, ARMAP, Q) CARMAP, Q) DARMAp, q) CARMAP, Q) CARMAP, Q) DARMAp, q) DARMAp, q), CARMAP, Q) CARMAP, Q) Chan and Tong 1987), He and Wang 1989), Br

Size: px
Start display at page:

Download "4 41 01, ARMAP, Q) CARMAP, Q) DARMAp, q) CARMAP, Q) CARMAP, Q) DARMAp, q) DARMAp, q), CARMAP, Q) CARMAP, Q) Chan and Tong 1987), He and Wang 1989), Br"

Transcription

1 41,, ARMA Can We Have Correspondence between Discrete-Time ARM A Process and Continuous-Time ARM A Process? Mituaki Huzii ARMA Huzii 006) Huzii 006) ARMA3, ) We assume that a time series is a continuous-time weakly stationary process. We observe the process at equal sampling intervals and construct a discrete-time weakly stationary process. Does the discrete-time weakly stationary process satisfy a DARMAdiscrete-time autoregressive moving average) model, if the continuous-time weakly stationary process satisfies a CARMAcontinuous-time autoregressive moving average) model? And, conversely, we assume we have a discrete-time weakly stationary process which satisfies a DARMA model. Then can we have a continuous-time weakly stationary process, which satisfies a CARMA model and whose sampled process satisfies the DARMA model? In this paper, we review the papers, which have been published by now and treat of these two problems mainly the latter problem), and show more rigorous formulations of the problems and more general answers to these two problems, by using the resuls shown in Huzii 006) and adding new results. : DARMA, CARMA, 1. ARMAp, q) DARMAp, q) huzii@indsys.chuou.ac.jp).

2 , ARMAP, Q) CARMAP, Q) DARMAp, q) CARMAP, Q) CARMAP, Q) DARMAp, q) DARMAp, q), CARMAP, Q) CARMAP, Q) Chan and Tong 1987), He and Wang 1989), Brockwell 1995), Brockwell and Brockwell 1999) n {X n } E X n <, EX n = m m = 0, EX n+j Xn = γ j j X n = 1/ expπnµi)dzµ), γ j = 1/ 1/ 1/ expπjµi)f d µ)dµ 1.1) Brockwell and Davis 1991)) EdZµ)d Zµ ) = 0µ µ ), E dzµ) = f d µ)dµ f d µ) f d µ) f d µ) {X n } µ DARMAp, q) p φ k X n k = k=0 q θ l ɛ n l 1.) l=0 {X n } {ɛ n } 0 1 n {φ k } {θ l } t φ p 0, θ q 0 1.1) 1/ 1/ expπnµi) p φ k exp πkµi) ) dzµ) = k=0 1/ expπnµi) q θ l exp πlµi) ) dz ɛ µ) 1/ l=0 Z ɛ µ) {ɛ n } 1.1) Zµ) E dz ɛ µ) = 1dµ = fd ɛµ)dµ {X n}

3 ARMA 43 f d µ) q f d µ) = l=0 θ l exp πlµi) p k=0 φ k exp πkµi) 1.3) Φz) = p k=0 φ kz k = 0 Θz) = q l=0 θ lz l = 0 DAR DMA Φz) = 0 {1/β τ ; 1 τ p} z > 1 X n ɛ n {ɛ n j ; j 0} {X n j ; j 0} {X n } γ j {β τ } p j γ j = g τ β τ τ=1 1.4) {g τ } t {X t } E X t <, EX t = m m = 0, EX t+h Xt = R h h X t = expπtλi)dzλ), R h = expπhλi)f c λ)dλ 1.5) Brockwell and Davis 1991)) EdZλ)d Zλ ) = 0λ λ ), E dzλ) = f c λ)dλ {X t } CARMAP, Q) k=0 a k d k X t dt k = Q l=0 d l ) dbt b l dt l dt 1.6) Brockwell 1995)) a 0 = 1 {a k }, {b l } {B t } EB t B t1 )B t4 B t3 ) = 0t 1 < t t 3 < t 4 ), EB t B u ) = t u a P 0 b Q 0 1.6) Brockwell 1995) t 0 X t = b U t, du t = AU t dt + edb t.

