i I

Size: px
Start display at page:

Download "i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1..........................."

Transcription

1 2008 II

2 i I

3 ii B H E D B H

4 1 0 I II 0.1 I (source) source 1 D = ε 0E + P (1) D P div E = ρ div D ε = ρ (2) 0 1

5 N N N S N S Wb 2 m 1 [Wb] m 2 [Wb] r[m] F = m 1m 2 4πµr 2 F = m 1m 2 4πµ 0 r 2 (3) µ µ 0 MKSA µ 0 = 4π 10 7 MKSA [A] 3 E[N/C] H[N/Wb] [Wb 2 /N m 2 ] [Wb] [N m/a] [N/A 2 ] SI [m][kg][s][a] [N/A 2 ] [H] [H/m] H q F = q E F = q 1 q 2 4πε 0 r 2 [C] [N/C] [V/m] m F = m H F = m 1m 2 4πµ 0 r 2 [Wb] [N/Wb] [A/m] N N N S Oersted Ampere 5 2 A A/m F = m H Wb 3 4π ON/OFF 5 cgs H cgs

6 N S N S H H H H 6 H (1) (2) (3) (3) 7 (3) (1)(2) (3) (3) 6 7

7 4 0 ( ) 8 N S

8

9 N N (E-H ) N S (E-B ) S N N S N S N S E H E-H E-B E-B E D H B 13 B 14 B E, H 14 H E-H E-B B 15 B B B magnetic induction

10 B I F = I B (4) B x x + d x d F = Id x B (5) d F d H B B = µ 0 H B N/A m B T Wb Wb/m 2 E B a b a b a b a, b θ a b a b = a b sin θ a b sin θ a b E I B I d F B B I (4) B r 2 (I 1 I 2 ) µ 0I 1 I 2 2πr

11 8 0 N S N S I (1) E V (2) V E (3) E (4) (5) Q E = Q 4πε 0 r 2 e r 0-2 I (1) div,rot,grad (2) grad rot 0 rot div 0 (3) e r r + 1 r e θ θ + 1 r sin θ e φ φ (4) = 1 ( r 2 r 2 ) ( 1 + r r r 2 sin θ ) sin θ θ θ r 2 sin θ φ 2 (5) V = ρ ε 0 ρ

12 I[A] r I 2πr φ e φ H = I 2πr e φ (1.1) e φ z B = µ 0I 2πr e φ (1.2) I r 1 1 rot E 0 rot E 0 rot E 0

13 div B = 0 3 H rot H = 0 H = I 2πr e φ rot A A rot A rot H r m[wb] m I 2πr m I 2πr = mi (1.3) 2πr r A B m I m θ r θ = (1.4) 2πr 2π B C D A C D m I (r + r) θ = m θ 2π(r + r) 2π (1.5) r + r 0 mi 0 R A r θ D r r N B N N C 2 3 div H = 0 div B = 0 div B = 0

14 I[A] m[wb] mi[j] [Wb A]=[J] [C V]=[J] 4 ds m rot H ds 5 j mrot H ds = m j ds (1.6) ( ) rot H j ds = 0 d S 0 rot H j = 0 mds 6 rot H = j (1.7) rot B = µ 0 j rot H = j div rot div B = 0 div D = ρ rot E = 0 div B = 0 rot H = j div rot 4 5 m H d S rot (m H) d S m rot 6 md S

15 12 1 div D = ρ rot E = 0 rot H = j div B = 0 rot E = 0 E = grad V rot 0 grad div B = E V E = grad V H V m H = grad V m rot H 0 8 V=4 V=3 V=5 V=0 V=2 V= div 0 rot div B = 0 B B = rot A A 8 cut

16 EFGH 0 F G H E E F G H EF GH ABCD C D 0 A B AB L H HL ABCD n I nl nli HL = nli H = ni (1.8) D C A B H G E F B C D C A B d z z = d z = d j x x, y z x yz z z z z > 0 z < 0 div H = 0 z y z > d rot H = 0 H y z = d rot H = j x H z //// y x z z = -d H y z = j (1.9) y j H y = jz jd d < z H y = jz d < z < d jd z < d (1.10)

17 14 1 rot H 0 rot H = 0 z y H = I 2πr e φ x = 0, y = 0 rot H = I N z 1-3 V m = I 2π φ z grad (ρ, φ, z) H = I 2πρ e φ = e ρ ρ + e z z + e 1 φ ρ φ R r H = grad V m V m 1-4 d v ±σ (1) (2) 1 2ε 0 σ rot H = j S d x H = ( S S S S d S j (1.11) S d x ) S σ σ v v

18 E div D = ρ rot H = j D, H ρ, j D, H ρ E Q x x E Q = 4πε 0 x x 2 e x x x ρ d 3 x ρ( x )d 3 x E( x) = div E = ρ ε d 3 x ρ( x ) 4πε 0 x x 2 e x x (2.1) (2.1) div div E( x) = ρ( x) = ( d 3 x ρ( x ) 1 4πε 0 x x 2 e x x ( ) d 3 x ρ( x ) 1 4π x x 2 e x x ) div E = ρ ε 0 ε 0 (2.2) 1 ε 0 2 (2.1) π x x 2 e x x div

