d +W u s +W s u (udd) (Λ = uds) n + e + ν e d u +W u + e + ν e (1.a) Λ + e + ν e s u +W u + e

More information

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ オルソポジトロニウムの寿命測定による QED の実験的検証 課題演習 A2 2016 年後期 大田力也鯉渕駿龍澤誠之 羽田野真友喜松尾一輝三野裕哉 目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ 第 1 章イントロダクション 実験の目的 4 ポジトロニウム ( 後述 ) の崩壊を観測 オルソポジトロニウム ( スピン 1 状態 ) の寿命を測定

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 核磁気共鳴 (NMR) を用いた蛋白質の立体構造解析 首都大学東京大学院理工学研究科伊藤隆 NMRを用いた蛋白質の高次構造解析. 測定 3. NMRシグナルの帰属 主鎖 / 側鎖 2. データ処理 5. 高次構造計算 4. 距離情報の取得 核スピンエネルギー順位のゼーマン分裂 ΔE = hγb 0 /2π B 0 : 静磁場強度 h: プランク定数 γ: 磁気回転比 ΔE = hν ν= γb 0

More information

その他の脂肪抑制法 -Dixon法を中心に-

その他の脂肪抑制法 -Dixon法を中心に- 第 25 回神奈川 MRI 技術研究会 今からでも大丈夫!! MRI 入門 part2 テーマ脂肪抑制の基礎 その他の脂肪抑制法 -Dixon 法を中心に - 国家公務員共済組合連合会 横浜栄共済病院放射線科 高橋光幸 脂肪抑制法 1) 緩和時間 (T1 値 ) の差を利用する. 2) 共鳴周波数の差を利用する. a) スペクトラル飽和パルスを使う.(CHESS 法 ) b) 位相差を使う Dixon

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較 nat Mg+ 86 Kr の反応による生成核からの β 線の測定と GEANT によるシミュレーションとの比較 田尻邦彦倉健一朗 下田研究室 目次 実験の目的 nat Mg+ 86 Kr 生成核からの β 線の測定 @RCNP 実験方法 実験結果 GEANT によるシミュレーション 解析 結果 まとめ 今後の課題 実験の目的 偏極した中性子過剰 Na アイソトープの β-γ-γ 同時測定実験を TRIUMF

More information