4 b = b 0, b 1,, b P 1 ), b Q+ = b Q+3 = = b P 1 = 0) e = 1 0, 0,, 0, ), P ) a P ) U = U t, U 1) P 1) t,, U t, A =.... P P ) a P a 1 a P a a P a P 1 a P {U t } {B t } U 1) t dt = du t, U ) t dt = ddu t ), Aω) = a k ω k, Bω) = k=0 Q b l ω l l=0 Aω) = 0 Bω) = 0 CAR CMA X t B t {B t u ; u 0} {X t u ; u 0} R h f c λ) R h = τ=1 ) G τ exp α τ h. 1.7) {α τ } CAR {G τ } {X t } α j j α j = ᾱ j, G j = Ḡj Q f c λ) = l=0 b lπλi) l P k=0 a kπλi) k 1.8) Priestley 1981, Vol. 1), Yaglom 1987) DARMAp, q) CARMAP, Q) CARMAP, Q) p, q

5 ARMA 45 DARMAp, q) Priestley 1981, Vol. 1) DARMAp, q) P, Q CARMAP, Q) DARMAp, q) CARMAP, Q) Huzii 006) Chan and Tong 1987) DARMA1, 0) 1.) p = 1, q = 0 f d µ) = f c µ + k) 1.9) k= f c λ) 0 < φ 1 < 1 Priestley 1981, Vol. 1) CARMA1, 0) DARMA1, 0) 1 < φ 1 < 0 1.9) f c λ) CARMA1, 0) CARMA1, 0) CARMA, 1) DARMAp, q) p > 1 He and Wang 1989) DARMAp, q) CARMAP, Q), P = p + p p p k=0 φ kz k = 0 Brockwell 1995) Brockwell and Brockwell 1999) He and Wang 1989) Brockwell and Brockwell 1999) f d µ) q l=0 θ l exp πlµi) µ 0 CARMAP, Q) Brockwell 1995) DARMA, 0) DAR DARMA, 0) CARMA, 1) CARMA4, ) He and Wang 1989) DARMA, 0) CARMA, 1) CARMA4, ) DARMA CARMA

6 Phillips 1959) Robinson 1978) CARMAP, Q) DARMAp, q) Jones 1981) CARMAP, Q). 1 n n = 0, ±1, ±, ) = 1 n 1 {X n } X n ) γ j DARMA, CARMA,.1 {X n } f d µ) {φ k ; 0 k p} {θ l ; 0 l q} φ p 0, θ q 0 1.3) {X n } DARMAp, q) p > q f d µ) 1/ 1/ log f d µ)dµ > X n {X j ; j n 1} Φz) = 0 ξ Θz) = 0 ξ ξ > 1, ξ > 1 Priestley 1981, Vol.

7 ARMA 47. {X t } f c λ) {a k ; 0 k P } {b l ; 0 l Q} a P 0, b Q 0 1.8) {X t } CARMAP, Q) P > Q f c λ) log f c λ) 1 + λ dλ > ) X t {X u ; u < t} Aω) = 0, Bω) = 0 {α k }, {α k } α k, α k Priestley 1981, Vol. CARMAP, Q) 1.6 X t P B t DARMAp, q) CARMAP, Q) CARMAP, Q) DARMAp, q) {Y n } {X t }.3 K K n 1, n,, n K Y n1, Y n,, Y nk ) X n1, X n,, X nk ) {Y n } {X t } embeddable) 1 {X t } P QQ < P ) CARMAP, Q) {X n } p qq < p) DARMAp, q) {Y n } p qq < p) DARMAp, q) P QQ < P ) CARMAP, Q) {X t }

8 GDARMAp, q) GCARMAP, Q) 3.1 Priestley 1981, Vol. 1 CARMAP, Q) DARMAp, q) 3.1 CARMAP, Q) {X t } {X n } DARMAP, P 1) 3.1 Aω) = 0 {α k } 1.7) {X n } f d µ) γ j j j 0) 1 z expα 1 ))1 z expα )) 1 z expα P )) = φ k z k {φ 0 = 1), φ k ; 1 k P } γ j = P l=1 G l expα l j) φ k γ j k = 0 j P ) k=0 j P 1/ 1/ k=0 P expπjµi) φ k exp πkµi)) fd µ)dµ = 0 k=0 j P 1/ 1/ expπjµi) φ k exp πkµi) fd µ)dµ = 0 {θ l ; 0 l P 1} k=0 φ k exp πkµi) P 1 fd µ) = θ k exp πkµi), a.e., k=0 {X n } DARMAP, P 1) k=0