19 16 2 ( ) ρ( x) x x 1 4π x x 2 e x x x x x x f( x) d 3 x f( x )δ( x x ) = f( x) (2.3) δ( x x ) ( ) δ( x x ) = 1 4π x x 2 e x x (2.4) x x 0 x = x d 3 x δ( x x ) = 1 (2.5) 1 1 4π x x 2 Q x ρ Q ρ 0 Q B div E = ρ (2.1) ε 0 B( x) ( ) = d 3 x j( x ) x x (2.6) I j( x ) x x x j( x ) B( x) j x x x x j ( x x ) j ( x x ) j x x j x x

20 B( x) = K d 3 x j( x ) ( x x ) x x n (2.7) K n n = 3 n = 2 x x n = 3 B( x) = K d 3 x j( x ) ( x x ) x x 3 = K E( x) = d 3 x j( x ) e x x x x 2 (2.8) d 3 x ρ( x ) 4πε 0 x x 2 e x x ρ j x x B = µ 0I 2πr e φ K z j z dx dy dz j z 4 dx dy j z I z x = y = 0 0 x = y = 0 x = z e z dz x = r e r + z e z x x = r e r + (z z ) e z (2.9) I e z e z I ( x x ) = I( e z r e r ) = ri e φ B(r) = K dz Ir e (r 2 + (z z ) 2 ) 3 φ (2.10) 2 z z z = z = z z = 0 B(r) = K dz Ir e (r 2 + (z ) 2 ) 3 φ (2.11) 2 Z 4 Z d 3 x dx Z Z dy dz

21 18 2 z = r tan θ 5 θ π 2 π 2 I B(r) = KI r π 2 π 2 dθ cos 2 θ 1 (1 + tan 2 θ) 3 2 e φ = 2KI r e φ (2.12) B = µ 0I 2πr e φ K µ 0 4π 6 Biot-Savart (Biot) (Savart) 1820 r z z j( x) x B( x) B( x) = µ 0 4π d 3 x j( x ) ( x x ) x x 3 = µ 0 4π d 3 x j( x ) e x x x x 2 (2.13) 7 div j = 0 div j = ρ ρ t 5 z = 0 z z = r tan θ 6 µ 0 4π

22 µ 0 E Q = 4πε 0 r 2 e r ε 0 B = µ 0I d x ( x x ) 4π x x 3 µ 0 SI B L I F = BIL F = m 1m 2 4πµ 0 r 2 µ rot H = j rot rot B = d 3 x µ 0 j( x ) e x x 4π x x 2 (2.14) A ( B C) = B( A C) C( A B) A ( B C) = B( A C) ( B A) C ( A }{{} j ( x ) }{{} B ( )) e x x } 4π x x {{ 2 } C ( = j( x ) A } {{ } }{{} B ( e x x )) 4π x x } {{ 2 } C ( j( x ) } {{ } B A }{{} ) ( ) e x x 4π x x } {{ 2 } C ( ) x 8 j( x e x x ) x x x 2 x A ( ) ( ) e x x C 4π x x 2 A ( ) B ( ) j( x ) B C (2.15) B B C ( B C) = B ( ) ( ) ( ) ( ) C + C B B C C B (2.16) rot B = µ 0 d 3 x ( j( x ) ( ) ( )) e x x 4π x x 2 j( x ) e x x 4π x x 2 (2.17) 0 e x x 4π x x 2 x x x x ( ) ( ) µ 0 d 3 x j( x ) e x x 4π x x 2 = µ 0 d 3 x j( x ) e x x 4π x x 2 (2.18) x ( ) µ 0 d 3 x j( x ) e x x 4π x x 2 = µ 0 «8 x = (x, y, z) = x, y, z ( ) d 3 x j( x ) e x x 4π x x 2 (2.19)

23 20 2 j 0 j( x ) = div j( x ) = 0 divergence 0 (2.17) 0 9 ( ) 1 4π x x 2 e x x rot B( x) = µ 0 d 3 x j( x )δ 3 ( x x ) = µ 0 j( x) (2.20) B = µ 0 H rot H = j rot H = j I I I 0 x dx dy dz j x e x ( ) (2.21) dy dzj x I y, z n dx I e x ( ) (2.22) x dx x dx y z dy, dz (Idx e x + Idy e y + Idz e z ) ( ) (2.23) I d x dx dy dz j ( ) I d 3 x j d x ( ) (2.24) d x (dx, dy, dz) d x = dx e x + dy e y + z e z FAQ x 9 div j = 0 div j + ρ t = 0

24 j 0 j d x A (2.25) ( ) d x A ( ) d x A ( ) d x A x y z = = = (dya z dza y ), (dza x dxa z ), (dxa y dya x ) (2.26) I x B( x) B( x) = µ 0I 4π d x ( x x ) x x 3 (2.27) I x m x B = m x x 4π x x 3 = m 4π x x 2 e x x (2.28) I d x F = Id x B N F = mi d x ( x x) 4π x x 3 (2.29) F = mi d x ( x x) 4π x x 3 = mi d x ( x x ) 4π x x 3 (2.30) m H 10

25 R I x d x x x 360 z x = z e z x x Id x x x x x Id x x z = 0 +z z 0 z 0 z z x x R φ 0 2π x d x Rdφ d x x x d x ( x x ) d x Rdφ x x R2 + z 2 µ 0 IRdφ 4π(R 2 + z 2 ) φ z y (2.31) R z 2π 0 R µ 0 IRdφ R2 + z 2 4π(R 2 + z 2 ) µ 0 IR 2 µ 0 IR 2 dφ = 4π (z 2 + R 2 ) (z 2 + R 2 ) 3 2 (2.32) (2.33) z 3 z = 0 z = 0 B( 0) = µ 0I (2.34) 2R R π

