A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

Size: px
Start display at page:

Download "A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2"

Transcription

1 tatekawa (at) akane.waseda.jp x t x t (I. Newton) C. Huygens) 19 (T. Young) 1

2 A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

3 1: (O. Roemer) (Io) [m/s] (J. Bladley) v c θ = v c, (1) 3

4 2: L 3: 1 c = [m/s] (2) (A. Fizeau) L = [km]) 1 sin θ θ 4

5 c = 2L t = = [m/s]. (3) (J. L. Foucault) 1862 c = (2.980 ± 0.5) 10 8 [m/s], (4) [µm] (Cd) Kr

6 (J. Harrison) ( 133 Cs) c = [m/s]. (5) 1 1/ (J. L. Lagrange) (W. R. Hamilton) (L. E. Boltzmann)

7 S V u V v 4: S, S S S V 19 4[km/h] 40[km/h] 44[km/h] 4 S, S S S V S u S v = u + V c c 7

8 v = 30[km/s] β = v c 10 4, 10 4 (A. Michelson) L 1 c c v c + v t (1) = L 1 c v + L 1 c + v = 2L 1 1 c 1 β 2, (6) 8 c 2 v β = v/c 8

9 L 2 L 1 5: t (2) = 2L 2 1 c, (7) 1 β 2 (0 ) = t (1) t (2), (8) 90 t (2) = 2L 2 c 1 1 β 2, (9) t (1) = 2L 1 1 c, (10) 1 β 2 9

10 (90 ) = t (2) t (1), (11) t(0 ) t(90 ) = t (1) + t (1) = 2(L 1 + L 2 ) c t(2) t (2) ( ) 1 1 β 2 1, (12) 1 β 2 β 1 9 L 1 = L 2 = L t(0 ) t(90 ) 2L c β2, (13) λ s s = 1 λ c ( t(0 ) t(90 )) 2L λ β2, (14) L = 1.2[m], λ = [m], s = 0.04 (E. Morley) 1887 L = 11[m] s 0.4 s < 0.01 G. F. FitzGerald) (H. A. Lorentz) 9 (1 β 2 ) a 1 aβ 2 10

11 ma = F, (15) r = r vt, (16) v ma = F, (17) % 20% 70% 11

12 (event) P Q x P, x Q d d 2 = (x Q x P ) 2, (18) P, Q s 2 P Q c 2 (t Q t P ) 2 + (x Q x P ) 2. (19) 12

13 (19) (Minkowski) P Q ( s) 2 = c 2 ( t) 2 + ( x) 2, (20) 12 PQ x Q x P = c(t Q t P ), (21) s 2 P Q = 0, (22) (s P Q) 2 = c 2 ( t Q t P ) 2 + ( x Q x P ) 2 = 0, (23) P Q 2 2 S P, Q (t p, x p ) (t q, x q ) 12 13

14 s 2 P Q c 2 (t Q t P ) 2 + (x Q x P ) 2. (24) S P Q (s P Q) 2 = c 2 (t Q t P ) 2 < 0 (25) s 2 P Q = (s P Q) 2 < 0, (26) 1 2 c (x Q x P ) 2 = { tq t P } 2 { tq } 2 v(t) dt < c dt = c 2 (t Q t P ) 2, (27) t P S P, Q (T p, X p ) (T q, X q ) s 2 P Q c 2 (T Q T P ) 2 + (X Q X P ) 2. (28) S P Q (s P Q) 2 = (X Q X P ) 2 > 0 (29) s 2 P Q = (s P Q) 2 > 0, (30) 14

15 ct O y x 6: (31) x ct t = 0, x = 0 O P x 2 > c 2 t 2 Q x 2 < c 2 t 2 c 2 t 2 + x 2 = 0, x y c 2 t 2 = x 2 = x 2 + y 2, (31) t (31) 6 ct O ct O O 15

16 3.4 t r = ( x) 2 + ( y) 2 + ( z) 2, S S x = y = z = 0, (32) ( s) 2 = c 2 ( t) 2 + ( r) 2 = c 2 ( t ) 2, (33) t = t 1 1 c 2 ( r t ) 2 = t v = r t, v = v, 1 v2 c 2, (34) (34)

17 τ2 τ 1 dt = t2 t 1 dt 1 v(t)2 c 2. (35) v S τ 2 τ 1 ( τ) 2 ( s)2 c 2, (36) 3.5 S(t, x, y, z) S (t, x, y, z ) S S x v t = t, x = x vt, y = y, z = z, (37) ( s) 2 = c 2 ( t) 2 + ( x) 2 + ( y) 2 + ( z) 2, (38) ( s ) 2 = (c 2 v 2 )( t) 2 2v( t)( x) + ( x) 2 + ( y) 2 + ( z) 2, (39) β = v/c