9 ARMA {X t } {X n } K K {t 1, t,, t K } X t1, X t,, X tk ) K CARMAP, Q) DARMAp, q) GCARMAP, Q) GDARMAp, q) {Y n } GDARMAp, q) P Q {Y n } GCARMAP, Q) {X t } 0 h R h λ f c λ) 3. {Y n } GDARMAp, q) {X t } GCARMAP, Q) {Y n } {X t } a) b) a) γ j = R j j b) µ, 1/ < µ 1/, f d µ) = f c µ + k). 3.1) k= Priestley 1981, Vol. 1 {Y n } GDARMAp, q) GCARMAP, Q) Huzii 006) f c λ) f c λ) f c λ) = = Bπλi) Aπλi) 1 C l πλi α l. 3.) l=1 {α l } CAR {C l } {α l ; 1 l P } f c λ) {C l } {α l }

10 GDARMAp, q) GCARMAP, Q) GDARMAp, q) {φ k } Φ1/z) = p k=0 φ k1/z) k = 0 {β k }, β k = 1/ξ k, GCARMAP, Q) {a k } Aω) = P k=0 a kω k = 0 {α k } [β l, β l ] = expαl ), expα l ) ) = β l βl ) m 1 =, 1 β l βl m=0 0 1 expα l u + ᾱ l u)du = α l + ᾱ l [β l, β l ] expα l ), expα l )) {X t } 0 f d µ) 3.1) f c λ) f d µ) {β l ; 1 l p} f d µ) = p Ψ l 1 β l exp πµi) l=1 = p exp πjµi) Ψ l β j l j=0 + 1 j= l=1 exp πjµi) p Ψ l [β l, β l ] l =1 p l =1 Ψ l β j l p Ψ l [β l, β l ]. 3.3) 3.) f c λ) 3.1) l=1 f d µ) = = = = + k= k= f c µ + k) 1 C l πµ + k)i α l l=1 C l exp ) ) πµ + k)i α l u du k= j=0 l=1 0 exp πjµi) C l expα l j) 1 j= l=1 l =1 l =1 C l expαl ), expα l ) ) exp πjµi) C l expᾱ l j ) C l expαl ), expα l ) ) 3.4) l=1

11 ARMA 431 Huzii 006) 3..1 Ψ l 0 1 l p) 3.. {β l } β l Φz) = 0 Θz) = 0 3.3) 3.4) 3.3 Huzii 006)) 3.4) a), b), c) a) P p b) P = p expα l ) = β l 1 l p) c) P > p, 1 l p β l = expα l ) p + 1 l P l 1 l p l I l α l = α l + πi l i 3.4 Huzii 006)) {Y n } {X t } GDARMAp, q) GCARMA P, Q) {C l, 1 l P } {Y n } {X t } a) P = p 1 l p l p Ψ Ψ p l l =1 l [β l, β l ] = C C l l =1 l expαl ), expα l ) ) b) P > p 1 l p l p Ψ Ψ l l =1 l [β l, β l ] = j Ll) C P C j l =1 l expαj ), expα l ) ) Ll) = {j : expα j ) = β l } DARMAp, q) β l1 l 1 β l1 = β l1, Ψ l1 = Ψ l1 CARMAP, Q) α l l α l = ᾱ l, C l = C l 3.4 a), b) [β l, β l ] expα l ), expα l ) ) GDARMAp, q) GCARMAP, Q) p = 1 p = p 3