26 d x = Rdφ e φ x x = z e z R e r e r, e φ x 11 Id x ( x x ) = IRdφ e φ (z e z R e r ) = IR(z e r + R e z )dφ (2.35) 12 e r, e φ, e z e r e φ = e z, e φ e z = e r, e z e r = e φ (2.36) B(z e z ) = µ 0 4π 2π 0 dφ IR(z e r + R e z ) (z 2 + R 2 ) 3 2 φ (2.37) B(z e z ) = µ 0 4π IRz (z 2 + R 2 ) 3 2 2π 0 dφ e r + µ 0 4π IR 2 e z (z 2 + R 2 ) 3 2 2π 0 dφ (2.38) e z e r 2π 0 dφ e r = 0 B(z e z ) = µ 0 2 IR 2 e z (z 2 + R 2 ) 3 2 (2.39) z z x x y 13 z x = x e x + z e z (2.40) x x φ R z x = R cos φ e x + R sin φ e y = R e ρ (2.41) e ρ z ρ d x d x = Rdφ ( sin φ e x + cos φ e y ) = Rdφ e φ (2.42) e φ 11 e e 12 0 d x x = 0 d x x 13 y

27 24 2 x x x x = z e z + x e x R(cos φ e x + sin φ e y ) (2.43) φ x x φ x x = z 2 + R 2 + x 2 2Rx cos φ (2.44) z xy z z B( x) = µ 0I 4π Rdφ eφ (z e z + x e x R e ρ ) (z 2 + R 2 + x 2 2Rx cos φ) 3 2 (2.45) e φ e z = e ρ, e φ e ρ = e z (2.46) e φ e x e φ = sin φ e x + cos φ e y e x e x = 0, e y e x = e z 14 B( x) = µ 0I 4π e φ e x = cos φ e z (2.47) Rdφ (z eρ x cos φ e z + R e z ) (z 2 + R 2 + x 2 2Rx cos φ) 3 2 ρ z φ R = x cos φ z 0 x x xy R z, x R 1 (z 2 + R 2 + x 2 2Rx cos φ) 3 2 B( x) = µ 0I 4π = = φ (2.48) ( ) 1 (z 2 + R 2 + x 2 2Rx cos φ) 3 2 R=0 + R 1 R (z 2 + R 2 + x 2 2Rx cos φ) 3 R= xR cos φ + + (z 2 + x 2 ) 3 2 (z 2 + x 2 ) 5 2 (2.49) ( ) 1 3xR cos φ Rdφ (z e ρ x cos φ e z + R e z ) + + (z 2 + x 2 ) 3 2 (z 2 + x 2 ) 5 2 (2.50) 14

28 R µ 0 I 4π 1 Rdφ (z e ρ x cos φ e z ) (z 2 + x 2 ) 3 2 (2.51) φ φ e ρ cos φ 0 2π dφ e ρ dφ cos φ 0 R R 2 µ 0 I 1 Rdφ R e z + µ ( ) 0I 3xR cos φ Rdφ (z e 4π (z 2 + x 2 ) 3 ρ x cos φ e z ) 2 4π (z 2 + x 2 ) 5 2 µ 0 IR 2 e z = dφ + 3µ 0IxR 2 ( ) (2.52) z dφ cos φ e 4π (z 2 + x 2 ) 3 2 4π (z 2 + x 2 ) 5 ρ x e z dφ cos 2 φ 2 dφ = 2π, dφ cos φ e φ = π e x, dφ cos 2 φ = π 15 µ 0 IR 2 e z 2 (z 2 + x 2 ) µ 0IxR 2 4 (z 2 + x 2 ) 5 2 (z e x x e z ) = µ 0IR 2 e z 4 (z 2 + x 2 ) 5 2 ( 3xz ex + (2z 2 x 2 ) e z ) (2.53) z p ( ) p z 1 E = 3(x e x + y e y + z e z ) e 4πε 0 (x 2 + y 2 + z 2 ) 5 z 2 (x 2 + y 2 + z 2 ) 3 2 p ( 3xz ex + (2z 2 x 2 ) (2.54) ) e 4πε 0 (x 2 + z 2 ) 5 z 2 y = 0 (2.53) (2.54) p IπR 2 q q l q l q l E E (q l) Z 15 e ρ = cos φ e x + sin φ e y dφ cos φ sin φ = 0

29 26 2 m m l 1 µ 0 m l 1 µ 0 E B( H ) p = I S (2.55) S IL 2 = ml µ 0 (2.56) z = 0 z = l z z l z l B( x) = µ 0I 4π Rdφ (z eρ x cos φ e z + R e z ) (z 2 + R 2 + x 2 2Rx cos φ) µ 0I 4π Rdφ ((z l) eρ x cos φ e z + R e z ) ((z l) 2 + R 2 + x 2 2Rx cos φ) 3 2 (2.57) z B( x) = µ 0I 4π n= Rdφ ((z nl) eρ x cos φ e z + R e z ) ((z nl) 2 + R 2 + x 2 2Rx cos φ) 3 2 (2.58)