18 ct x y z = a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33 ct x y z. (40) 4 4 S S x v t = t = 0 S S y = y, z = z, (41) a 22 = a 33 = 1, (42) a 20 = a 21 = a 23 = a 30 = a 31 = a 32 = 0, (43) y = y, z = z a 02 = a 03 = a 12 = a 13 = 0, (44) ct = a 00 ct + a 01 x, (45) x = a 10 ct + a 11 x, (46) y = y, (47) z = z, (48) S x = 0 S x v x = vt, (49) 18

19 (45) (46) ct = a 00 ct, x = a 10 ct, (50) a 10 ct = a 00 vt, (51) a 10 a 00 = v c, (52) S x = 0 S x v x = vt, (53) (46) a 10 ct + a 11 x = 0, (54) a 10 a 11 = v c, (55) (52) (55) a 00 = a 11, (56) γ a 00 = a t = t = 0 x S x = ct, (57) (45) (46) ct = (a 00 + a 01 )ct, (58) x = (a 10 + a 11 )x, (59) S x = ct, (60) a 00 + a 01 = a 10 + a 11, (61) 19

20 a 01 = a 10 (52) a 01 = a 10 = v c γ, (62) γ ct = γ (ct v ) c x, (63) x = γ ( vt + x), (64) γ S S S S (63) (64) ct = x = 1 v/c γ[1 (v/c) 2 ] ct + γ[1 (v/c) 2 ] x, (65) v/c 1 γ[1 (v/c) 2 ] ct + γ[1 (v/c) 2 ] x, (66) S S v v ( ct = γ ct + v c x ), (67) x = γ (vt + x ), (68) γ = 1 1 (v/c) 2, (69) 14 β = v/c 0 (63) (64) γ 1 (63) ct = ct t = t, (70) (64) x = vt + x, (71) 14 γ γ 20

21 y V V v x 7: S S V x S v S v c S S V x S v S v 7 v v x = γ( x + V t ), (72) y = y, (73) z = z, (74) t = γ ( t + Vc ) 2 x, (75) v x = x t = γ( x + V t ) γ ( t + V c x ) = V + v x 1 + V, (76) 2 c v 2 x v y = y t = v z = z t = v y γ ( ) 1 + V, (77) c v 2 x v z γ ( ) 1 + V, (78) c v 2 x V < c, v < c v < c 21

22 y v V x 8: S S V x S v S v c γ 1 v x = V + v x, v y = v y, v z = v z, S S 8 x x θ θ v x = v cos θ, v y = v sin θ, (79) v x = v cos θ, v y = v sin θ, (80) v x = v cos θ = x t = V + v cos θ 1 + V c 2 v cos θ, (81) v y = v sin θ = y t = v sin θ γ ( 1 + V c v cos θ ), (82) 2 22

23 : θ θ θ = 0 θ = 180 θ θ θ θ tan θ = v sin θ γ(v + v cos θ ), (83) v = v = c, tan θ = sin θ γ(β + cos θ ), (84) θ θ 9 θ θ β = 0 90 β = β = S S S 23

24 15 SF S S x = 0 t 10 S t = t 2 t 1, (85) S S v S t = t 2 t 1 = γ (t 2 + v c 2 t 1 v ) c 2 = γ(t 2 t 1) = γ t > t, (86) S S S x 11 S l = x = x 2 x 1, (87) 15 24

25 S V t 10: t t S V 11: x S t S 16 x = x 2 x 1 = γ(x 2 x 1 ) = γ x, (88) δx = 1 γ l < l, (89)

26 (ct) (x) S S x ct = 0 ct = 0 S ct = v c x, tan θ = v c, S ct x = 0 x = 0 S x = v ct = vt, c 12 S x = 0 ct P 12 ct x ct B A 26

27 ct B A P O x 12: S S B S (ct, 0) S (ct, x B ) { ct = γ 0 = γ ( ct v ( c v c { ) } x B ) ct + x B, (90) }, (91) x B T T T = 1 γ T < T, (92) S S (a) 27