12 p = GDARMA1, 0) GCARMAP, Q) GDARMA1, 0) f d µ) = θ φ 1 exp πiµ) = θ φ 1 + φ 1 cosπµ), {Y n } Y n + φ 1 Y n 1 = θ 0 ɛ n {Y n } Φz) = 1 + φ 1 z Φz) = 0 1/β 1 β 1 = φ 1 Ψ 1 = θ 0 θ 0 > 0 GCARMA1, 0) β 1 > 0 φ 1 < b) 3.4 a) α 1 = logβ 1 ), Ψ 1 [β 1, β 1 ] = C 1 expα 1 ), expα 1 )) [β 1, β 1 ] C 1 = ± expα 1 ), expα 1 )) Ψ α 1 ) 1 = ± 1 β1 )θ 0 GCARMA1, 0) β 1 < 0 β 1 = expα 1 ) α c) α 1 = log β 1 + πi, α = log β 1 πi 3.4 b) C 1 = C = r 1 expπνi) r 1 r 1 = Ψ 1 [β 1, β 1 ] expα1 ), expα 1 ))G, 1 1 α1 = log β 1 ) ) G 1 1 = 1 + cosπθ 1 1) cos πθ ν) expπθ 1 1i) = α 1 + πi α 1 ) + π) ν ν r 1 GCARMA, 1) Chan and Tong 1987) β 1 < 0 GCARMA, 1) 3.3. GDARMA, 1) GCARMAP, Q) GCARMA, 1) P

13 1) β 1, β 0 ARMA a) β = β 1, Ψ = Ψ 1, α = ᾱ 1, β 1 = expα 1 ), C = C 1 l = 1, l = GDARMA, 1) a) F 1, F Ψ 1 = Ψ 1 expπη 1 i), α 1 = α1 + α1 i, C 1 = r 1 expπν 1 i), expπδ 1 1i) = 1 expα 1) cosα1 ) + expα1) sinα1 )i 1 expα 1 ) cosα1 ) 1 ) expπθ 1 1i) = α1 + α1 i α 1 ) + α1 ) F 1 = Ψ 1 [β 1, β 1 ]F1 + F1 i), F = F 1 α 1, α 1, F 1, F 1 r 1 0, 1/ < η 1, ν 1 1/ 3.4 a) α1, α1, η 1 U num U den cotπθ 1 1), 3.5) ) ) U num = 1 expα1) sin πη 1 + δ 1 1), U den = 1 expα1 ) cosα 1 ) + exp4α 1 ) ) ) + 1 expα1) cos πη 1 + δ 1 1), 3.4 a) C 1, C C 1 = r 1 expπν 1 i) C = C 1 r 1 ν 1 Ψ 1 [β 1, β 1 ]F1 = r1 expα 1 ), expα1) ) 1 + cos πν 1 + θ ) ) 1 1) cosπθ 1 1), Ψ 1 [β 1, β 1 ]F1 = r1 expα 1 ), expα1) ) sin πν 1 + θ ) ) 1 1) cosπθ 1 1) Ψ 1 = expπ 0.15i) Ψ 1 = 1, η 1 = 0.15), β 1 = exp + 0.5i), α 1 =, α 1 = 0.5) 3.5) ) GDARMA, 1) Y n 0.4Y n Y n = 1.41ɛ n 0.6ɛ n 1 f c λ) f c λ) = r1 cosπν 1 ) ) πλi) + 4 cosπν 1 ) sinπν 1 ) πλi) + 4 πλi)

14 r 1, ν 1 ) Sol 1 =.04, 0.11) Sol = 11.68, 0.3). f c λ) Sol 1 f c λ) = 3.1 πλi) πλi) + 4 πλi) CMA Sol f c λ) = 3.1 πλi) 5.16 πλi) + 4 πλi) CMA Brockwell 1995) He and Wang 1989) {Y n } GDARMA, 0) β 1, β 0 3.5) Brockwell 1995) 3.6) ) β 1, β β 1, β 0 β 1 = β β 1, β β 1, β 3.3 b) α 1 = log β 1, α = log β 3.4 a) GDARMA, 1) 3.4 a) F 1 = Ψ 1 F = Ψ Ψ l [β 1, β l ], 3.6) l =1 Ψ l [β, β l ] 3.7) l =1 C = expα 1), expα 1 )) expα 1 ), expα )) C 1 + C 1 = expα ), expα )) expα ), expα 1 )) C + F 1 1, expα 1 ), expα )) C 1 3.8) F 1 expα ), expα 1 )) C 3.9) C 1, C F 1 + F 0 F 1 < 0, F < 0 F 1 > 0, F > 0 C 1, C ) C 1, C 0 ± C 1, C )