30 n= l n= l dz (2.59) l B( x) = µ 0nI 4π Rdφ (z eρ x cos φ e z + R e z ) dz (z 2 + R 2 + x 2 2Rx cos φ) 3 2 (2.60) z z 0 z e ρ z B( x) = µ 0nI 4π dz 2π 0 R ( x cos φ + R) e z dφ (z 2 + R 2 + x 2 2Rx cos φ) 3 2 z = R 2 + x 2 2Rx cos φ tan θ dz = R 2 + x 2 2Rx cos φ dθ cos 2 θ B( x) = µ 0nI 4π = µ 0nI 4π = µ 0nI 4π π 2 π 2 dz dθ R 2 + x 2 2Rx cos φ 1 cos 2 θ π 2 π 2 dθ cos θ 2π 0 2π 0 2π 0 R ( x cos φ + R) e z dφ (z 2 + R 2 + x 2 2Rx cos φ) 3 2 R ( x cos φ + R) e z dφ( (R 2 + x 2 2Rx cos φ) (1 + tan 2 θ } {{ } = 1 cos 2 θ dφ R ( x cos φ + R) e z (R 2 + x 2 2Rx cos φ) ) 3 2 ) (2.61) (2.62) θ π 2 dθ cos θ = 2 π 2 φ dφ R ( x cos φ + R) e z (R 2 + x 2 R x 2Rx cos φ) dφ AB Rdφ P AC AP AP = R2 + x 2 2Rx cos φ AD = x cos φ R E D ABC APD AC = AB x cos φ R R2 + x 2 2Rx cos φ (2.63) B A C O P AC AP = Rdφ x cos φ R R 2 + x 2 2Rx cos φ (2.64) AB dφ x > R 0 2π 0 0 x < R 2π µ 0nI 4π 2 2π = µ 0nI

31 r I r 2-2 2a I 2-3 a 2b a, b x x 2 (x 3 ) 2-4 y = 1 4a x2 I x = 0, y = a 2a θ r = r dθ 1 + cos θ y dy 2b x a z y=a θ dx x 2-5 N z 2R z N + 1 N 2R

32 I 1, I 2 r I 1 I 2 I 2 2πr µ 0I 2 2πr l F = I 1 µ 0I 2 2πr l = µ 0I 1 I 2 l 2πr (3.1) SI µ 0 = 4π 10 7 F = I 1I 2 l (3.2) r [A] j 1 V 1 j 2 V 2 j 1 x 2 B 1 ( x 2 ) = µ 0 j d 3 1 ( x 1 ) ( x 2 x 1 ) x 1 4π V 1 x 2 x 1 3 = µ 0 j d 3 1 ( x 1 ) e x x 1 x 2 1 4π V 1 x 2 x 1 2 (3.3) x 2 j 2 ( x 2 ) F j1 j 2 = d 3 x 2 j 2 ( x 2 ) B 1 ( x 2 ) V 2 ( ) = µ j 2 ( x 2 ) j 1 ( x 1 ) e (3.4) 0 d 3 x 1 d 3 x1 x 2 x 2 4π V 1 V 2 x 2 x A 3000 r 1cm F cgs (dyne) 2

33 30 3 A ( B C) = B( A C) C( A B) j 2 ( x 2 ) ( j 1 ( x 1 ) e x1 x } {{ } } {{ } } {{ } 2 A B C ) ( = j 1 ( x 1 ) j 2 ( x 2 ) } {{ } } {{ } B A j 1 ( x 1 )d 3 x 1 ( ) j 1 ( x 1 ) j 2 ( x 2 ) e x1 x 2 ( ) j 2 ( x 2 ) j 1 ( x 1 ) e x2 x 1 e x1 x 2 } {{ } C ) e x1 x } {{ } 2 C ( j 1 ( x 1 ) } {{ } B 1 ) j 2 ( x 2 ) } {{ } A µ 0 d 3 x 1 d 3 x 2 j 1 ( x 1 ) j 2 ( x 2 ) e x 1 x 2 4π V 1 V 2 x 2 x 1 2 = µ ( ) 0 d 3 x 1 d 3 x 2 j 1 ( x 1 ) j 2 ( x 2 ) 4π 1 2 V 1 V 2 x 2 x 1 (3.5) (3.6) e x1 x 2 x 2 x 1 2 = 2 ( ) 1 x 2 x 1 (3.7) 2 2 x x µ 0 d 3 x 1 d 3 x 2 j 1 ( x 1 )j 2 ( x 2 ) ( ) 1 = µ 0 d 3 x 1 d 3 x 2 j 1 ( x 1 ) j ( ) 2( x 2 ) 1 4π V 1 V 2 x 2 x 2 x 1 4π V 1 V 2 x 2 x 2 x 1 (3.8) y z ( ) µ 0 d 3 x 1 d 3 x 2 j 1 ( x 1 ) 4π 1 j 2 ( x 2 ) V 1 V 2 x 2 x 1 (3.9) V 2 j 2 0 x 2 x 1 3 div j = j = div j = 0 0 µ 0 d 3 x 1 d 3 x 2 j 1 ( x 1 ) j 2 ( x 2 ) e x 1 x 2 4π V 1 V 2 x 2 x 1 2 (3.10) 2 E = Q 4πε 0 r 2 e r V = Q 4πε 0 r E = V 3 div j 0