28 (a) (b) 13: (a) (b) (b) S S (x = 0) t = 0 t = 0 x = 0 14 t = 0 x = 0 Q P R 28

29 ct Q R P x 14: Q P R

30 ct B A O x 15: x = 0 ct ct A ct B 15 S ct A S ct A S ct B 0 τ A 30

31 2τ A τ A 15 A 15 A A A i m x 2v 2m x 31

32 m 2m m 2m 2v v 16: m x 2v 2m x v 2m m 3v v v m 2v + 2m ( v) = 0, (93) 0 v = v + 2v 1 (v 2v/c 2 ) = 3v 1 (2v 2 /c 2 ), (94) mv 2 3mṽ v ṽ = v ṽ = v 1 (2v 2 /c 2 ) v, (95) 32

33 4.2 x v t t x v = x t, (96) x t t x τ s ( s) 2 = c 2 ( τ) 2 = c 2 ( t) 2 + ( x) 2 { ( x = c 2 + t = c 2 {1 )} ( t) 2 ( v c ) 2 } ( t) 2, (97) t x ct x, y, z ct u t (ct) τ u x x τ,, (98) u y y τ, u z z τ. (99)

34 4 u 4 4 p t mu t, (100) p x mu x, p y mu y, p z mu z, (101) v v v = v, v 2 = v = v 2 x + v 2 y + v 2 z, (102) v 4 0 ( ) 2 (ct) (u t ) 2 + (u x ) 2 + (u y ) 2 + (u z ) 2 = + τ = = ( ) 2 x + τ ( ) 2 y + τ ( ) 2 z τ 1 { ( τ) 2 ( (ct)) 2 + ( x) 2 + ( y) 2 + ( z) 2} 1 ( τ) ( (p t ) 2 + (p x ) 2 + (p y ) 2 + (p z ) 2 = m (ct) τ = = { c 2 ( τ) 2} = c 2, (103) ) 2 ( + m x ) 2 ( + m y ) 2 ( + m z ) 2 τ τ τ 1 { m 2 ( τ) 2 ( (ct)) 2 + ( x) 2 + ( y) 2 + ( z) 2} 1 m 2 ( τ) 2 { c 2 ( τ) 2} = (mc) 2, (104) 4 v p t = mu t = m (ct) τ p x = mu x = m x τ = m t τ = mc t = γmc, τ (105) x t = γmv x, (106) 34

35 p y = mu y = m y τ = m t y τ p z = mu z = m z τ = m t τ γ = 1 ( v c ) 2 ( = t τ t = γmv y, (107) z t = γmv z, (108) ), (109) m γm, (110) 4 1 p x = m v x, (111) m m 19 m v c c cp t = γmc 2. (112) γ (109) β = v/c 1 Taylor (1 + ε) (1 + ε) 2 = 1 + 2ε + ε 2, (113) (1 + ε) 3 = 1 + 3ε + 3ε 2 + ε 3, (114) (1 + ε) 4 = 1 + 4ε + 6ε 2 + 4ε 3 + ε 4, (115) ε 19 m 0 35

36 ε n ε n ε (1 + ε) n 1 + nε, (116) n (116) n ε = (1 + ε) 1/ ε, (117) (109) ( v ) 2 1 ( v ) ( 2 ( v ) ) 2 1 1, ε =, (118) c 2 c c 4 0 (112) cp t ( 1 1 ( v ) ) 2 mc 2, (119) 2 c cp t mc mv2, (120) v 0 0 E 0 = mc 2, (121) 21 E cp t, (122) m 36

37 5 E = mc 2, (123) 1km 1km 1km 1km 5000km 5000km 5000km 5000km 37

38 , 5. ( ) 6. J.J

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 (2) 1 1 4 ( beresit ) ( ) ( ) ( ) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 1 (a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 20 [ ]

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

8 8 0

8 8 0 ,07,,08, 8 8 0 7 8 7 8 0 0 km 7 80. 78. 00 0 8 70 8 0 8 0 8 7 8 0 0 7 0 0 7 8 0 00 0 0 7 8 7 0 0 8 0 8 7 7 7 0 j 8 80 j 7 8 8 0 0 0 8 8 8 7 0 7 7 0 8 7 7 8 7 7 80 77 7 0 0 0 7 7 0 0 0 7 0 7 8 0 8 8 7

More information

2 3 4 mdv/dt = F cos(-)-mg sin- D -T- B cos mv d/dt = F sin(-)-mg cos+ L- B sin I d 2 /dt 2 = Ms + Md+ Mn FMsMd MnBTm DLg 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Hm H h

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1... DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49

More information

ron04-02/ky768450316800035946

ron04-02/ky768450316800035946 β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