15 ARMA a) C 1, C GCARMA, 1) F 1, F F 1, F, β 1, β C 1, C ) GCARMA, 1) Huzii 006)) 3.4 b) GCARMAP, Q) P GCARMA3, ) Ψ 1 =, Ψ = 1, β 1 = exp ) = α 1 = ), β = exp.1) = α =.1) F 1 =.04096, F = C 1, C ) 4 GCARMA, 1) GCARMA, 1) Ψ 1, Ψ, β 1 β β = exp 5) = C 1, C ) GCARMA, 1) GCARMA3, ) GCARMA4, 3) Huzii 006)) 3) β 1, β Huzii 006) GDARMA3, ) GCARMAP, Q) GDARMAp, q) p 3 GCARMAP, Q) GCARMAP, Q) β 1, β, β 3 β 1 > β > β 3 C 1, C, C a) GCARMA3, ) GDARMA3, ) 3.4 a) 3 F l = Ψ l Ψ l [β l, β l ], 1 l 3 l =1 expα k ), expα l ) ) = α k,l, 1 k, l 3, α k, 1 k 3, α k,l = α l,k

16 a) C 3 = C 3 = C 3 = 1 F 1 α 1,1 C 1 α 1, C, 3.10) α 1,3 C 1 α 1,3 α 1,3 1 F α,1 C 1 α, C, 3.11) α,3 C α,3 α,3 1 C 3,1 ± C 3, ), 3.1) α 3,3 C 3,1 = ) α 3,1 C 1 + α 3, C C 3, = α 3,1 C 1 + α 3, C ) + 4α3,3 F 3 C 1, C, C ) 3.11) C = 1 B 11 C 1 + B ) 1 + B 11 C 1 + B 1 ) A 11 C 1 C + D ) C = 1 B 11 C 1 + B ) 1 B 11 C 1 + B 1 ) A 11 C 1 C + D ) α, A 11 = α ) 1,, B 11 = α,1 α 1,1, α,3 α 1,3 α,3 α 1,3 B 1 = F 1 α 1,3, D 11 = F 1 α 1,3 B 11 + F α,3 A 11, 3.10) 3.1) C = 1 B 1 C 1 + B ) + D 1 C 1 + D ) A 1 C 1 C + D ) C = 1 B 1 C 1 + B ) D 1 C 1 + D ) A 1 C 1 C + D )

17 ARMA 437 A 1 = α 1, α1,3 α 1,α,3, α 1,3 α 3,3 B 1 = α 1,1α 1, α 1,3 B = F 1 α 1,3 α 1,1α,3 α 1,, α 1,3 α 3,3 α 3,3 α,3 α ) 1,, α 3,3 α 1,3 D 1 = α 1,1α,3 α 1,, D = F 1α,3, α 1,3 α 3,3 α 3,3 α 1,3 α 3,3 D 3 = F 1 α 1, α,3 α 1,3 4α3,3 α ) 1,1α,3 4α 1,3 α3,3 ) + F 3 α 1, α 1,α,3. α 3,3 α 1,3 α 3,3 α 1,3 3.13) 3.14) 3.15) 3.16) C 1, C ) C 1, C 0 C 1, C ± 3.1 A 11 < 0, B 11 < 0, A 1 > 0, B 1 > 0, D 1 > 0 B 1 B D > 0, < 0, > 0, F 1 F 1 F 1 B 1 + D 1 > 0, B 1 D 1 > 0 B + D F 1 < 0, B D F 1 < C 1 C ) C < 3.15) C, 3.13) C < 3.16) C, 3.14) C > 3.15) C, 3.14) C > 3.16) C β 1 = 0.8, β = 0.6, β 3 = 0.4, Ψ 1 = Ψ = Ψ 3 = 1.0 f d µ) = exp πµi) exp πµi) exp πµi)

18 β 1 = 0.8, β = 0.6, β 3 = 0.4, Φ 1 = Φ = Φ 3 = 1.0 Y n 1.8Y n Y n 0.19Y n 3 = 3ɛ n 3.6ɛ n ɛ n {Y n } 39.5 C ) 3.15) ) 5.0 C 1.5 C 1, C ) C 1, C, C 3 ) 1.1, 1.6, 1.48) 10.35, 34.86, 8.38) 1.1, 1.6, 1.48) GCARMA3, ) f c λ) = = 1.1 πλi log πλi log πλi log πλi) 4.1 πλi) 0.95 πλi) πλi) πλi) CMA GCARMA3, ) CMA 10.35, 34.86, 8.38) f c λ) = πλi log πλi log πλi log 0.4 = 3.87 πλi) πλi) 0.95 πλi) πλi) πλi) CMA )