34 ρ 1 V 1 ρ 2 V 2 1 d 3 x 1 d 3 x 2 ρ 1 ( x 1 )ρ 2 ( x 2 ) e x 1 x 2 4πε 0 V 1 V 2 x 2 x 1 2 (3.11) 1 ε 0 ρ 1 ( x 1 )ρ 2 ( x 2 ) µ 0 j 1 ( x 1 ) j 2 ( x 2 ) (3.12) jd 3 x V Id x L µ 0I 1 I 2 4π L 1 e x d x 1 d x 1 x 2 2 L 2 x 2 x 1 2 (3.13) j = ρ v 1 d 3 x 1 d 3 x 2 ρ 1 ( x 1 )ρ 2 ( x 2 ) e x 1 x 2 4πε 0 V 1 V 2 x 2 x 1 2 µ 0 d 3 x 1 d 3 e x1 x x 2 (ρ 1 ( x 1 ) v 1 ( x 1 )) (ρ 2 ( x 2 ) v 2 ( x 2 )) 2 4π V 1 V 2 x 2 x = d 3 x 1 d 3 e x1 x x 2 ρ 1 ( x 1 )ρ 2 ( x 2 ) (1 ε 0 µ 0 v 1 ( x 1 ) v 2 ( x 2 )) 2 4πε 0 V 1 V 2 x 2 x 1 2 ε 0 µ 0 1 ε0 µ 0 (3.14) 3.3 Id x B d F = Id x B (3.15) ( ) dv ρ v 4 dv ρdv 4 v

35 32 3 q ρdv q d x ds 5 dv ds d x Id x Id x = ( j ds)d x = j(d S d x) = ρ vdv (3.16) j d x ( j ds)d x = j(d S d x) 6 j = ρ v F = ρdv v B F ρdv q = q v B (3.17) 0 q v B q E ( ) F = q E + v B (3.18) 7 q v B 8 () () r m v2 r = qvb (3.19) ω = v r = qb m (3.20) ω ( ) mv = qbr (3.21) 9 r qvb v 5 6 j ds θ ( j ds)d x j(d S d x) j ds d x cos θ 7 q v B 8 9

36 T = 2πr v = 2πm qb (3.22) r 10 A B

37 x z z y x ( x ) z v evb y y y y V y V d y x x y evb = e V d V = vbd (3.23) vbd 12 x 13 v v I I = envs S n n F = q v B y x Hall (hole) 13

38 V ( E = grad V ) V m H = grad V m rot H E rot E = 0 rot 0 grad E = grad V V E = grad V V E rot Hrot B 0 V m div B = 0 div 0 rot A V rot A + grad V

39 36 3 B = rot A (3.24) A A U = j A (3.25) A j A > 0 rot z z rot A rot A rot

40 field field rot E = grad V V B = rot A A rot j A A d 3 x j A = I d x A N S

41 38 3 rot j A A j qv j j A 1 2 j 1 A 1 j 2 j 2 A 1 j 2 A 2 A 1 j 1 A 2 (overcounting) E = grad V V V + V 0 V 0 B = rot A rot 0 A B rot 0 grad Λ Λ grad grad rot 0 A A + grad Λ (3.26) 16 j A A d 3 x j A d 3 x j A d 3 x j grad Λ = d 3 x j A + d 3 xdiv jλ + ( ) (3.27) 16

42 div rot B = µ 0 j B = rot A ( rot rot A ) = µ 0 j (3.28) rot ( rot V ) = grad ( div V ) V (3.29) grad ( div A ) A = µ 0 j (3.30) div A = 0 A Λ div ( A + grad Λ) = 0 div (grad Λ) = Λ Λ = div A Λ V = ρ ε 0 ε 0 div A A = µ 0 j (3.31) V = ρ ε 0 (3.32) V ( x) = 1 4πε 0 d 3 x ρ( x ) x x A( x) = µ 0 4π d 3 x j( x ) x x (3.33) (3.34) «18 1 4π x x = δ 3 ( x x ) (3.33) (3.32) (3.34) (3.31) 19

43 40 3 ρ I r r I ρ V = 1 2πε 0 log r A = µ 0 2π log r e z (3.35) 20 z z V E A B B = rot A = µ 0 2πε 0 E = grad V = e r (log r) = 2πε 0 r 2πε 0 r e r (3.36) ( e r r ) (log r e z ) = µ 0 1 2π r e r e } {{ z } = e φ = µ 0 1 2π r e φ (3.37) x E E y B B q (1) x, y, z v x, v y, v z (2) v x d2 v x dt 2 (3) v z v z + (4) 20 z

44 m q F = mω 2 r e r r F = mω 2 (x e x + y e y + z e z ) (3.38) m d2 x dt 2 = mω2 x, m d2 y dt 2 ω = mω2 y, m d2 z dt 2 = mω2 z (3.39) z B B = B e z q v B (1) (2) z x, y X = x + iy x, y (3) X = e iωt Ω (4) 3-3 z B v v m q z v xy v (1) z z B z B 0 z z B 0 + B (div B = 0 ) B (2) z z v (3) B v xy z z v (4) z 1 2 m ( (v ) 2 + (v ) 2) (5) z

45 B µ µ B N +m -m I I S -m S z z θ V m = 1 Bz µ 0 mv m (z), mv m (z + L cos θ) +m A = (0, Bx, 0) I A a S -m N x z y

46 E = 1 ( ) D P (4.1) ε 0 H = 1 ( ) B Pm (4.2) µ 0 P m 2 (diamagnetism) 3 (paramagnetism) 4 (ferromagnetism) 5 N S S N diamagnetism dia-diameter 4 paramagnetism para parallel para 5 ferro-

47 44 4 I S IS +m m l ml µ 0 IS [Am 2 ] [A/m] ( ) M M = χ H = χ µ 0 B (4.3) χ 6 magnetic susceptibility 4.2 πr 2 q v v 2πr qv 2πr p m = qv 2πr πr2 = qvr 2 L = mvr p m = 7 (4.4) q 2m L q 2m 8