- 18 -

- 18 - - 17 - - 18 - - 19 - - 20 - 1 1.25m 5.5m 1.25m 8.0m 2.0m 0.5m 3.0m 0.5m 2.0m 8.0m 2 1.5m 0.5m 7.5m 1.0m 10.5m 2.0m 0.5m 5.5m 0.5m 10.5m 2.0m 1.5m 0.5m 3.0m 2.0m 1.0m 4.0m 0.5m 6.0m 0.5m 4.0m 8.0m 15.0m

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

縺02 縺07 縺 , 縺05 [

縺02 縺07 縺 , 縺05 [ 1309ィ 0408 2003 03. 070503 173, 02 6 0806 タ07 09 090908090107060109 04030801 030707 縺0609010706010907 08030307070109 縺08050105040405080909 0402090705040909 030008090902 02 ィ 020501090705030003040909040500

More information

P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5

More information

1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4...........................

1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4........................... 11 2 5 1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4................................. 3 2.5...............................

More information

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm 1 1.1 18 (static electricity) 20 (electric charge) A,B q a, q b r F F = k q aq b r 2 (1) k q b F F q a r?? 18 (Coulomb) 1 N C r 1m 9 10 9 N 1C k 9 10 9 Nm 2 /C 2 1 k q a r 2 (Electric Field) 1 E F = q

More information

日本糖尿病学会誌第58巻第3号

日本糖尿病学会誌第58巻第3号 l l μ l l l l l μ l l l l μ l l l l μ l l l l l l l l l l l l l μ l l l l μ Δ l l l μ Δ μ l l l l μ l l μ l l l l l l l l μ l l l l l μ l l l l l l l l μ l μ l l l l l l l l l l l l μ l l l l β l l l μ

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

662/04-直立.indd

662/04-直立.indd l l q= / D s HTqq /L T L T l l ε s ε = D + s 3 K = αγk R 4 3 K αγk + ( α + β ) K 4 = 0 γ L L + K R K αβγ () ㅧ ర ㅧ ర (4) (5) ()ᑼ (6) (8) (9) (0) () () (3) (3) (7) Ƚˎȁ Ȇ ၑა FYDFM වႁ ޙ 䊶䊶 䊶 䊶䊶 䊶 Ƚˏȁζ υ ίυέρθ

More information

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます.  このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の 最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/047143 このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 のものです. 3 10 GIS 3 1 2 GPS GPS GNSS GNSS 23 3 3 2015

More information

第 1 章 書 類 の 作 成 倍 角 文 字 SGML 系 書 類 のみ 使 用 できます 文 字 修 飾 改 行 XML 系 書 類 では 文 字 修 飾 ( 半 角 / 下 線 / 上 付 / 下 付 )と 改 行 が 使 用 できます SGML 系 書 類 では 文 字 修 飾 ( 半 角

第 1 章 書 類 の 作 成 倍 角 文 字 SGML 系 書 類 のみ 使 用 できます 文 字 修 飾 改 行 XML 系 書 類 では 文 字 修 飾 ( 半 角 / 下 線 / 上 付 / 下 付 )と 改 行 が 使 用 できます SGML 系 書 類 では 文 字 修 飾 ( 半 角 1.2 HTML 文 書 の 作 成 基 準 1.2.2 手 続 書 類 で 使 用 できる 文 字 全 角 文 字 手 続 書 類 で 使 用 できる 文 字 種 類 文 字 修 飾 について 説 明 します 参 考 JIS コードについては 付 録 J JIS-X0208-1997 コード 表 をご 覧 ください XML 系 SGML 系 共 通 JIS-X0208-1997 情 報 交 換 用

More information

木オートマトン•トランスデューサによる 自然言語処理

木オートマトン•トランスデューサによる   自然言語処理 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 hayashi.katsuhiko@lab.ntt.co.jp n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

: B 1528 * : * * * * * * * * * * * * * * * * ( 12 )

: B 1528 * : * * * * * * * * * * * * * * * * ( 12 ) 76..,,,,,,.,,.... *,.,,.,.,.. A 1528 * * * * * * * * * * * * * * * * 2529 * * * : * * * * ( 11 ) : B 1528 * : * * * * * * * * * * * * * * * * ( 12 ) * * * * μ * * * 2529 * : * * * * * * * * * * * * * *

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

102

102 5 102 5 103 q w 104 e r t y 5 u 105 q w e r t y u i 106 o!0 io!1 io q w e r t y 5 u 107 i o 108 q w e q w e r 5 109 q w 110 e r t 5 y 111 q w e r t y u 112 i q w e r 5 113 q w e 114 r t 5 115 q w e 116