19 ARMA ) C 1 C 1 C C 3.14) 3.16) C 1, C ) C 1, C ) β 1 = exp.0), β = exp 5.0), β 3 = exp 10.0), Ψ 1 =.0, Ψ = 1.0, Ψ 3 = ), 3.14), 3.15), 3.16) 8.0 < C < C ) 3.15) 3.16) 3.13) < C C 1 C 1 4 GDARMA3, ) GCARMA3, ) GCARMA3, ) 3.4 b) GCARMAP, Q), P CMA ζ 1, ζ,, ζ Q Bω) = b Q ω ζ 1 )ω ζ ) ω ζ Q ) ζ 1 ζ 1 = ζ 1 + ζ 1 i ζ 1, ζ 1 ζ 1 > 0 Bω) ζ 1 ζ 1 B rev ω) = b Q ω + ζ 1 )ω ζ ) ω ζ Q ) πλi + ζ 1 = ζ 1 ) + πλ ζ 1 ) = πλi ζ 1. f c λ) = Bπλi) Aπλi) = B rev πλi) Aπλi) 1 f rev λ) = C rev.l πλi α l l=1 = f rev λ) ). C rev.l 4. GDARMAp, q) GCARMAP, Q)

20 β 1 = exp.0), β = exp 5.0), β 3 = exp 10.0), Φ 1 =.0, Φ = 1.0, Φ 3 = 0.01, C 1 < 0. 3 β 1 = exp.0), β = exp 5.0), β 3 = exp 10.0), Φ 1 =.0, Φ = 1.0, Φ 3 = 0.01, C 1 > 0. GDARMAp, q) GCARMAP, Q) DAR CAR GDARMAp, q) 1 p 3 p = p = 3 p =

21 ARMA 441 Huzii 006) p = 3 GDARMAp, q) GCARMAP, Q) P, Q GCARMAP, Q) Brockwell and Brockwell 1999)) GCARMA P, Q) GDARMAp, q) Peter J. Brockwell A. A.1 1.6) CARMAP, Q) DARMAp, q) CARMAP, Q) DARMAp, q) R h h h α h R h = Oexpα h )) P = 1, Q = 0 1.6) a 1 dx t dt + a 0 X t = b 0 db t dt A.1) {B t } A.1) db t /dt A.1) δ > 0 A.1) [t, t + δ] t+δ a 1 X t+δ X t ) + a 0 X u du = b 0 B t+δ B t ) t A.)

22 {X t } 1.5) {X t } t+δ X u du t h > 0 A.) X t h a 0, a 1 X t h {B t h τ B t h τ δ ; τ 0} B t+δ B t t+δ a 1 R h+δ R h ) + a 0 R h+u t du = 0 t A.3) A.3) δ δ 0 R h h > 0 1 h = 0 a 1 dr h dh + a 0R h = 0, h > 0) A.4) h > 0 R h = G 11 expα 1 h) A.5) α 1 = a 0 /a 1 a 0 /a 1 > 0 G 11 R 0 h < 0 R h = R h R h h f c λ) = exp πhλi)r h dh = G 11 α 1 ) 1 πλi α 1 ) λ O 1/λ P =, Q = 1 a d X t dt + a 1 dx t dt + a 0 X t = b 1 d dt ) ) dbt dbt + b 0 dt dt = G 11α 1 πλ) + α 1 A.6) A.7) CAR α 1, α 0 α = ᾱ 1 B t A.7) [t, t + δ 1 ] [t, t + δ ] δ 1 > 0, δ > 0) t+δ t t+δ u +δ 1 X u+δ1 du, X u1 du 1 du, u =t u 1 =u t+δ u=t B u+δ1 B u )du P = 1, Q = 0 X t h, h > 0 δ δ 0