48 mrω 2 = e2 ± erωb (4.5) 4πε 0 r2 ± ω mr (ω 2 e ) m ωb e2 4πε 0 r 2 = 0 ) 2 + r e2 B 2 4m + e2 4πε 0 r 2 = 0 ( ω eb 2m ( mr ω eb 2m ) 2 = e2 B 2 4m 2 r + e 2 4πε 0 mr 3 ω ω ± eb 2m eb m r ( (4.6)

49 46 4 ) eb m χ 10 6 a χ = 1 a ()

50 e kt E 14

51 a a b 0 0 c b a d e

52 4.5. B H 49 (1) (2) (3) 4.5 B H E D B H E D E D div P ρ ρ P = div P div E = 1 (ρ ε div ) P 0 x ) div (ε 0E + P = ρ (4.7) ε 0E + P = D div D = ρ 1 P ε0 D ε 0 1 div P ε 0

53 50 4 P E D D = εe E D E 1 P E ε 0 ε 0 E D D 15 D B H H B B H B B 1 µ 0 µ 0 B = µ 0 H j ( ) B rot = j + j M (4.8) j j M µ 0 ρ P P j M M M 4.1 M 4.1 x y z M x M x z j z y M x j z = y M x P P t 17 H B B µ 0 µ 0 H

54 4.5. B H : dy z dx dz y x dxdy dxdy M x y j z M y x j z z M x y M y x x M y y M x = j z (4.9) j x, j y 18 rot M = j M (4.10) z ( ) B rot = j µ + j M 0 }{{} ( ) =rot M (4.11) B rot M µ = j 0 x y 18 x y, y z, z x xyz

55 52 4 H H B µ 0 M (4.12) rot H = j B rot ( ) B = j + j M, div B = 0 (4.13) µ 0 H rot H = j, div H = ρ M (ρ M = div M) (4.14) ρ M ρ P = div P rot H = j, div B = 0 (4.15) ( j ) E B D H E(Electric Field) B(Magnetic Induction) D(Electric Displacement) H(Magnetic Field) B H M = χ H H = B χh µ 0 (4.16) (1 + χ)µ 0H = B (1 + χ)µ 0 µ χ µ µ χ µ r B = µ H = µ r µ 0 H (4.17) χ 1 1 H M H = 0 M 0 B H B B H B Magnetic Flux Density D Electric Flux Density 20 Electric Displacement() Magnetic Induction()

56 M H B x µ xx µ xy µ xz H x B y = µ yx µ yy µ yz H y (4.18) B z µ zx µ zy µ zz H z H B 4.6 rot M 0 rot M 0 div B = 0 H rot H = 0 B H µ 0 NNNNNNNNNN SSSSSSSSSSS M 1 µ 0 B H = M B 1 µ 0 H M H B H B

57 div D = ρ, rot E = 0, div B = 0, rot H = j ρ, j D, B div 0 E, H rot 0 div 0 div 0 0 B rot 0 0 H D, B E, H div rot µ n I 4-2 µ 1 µ 2 (1) H B (2) (3) (4)

58 µ H B d θ θ = 0 θ = π 2

59

60 57 5 div D = ρ F = Q E V V = 1 ε 0 ρ E = V rot H = j F = Q v B A A = µ0 j B = A = Il B flux 3 Φ B Φ = B ds (5.1) S S div B = 0 ()

61 58 5 θ V = dφ dt (5.2) V Φ Φ Φ 4 Φ Φ Φ Φ Φ R 1 dφ R dt 4

62

63 60 5 Φ B ds B 5.2 q( E + v B) V = ( v B) l (5.3) v B l l e v B e E E + v B = 0 l 6 V = E l = ( v B) l (5.4) 6 V = E l E l V

64 l V = dφ dt d l v dv = ( v B) d l (5.5) ( A B) C = ( C A) B 7 dv = (d l v) B (5.6) d l v d l v d l v B dv ds B B d S dt a Φ = Ba 2 cos ωt (5.7) cos ωt < 0 V = dφ dt = Ba2 ω sin ωt (5.8) R IV = B2 a 4 ω 2 R I = V R = Ba2 ω R sin 2 ωt (5.10) BIa BIa sin ωt ω ω t sin ωt (5.9) BIa sin ωt aω 2 2 = B2 a 4 ω 2 sin 2 ωt (5.11) R 8 7 A, B, C 8 BIa cos(ωt + α) ω ω t B B

65 v v ev B ev B ev B 5.2 B l I B, I BIl v B I BIlv BIlv = IV (5.12) V = Blv 5.3 F = q( E + v B) 9

66 V = dφ dt V E Φ = ds B ds B S t = E d x (5.13) S 10 S S ds S d x A = S d S (rot A) (5.14) ds B S t = ds (rot E) (5.15) S ds 11 S rot E = B t rot E = 0 V = dφ dt F = q( E + v B) rot E = B V = dφ t dt V = dφ dt V = dφ dt V = dφ dt ω G (5.16) 10 Φ d dt B t B B( x, t) Φ x Φ(t) Φ 11 S 0 0

67 64 5 v e v B V = dφ dt FAQ B t 0 B rot E = 0 V E = grad V rot E = B t E = grad V B = rot A (rot A) t rot A t = rot ( grad V ) E = grad V = 0 (5.17) E = grad V A t (5.18) (rot A) t rot A t = rot ( grad V A t ) = rot A t (5.19) (5.18) B = rot A B A E A t