More information

MultiWriter 5600C 活用マニュアル

MultiWriter 5600C 活用マニュアル 1 *1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 9 1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 a b c 26 27 28 C *1 *2 *2 29 2 2 2 2 2 2 2 2 2 30 *1 *2 ± *1 C C 31 32 33 34 35 36 M C Y K 1 2 3 4 5 6

More information

x : = : x x

x : = : x x x : = : x x x :1 = 1: x 1 x : = : x x : = : x x : = : x x ( x ) = x = x x = + x x = + + x x = + + + + x = + + + + +L x x :1 = 1: x 1 x ( x 1) = 1 x 2 x =1 x 2 x 1= 0 1± 1+ 4 x = 2 = 1 ± 5 2 x > 1

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: mtakahas@auecc.aichi-edu.ac.jp 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

阪神5年PDF.PDF

阪神5年PDF.PDF 1995.1.17 N 0km 10 20 31 4,569 14,679 67,421 55,145 6,965 80 1,471 3,383 13,687 5,538 327 22 933 1,112 12,757 5,675 465 2 243 3,782 6,344 6,641 65 17 555 1,755 9,533 8,109 940 15 12 817 271 3,140 1 918

More information

Microsoft Word - 01_表紙

Microsoft Word - 01_表紙 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 7.0 190 km 30 62 63 64

More information

渋谷区耐震改修促進計画

渋谷区耐震改修促進計画 1 2 3 2 1,000 ( ) 1,500 ( ) 3 1,000 1 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 3 1,000 2,000 3 1,000 2,000 3 1,000 3 1,000 2 1,000 2,000 2 1,000 2,000 2

More information

農中総研 調査と情報 2013年11月号

農中総研 調査と情報 2013年11月号 農 林 中 金 総 合 研 究 所 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 2 3 2 3 4 農 林 中 金 総 合 研 究 所 4 1 13 8 11 2 13 4 24 3 13 4 14 4 3 2 50 5 13 5 15 6 13 5 15 9 6 15 7 13 8 8 5 6 7 農 林 中 金

More information

1,000m 875m1 6km

1,000m 875m1 6km 1,000m 875m1 6km 1,000m 875m 30 13 14 11 2 14 23 27 50 30 3 () 23 24 25 16,534 16,792 18,017 13,946 17,884 18,712 30,480 34,676 36,729 1 (25 ) () 395 1,420 1,343 1,756 1,364 1,599 1,184 1,278 1,619 1,324

More information

私にとっての沖縄と独自性.PDF

私にとっての沖縄と独自性.PDF 6902117 2 1200km 48 11 46 36 40 (1) ( ) 3 1 1-1 1-2 2 (= ) 3 1. 14 14 ( ) ( 2001) ( ) ( ) 1390 1474 ( 2001) ( 4 ) ( ) 46 3000 ( ) = 5 1609 1602 ( 2001) 1-1 1-2 1-1 1-2 15 (2) 6 1314 ( ) (3) ( ) 1 ( 1993:48)

More information

! 1 m 43 7 1 150 ( ) 100 ( ) 11.3m 30 800 ( ) 1680 20 15 1,253 ( ) 1,500 51 52 300 1 4 134 1000 3 600 ( ) 30 , 402 km (1702) ( 1 402 67 12 23 10 ( ) ( 25,000 ) (1701 ) 485 ( 20 ) 400 (1860 ) (1) (2)

More information

untitled

untitled 60 547 547 4km [ ] 14 20 18 2,400 5,500 24 15 10,000 [ ] [ ] 1779 1779 1471-76 1914 1471-76 1779 1914 1779 1779 1914 1471-7676 1779 1471-76 1946 1914 59 8 25 30 1986 3km 2m 5 2km 18 6 [ ]

More information

一太郎 13/12/11/10/9/8 文書

一太郎 13/12/11/10/9/8 文書 (1) 17 3 (2) (3) (1) 1 (2) 2 (1) (2) (3) (4) (5) (6) (7) (8) 3 (1) 50 12.5km 1km (2) 16 1900 (3) 65 65 19 14 17.5 (4) 34 31 22 335 133 (5) 104 321 3 4 4 43 4 4 4 () 5 6 (1) (2) 7 8 (1) (2)24 24 (3) 9 (4)

More information

28 7 1 27 9 27 12 10 28 5 18-1 - - 2 - 13 8 11 11,969 22 9 3,000m 3 /s 709 2079 18,279 5,990 42 52 57 7 10 10 9 5 27 9 1/100-3 - 20 2 50 50 22 60.4km 46 27 3 5m 150km 2 20-4 - - 5 - - 6 - 情 報 - 7 - -

More information