23 ARMA 443 δ 1 δ 1 0 R h h h = 0 a d R h dh + a 1 dr h dh + a 0R h = 0, h > 0) R h = G 1 expα 1 h) + Ḡ1 expᾱ 1 h) A.8) A.9) G 1 R 0 R h R 1 h < 0 R h = R h f c λ) f c λ) = = exp πhλi)r h dh G 1 πλi α 1 + f c λ) = C 1 C 1 + πλi α 1 πλi ᾱ 1 Ḡ 1 πλi ᾱ 1 + G 1 πλi α 1 + Ḡ 1 πλi ᾱ 1 = b 1 πλi) + b 0 πλi α 1 )πλi ᾱ 1 ) C 1, b 0, b 1 A.10) 1.6) {X t } {α k ; 1 k P } 1.7) 1.8) Brockwell 1995) Yaglom 1987) R h h P = 1 P = f c λ) λ P = 1 P = O 1/λ P Q)) 1.6) R h 1.5) P λ P f c λ)dλ < A.11) 1953)) P Q P Q {C l ; 1 l P } C l = 0, l=1 l=1 C l ) l=1 C l l 1 =1,l 1 l α l1 = 0,, α l1 α l α lp 1 [P/] = 0 A.1)

24 ) l 1, l,, l P 1 [P/] 1 P l 1 < l < < l P 1 [P/] l i l i = 1,,, P 1 [P/]) CARMAP, Q) R h A.11) 3 {C l } A.1) 1.6) 1 Brockwell 1995)) CARMA P, Q) DARMAp, q) CARMAP, Q) Brockwell, P. J. 1995). A note on the embedding of discrete-time ARMA processes, J. Time Ser. Anal., 16, Brockwell, A. E. and Brockwell, P. J. 1999). A class of non-embeddable ARMA processes, J. Time Ser. Anal., 0, Brockwell, P. J. and Davis, R. A. 1991). Time Series: Theory and Methods nd Ed.), Springer-Verlag, New York. Chan, K. S. and Tong, H. 1987). A note on embedding a discrete parameter ARMA model in a continuous parameter ARMA model, J. Time Ser. Anal., 8, He, S. W. and Wang, J. G. 1989). On embedding a discrete-parameter ARMA model in a continuous-parameter ARMA model, J. Time Ser. Anal., 10, Huzii, M. 006). Embedding a Gaussian discrete-time autoregressive moving average process in a Gaussian continuous-time autoregressive moving average process, J. Time Ser. Anal., 8, ). Jones, R. H. 1981). Fitting a continuous time autoregression to discrete data, Applied Time Series Analysis II ed. D. F. Findley), Academic Press, New York, Phillips, A. W. 1959). The estimation of parameters in systems of stochastic differential equations, Biometrika, 46, Priestley, M. B. 1981). Spectral Analysis and Time Series, Vol. 1, Univariate Series, Vol. Multivariate Series, Prediction and Control, Academic Press. Robinson, P. M. 1978). Continuous model fitting from discrete data,directions in Time Series eds. D. R. Brillinger and G. C. Tiao), Institute of Mathematical Statistics, Hayward, California, Yaglom, A. M. 1987). Correlation Theory of Stationary and Related Random Functions, Springer-Verlag, New York.

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

空力騒音シミュレータの開発

空力騒音シミュレータの開発 41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

Recent Developments and Perspectives of Statistical Time Series Analysis /ta) : t"i,,t Q) w (^ - p) dp *+*ffi t 1 ] Abraham, B. and Ledolter, J. (1986). Forecast functions implied by autoregressive

More information

time2print4.dvi

time2print4.dvi iii 2 P. J. Brockwell and R.A. Davis, Introduction to Time Series and Forecasting, 2nd edition (Springer, 2002) 1 2 ITSM2000(version 7) 6 10 7 2 2 2 ITSM2000 student version professional version CD-ROM

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

ブック

ブック ARMA Estimation on Process of ARMA Time Series Model Sanno University Bulletin Vol.26 No. 2 February 2006 ARMA Estimation on Process of ARMA Time Series Model Many papers and books have been published

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

2007-Kanai-paper.dvi

2007-Kanai-paper.dvi 19 Estimation of Sound Source Zone using The Arrival Time Interval 1080351 2008 3 7 S/N 2 2 2 i Abstract Estimation of Sound Source Zone using The Arrival Time Interval Koichiro Kanai The microphone array