68 Φ 1 Φ 1 = L 1 I 1 + M 12 I 2 + M 13 I 3 + (5.20) L 1, M 12, M 13, L 1 1 M M 13 [Wb] [A] [Wb/A] [H] 12 Φ 1 = L 1 I 1 + M 12 I 2 + M 13 I 3 + Φ 2 = L 2 I 2 + M 21 I 1 + M 23 I 3 + Φ 3 = L 3 I 3 + M 31 I 1 + M 32 I 2 +. (5.21) i V i = dφ i dt di i = L i dt M di 1 i1 dt M di 2 i2 dt M di 3 i3 dt + (5.22) M ii = L i V i = j M ij di j dt I 1 x B 1 ( x) I 2 ds B 1 I 2 M 21 I 1 = I 2 d S B 1 (5.23) B 1 A I 1 B 1 µ 0 d 3 x j 1 ( x ) ( x x ) 4π x x 3 j 1 ( x ) I 1 x x ( ) 1 x x 3 = x x (5.24) 12

69 M 21 I 1 = = I 2 I 2 ( ds µ0 ( 4π ds ( d 3 x j 1 ( x ) d 3 x µ 0 j 1 ( x ) 4π x x ) ( 1 ))) x x (5.25) x j( x ) A B = B A d 3 x µ 0 j 1 ( x ) 4π x x rot j 1 ( x ) A ds ( rot A( x) ) (5.26) I 2 ds (rot A) I 2 d x A( x) I 2 I 2 M 21 I 1 = d x d x µ 0 j 1 ( x ) I 2 I 1 4π x 2 x } {{ } (5.27) x I 1 j( x ) 0 d 3 x j( x ) I 1 I 1 d x 1 = A( x) M 21 I 1 = µ 0I 1 4π I 2 I 1 d x 2 d x 1 1 x 2 x 1 (5.28) I 1 M 21 = µ 0 1 d x 2 d x 1 4π I 2 I 1 x 2 x 1 M 12 = M 21 I 1 1A I 2 1A (5.29) 1,2 L 1 = M 11 = µ 0 d x 1 d x 1 1 4π I 1 x 1 x 1 (5.30) I 1 x 1 = x 1 j 1 ( x) L 1 (I 1 ) 2 = M 11 (I 1 ) 2 = µ 0 4π d 3 x 1 d 3 x 1 j 1 ( x 1 ) j 1 ( x 1) x 1 x 1 (5.31) 14 Φ 1 N 1, N 2 dφ 1 N 1 dt, N dφ 1 2 dt 13 E = V 14

70 FAQ IV V I J = I 2 R R a b c I I πa 2 I π(c 2 b 2 ) r r H(r) 2πrH(r) r < a a < r < b I b < r < c I I c2 r 2 c 2 b 2 c < r 0 I πa 2 πr2 = Ir2 a 2 I π(c 2 b 2 ) π(r2 b 2 ) = a < r < b H(r) = I 2πr B(r) = µ 0I 2πr l Φ = l 0 dx b a drb(r) = µ 0Il 2π (log b log a) (5.32) I L = µ ( ) 0l b 2π log a l (5.33) ( a)

71 L L di dt I () LI di dt LI di dt dt = 1 2 LI2 + C (5.34) C 0 0 M I 1, I 2 M di 2 dt, M di 1 di 2 MI 1 dt + MI 2 ( MI 1 di 2 dt + MI dt di 1 dt ) di 1 dt = MI 1 I 2 (5.35) dt L i (I i ) M ij I i I j = 1 M ij I i I j (5.36) 2 2 i i j i 1 2 M 12I 1 I 2 M 21 I 2 I 1 16 (5.36) 1 L i (I i ) 2 + M ij I j = 1 I i L i I i + M ij I j = 1 I i Φ i (5.37) j i j i i Φ i = 1 2 I iφ i = 1 2 I i = = i i i i d x A i d S B d S (rot A) i,j B = rot A Stokes i (5.38) d x A Id x jd 3 x 1 d 3 x j 2 = 1 2 d 3 x(rot H) A (5.39) j = rot H = H div ( V W ) = V (rot W ) (rot V ) W (5.40) 16

72 d 3 x(rot H) 2 A = 1 d 3 x H 2 (rot A) 1 d 3 xdiv ( H 2 A) = 1 d 3 x H 2 B (5.41) + ( ) 17 1 d 3 x H 2 B 1 d 3 x D 2 E j A 1 2 j A 1 2 j A 1 2 j A 1 2 j A 1 2 j A z q z = 0 ρ B(ρ, t) t z ρ t = 0 B z B (1) t = 0 (2) ρ Φ(t) B(ρ, t) ρ y (3) B(ρ, t) x (4) B(ρ, t) ρ Φ(t) B(ρ, t) Φ(t) = πρ 2 B(ρ, t) 5-2 Z 17 d 3 xdiv () 0 18 ε 0 2 E 2, µ 0 2 H 2 k 2 x2

73 S 1 S 1 S 2 S 2 S 3 V 5-4 z z I(t) a zx x v I(t) v x x r H H = I(t) 2πr I(t r/c) c H = 2πr r/c

74 rot E = B t (6.1) rot H = j (6.2) 1 div D = ρ, div B = 0 (6.3) rot H = j H ( ) (rot H)z div z z 1 2

75 72 6 div x, y, z z div (rot H) = 0 rot div 0 div (rot H) = 0 div j 0 div j = 0 div div j = ρ t ρ 3 (6.4) -Q +Q H 3 rot E = B t t (div B) div B = 0 0

76 D rot H = j rot H = j div ρ t div D = ρ D t rot H = rot H = j j + D t (6.5) D t (displacemenmt current)5 div D = 0 rot E = B t div B = 0 rot H = 0 (6.6) rot rot D t 6 7 div D = ρ div B = 0 rot E = B t rot H = j + D t (6.7) D = ε 0 E + P, B = µ0 H + M 8 4 D j = ρ t F = q( E + v B)

77 74 6 E, B D, H P, M E, B, P, M E, B, P, M ε 0 div E = ρ div P div B = 0 rot E = B t 1 rot B µ = j + rot M + P 0 t + ε E 0 t ρ div P j + rot M + P t 9 (6.8) D D t 2 D t 2 = 0 z = z = 0 z I I t = 0 Q = It D = It 4πr 2 e r (6.9) t It r 11 D t = I 4πr 2 e r (6.10) ( B( x) = µ j( x ) + ) 0 d 3 x td( x ) ( x x ) 4π x x 3 (6.11) θ A r B P 9 D electric displacement D 10 11

78 P P A B t D( x ) ( x x ) A B 12 x z θ r z H(r, θ) H(r, θ) 2πr sin θ = d S D t I z = 0 I (6.12) z = (1) (2) (rot H = j + t D) (3) (rot E = t B) rot E 0 rot E = B t rot E rot H = D t j

79 76 6 rot E B t E B div E = 0, div B = 0, 1 µ 0 rot B = ε 0 t E, rot E = t B (6.13) B = µ 0H D = ε0e D H E B rot B = ε 0 µ 0 E t rot E = B t rot ( rot rot E ) = ( rot B t ) } {{ } grad ( ) div E } {{ } =0 =ε 0 µ 0 t E E = ε 0 µ 0 2 t 2 E E = ε 0 µ 0 2 t 2 E rot (rot A) = grad (div A) A (ε 2 ) 0 µ 0 t 2 E = 0 (6.14) ( 1 2 ) v 2 t 2 u = 0 v = 1 ε0 µ 0 1 ε0 µ 0 grad rot ( ) div B } {{ } =0 ( rot B ) ( = ε 0 µ 0 rot E t ) } {{ } E = ε 0 µ 0 2 t 2 B B = ε 0 µ 0 2 t 2 B = t B (6.15) π 10 7 = m/s (6.16) 14 z c z ct f(z ct) ( 1 2 ) ( 1 c 2 t 2 2 ) f(z ct) = c 2 t 2 2 z 2 f(z ct) = 1 c 2 c2 f (z ct) f (z ct) = 0 (6.17) m/s (29) (97) (92) (458)

80 E(z ct), B(z ct) div E = 0 div E(z ct) = z E z(z ct) = E z(z ct) = 0 (6.18) z z x, y x E y = 0rot E = B t x y E z z E y = t B x y z 0 = t B x z E x x E z = t B y E x(z ct) = t B y x E y y E x = t B z 0 = t B z (6.19) B x, B z 0 B y (z ct) E x(z ct) = cb y (z ct) z x y 1 c E = (E x (z ct), 0, 0), B = (0, 1 c E x(z ct), 0) (6.20) rot B = ε 0 µ 0 t E x E z y B

81 z = z = I r I 4πr 2 2πrH = I 2 H = 0 H = A A x E z y B

82 79 E-B, 6 E-H, 6, 11, 33, 43, 38, 32, 2, 43, 57, 6, 2, 43, 75, 57, 73, 44, 43, 15, 57, 73, 69, 35, 34, 73, 57, 59, 32

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

行列代数2010A

行列代数2010A a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm 1 1.1 18 (static electricity) 20 (electric charge) A,B q a, q b r F F = k q aq b r 2 (1) k q b F F q a r?? 18 (Coulomb) 1 N C r 1m 9 10 9 N 1C k 9 10 9 Nm 2 /C 2 1 k q a r 2 (Electric Field) 1 E F = q

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

Microsoft Word - 計算力学2007有限要素法.doc

Microsoft Word - 計算力学2007有限要素法.doc 95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π 8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107 108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O - 44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ] 4 45 4.3

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

平成18年度弁理士試験本試験問題とその傾向

平成18年度弁理士試験本試験問題とその傾向 CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 { 04 zz + iz z) + 5 = 0 + i z + i = z i z z z 970 0 y zz + i z z) + 5 = 0 z i) z + i) = 9 5 = 4 z i = i) zz i z z) + = a {zz + i z z) + 4} a ) zz + a + ) z z) + 4a = 0 4a a = 5 a = x i) i) : c Darumafactory

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

sin.eps

sin.eps 9 ( 9 4 7 ) : 3. 3 5 ( ). 3 ( ) (Maxwell).3 (= ) 4.4 x y(x) dy =3 y(x) =3x dx y(x) =3x + y(x) =3x + y(x) =3x + /m OK.5 .6. 5 3 ( ).6 5 5 ( ) +3 m+3kg m 3kg ( ) I(MKA ) m,kg,s(sec),a 4 4 ( ) m kg s 3 A

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

J表紙.dpt

J表紙.dpt 1 1. 1.1 440V 63A 1 2 3 4 5 6 IEC 61058-1 IEC 61058-2 IEC 61058-2 1.2 1.3 1.4 IEC 60669 IEC 61058-2 1.5 1.6 IEC 60730 2. IEC 61058 1 IEC 60034-1 1996 1 1 1997 2 1999 1 IEC 60038 1983 IEC IEC 60050(151)

More information

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp 8 5 6 i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp ii I +α 3.....................................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information