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning rate of the Tokyo Big6 Baseball Le

A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning rate of the Tokyo Big6 Baseball Le Powered by TCPDF (www.tcpdf.org) Title 東京六大学野球リーグ戦において勝敗結果から計算する優勝チームと勝点 勝率との比較研究 Sub Title A comparative study of the team strengths calculated by mathematical and statistical methods and points and winning

More information

5989_4840JAJP.qxd

5989_4840JAJP.qxd Agilent Application Note 1287-11 2 3 4 5 Zc Z T 1+ G 1 e - γ 1+ G 2 G i G 1 G 2 0 0 G2 G 1 G T 1+ G 2 e - γ 1+ G 1 a b [ T XI ] [ T L ] [ T XO ] [ G L ] Zc Zr ZT Zr Γ1 = Γ2 = Γ1ΓT = (1.1) Zc+ Zr ZT + Zr

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

特-3.indd

特-3.indd Development of Automation Technology for Precision Finishing Works Employing a Robot Arm There is demand for the automation of finishing processes that require technical skills in the manufacturing of

More information

untitled

untitled 2009 57 2 393 411 c 2009 1 1 1 2009 1 15 7 21 7 22 1 1 1 1 1 1 1 1. 1 1 1 2 3 4 12 2000 147 31 1 3,941 596 1 528 1 372 1 1 1.42 350 1197 1 13 1 394 57 2 2009 1 1 19 2002 2005 4.8 1968 5 93SNA 6 12 1 7,

More information

2 H23 BioS (i) data d1; input group patno t sex censor; cards;

2 H23 BioS (i) data d1; input group patno t sex censor; cards; H BioS (i) data d1; input group patno t sex censor; cards; 0 1 0 0 0 0 1 0 1 1 0 4 4 0 1 0 5 5 1 1 0 6 5 1 1 0 7 10 1 0 0 8 15 0 1 0 9 15 0 1 0 10 4 1 0 0 11 4 1 0 1 1 5 1 0 1 1 7 0 1 1 14 8 1 0 1 15 8

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

(CFW ) CFW 1

(CFW ) CFW 1 DSGE * 1 * 2 2012 11 *1 2012 11 22 25 ( ) ( ) *2 3 (CFW ) CFW 1 1 3 1.1....................................... 3 1.2.................................. 5 2 DSGE 6 2.1.............................. 6 2.2.....................................

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

地域総合研究第40巻第1号

地域総合研究第40巻第1号 * abstract This paper attempts to show a method to estimate joint distribution for income and age with copula function. Further, we estimate the joint distribution from National Survey of Family Income

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

untitled

untitled Amazon.co.jp 2008.09.02 START Amazon.co.jp Amazon.co.jp Amazon.co.jp Amazon Internet retailers are extremely hesitant about releasing specific sales data 1( ) ranking 500,000 100,000 Jan.1 Mar.1 Jun.1

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

ウェーブレット分数を用いた金融時系列の長期記憶性の分析

ウェーブレット分数を用いた金融時系列の長期記憶性の分析 TOPIX E-mail: masakazu.inada@boj.or.jp wavelet TOPIX Baillie Gourieroux and Jasiak Elliott and Hoek TOPIX I (0) I (1) I (0) I (1) TOPIX ADFAugmented Dickey-Fuller testppphillips-perron test I (1) I (0)

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

人文学部研究年報12号.indb

人文学部研究年報12号.indb 制御理論を用いた在庫管理モデルの一解析 * リードタイムが変動する場合 西平直史 1 [1, 2, 3, 4] [1] [2, 3, 4] 1 1 3 2 [2] = +w(k) d(k) (1) 2014 12 1 1 制御理論を用いた在庫管理モデルの一解析 西平 k w(k) d(k) L k u(k) (2) (1) 2 w(k) =u(k L) (2) = +u(k L) d(k) (3)

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

26 Development of Learning Support System for Fixation of Basketball Shoot Form

26 Development of Learning Support System for Fixation of Basketball Shoot Form 26 Development of Learning Support System for Fixation of Basketball Shoot Form 1175094 ,.,,.,,.,,.,,,.,,,,.,,,.,,,,, Kinect i Abstract Development of Learning Support System for Fixation of Basketball

More information