hirameki_09.dvi
|
|
|
- あきひろ みやくぼ
- 9 years ago
- Views:
Transcription
1 2009 July [email protected]
2 2 SF
3
4 )
5 ( ) ( ) ( ) ( ) ( )
6 1 6 ( ) ( ) ( ) 1.2 ( ) ( ) ( ) ( ) ( ) ( ) 1.5
7 1 7 ( ) ( ) vˆr c ( ) (r ) r v ˆθ 0 v ˆφ 0 ( ) ZAMO (Zero Angular Momentum Observer) (Bardeen 1973) ZAMO FIDO (Fiducial Obserber) 1.3 ( ) ( ) ( ) ( ) ( ) ( )
8 1 8 A B ( ) ( M m ) r F g F g Mm/r 2 G ( ) [J(=kgm/t 2 )] [kg 2 /r 2 ] G (1798 ) G = Nm 2 /kg 2 (1.1) II 1.4 ( ) ( ) ( ) ( ) ( ) ( )
9 : ( ) 2 ( ) z ( ) a/m ( ) ( ) ( ) ( ) Smarr (1973) 1.1( ) (stretched horizon ) (event horizon) r H ( ) (θ) 1 r θ φ ( ) 2 ( ) r H ( ) ( ) ( ) ( ) ( ) 1 r H = M + M 2 a 2 M a ( ) 2
10 1 10 Bardeen et al. (1972) ( ) 1.5 ( ) ( ) ( ) ( ) ( ) Q
11 : ( ) ( ) ( ) Q A 1.6 BH
12 ( ) Q 1.4( ) ( ) ( ) ( ) ( ) 1.3: ( )
13 : ( ) ( ) ( ) 1.4 C F ( ) ( ) ( ) ( ) 1.5 ( ) 1.5
14 1 14 ( ) Q ( ) 1.7 ( ) ( ) ( )
15 1 15 ( ) ( ) ( ) 1.5: ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 km ( ) ( )
16 1 16 ( ) ( ) SF 1.8 Δg Δg =(2m/r 3 )Δr 3 r 3 (Δr) (r =2m) (Δg) H =(1/4m 2 )Δr (M = M ) g E Δg 10 9 g E (M =10 6 M ) Δg 10 3 g E 3 D 2 z μ dλ 2 = R μ ανβ kα k β z ν (1.2) ( )
17 1 17 ( ) (Δg) =g E r =(2mΔr/g E) 1/3 (Δr/4m 2 g E) 1/3 4 2 (Δr =2) c G 1 m = g E =10 16 ( ) 1
18 = 18 2 ( ) SF ( ) 2 3 z x z t y t = t x t y t = t 1 2.1: =4 4
19 ( ) ( ) ( ) 2.2 ( ) ( ) t y x ( ) ( ) ( 4 ) ( ) 2.2: (x-y ) t (manifold
20 2 20 GPS ( ) ( ) ( ) ( ) ( ) ( ) ()
21 : = 0 = 0 2.4: ( ) ( ). ( ) 2.3 ( ) ( ) ( ) ( )
22 2 22 ( 2.4 ) ( ) ( ) ( ) ( )
23 ( ) 2.5 r t τ r t C G 1 c = G =1 ( ) (c = G =1 ) Time / M t : Schwarzschild coordinate time τ : proper time r / M 2.5: (r =9M ) r ( t τ) M kg ( ) c = m/s G = N m 2 /kg 2 GM/c 2 GM/c 3 c = G =1 M 2M ISCO 6M 2 r =9M τ =30M M km M GM/c ISCO(innermost stable circular orbot) ( )
24 2 24 M c G M GM/c 3 M c G ( ) M M = kg m km ( ) 30M ( ) M m 1 = m 2.5 t ( ) ( τ: ) (r =2M) r ( ) ( ) ( ) M r =0 ( ) ( ) ( ) ( ) ( ) ( )
25 2 25 ( ) 2.5 ( )
26 26 3 ( ) 3.1 ( ) 1) ( ) r =0 ( ) 2) 3) 4)
27 3 27 ( ) 3.2
28 3 28 z r sinθ dφ dr r dθ dz θ r dy dx x y φ r sinθ dφ 3.1: x y z dx dy dz r θ φ dr rdθ r sin θdφ x, y, z t 1 A B A B (Δs) 2 =(Δx) 2 +(Δy) 2 +(Δz) 2 (3.1) A B Δt (Δs) 2 =(Δx) 2 +(Δy) 2 +(Δz) 2 c 2 (Δt) 2 (3.2) cδt cδt Δt c Δt ( 1 ()
29 3 29 ) r x θ z φ (Δs) 2 =(Δr) 2 + r 2 (Δθ) 2 + r 2 sin 2 θ(δφ) 2 c 2 (Δt) 2 (3.3) ( ) (Δθ) 2,(Δφ) 2 1 Δθ, Δφ θ, φ 3.1 ( ) 3.3 ( ) ( ) (Δs) 2 =(Δx) 2 +(Δy) 2 +(Δz) 2 c 2 (Δt) 2 (3.4) ( ) Δs Δx Δy Δz ( ) ds 2 = c 2 dt 2 + dx 2 + dy 2 + dz 2 (3.5)
30 3 30 ( Δx ) ( ) ds 2 = c 2 dt 2 + dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 (3.6) t x y z t r θ φ x x 0 x 1 x 2 x 3 ds 2 = g 00(cdx 0 ) 2 + g 11(dx 1 ) 2 + g 22(dx 2 ) 2 + g 33(dx 3 ) 2 (3.7) g 00 = 1 g 11 =1 g 22 =(x 1 ) 2 g 33 =(x 1 ) 2 sin 2 (x 2 ) g ( ) g ( ) μ( ) ν( ) g μν μ ν ds 2 = dtdφ ( dx 0 dx 3 ) dtdr ( dx 0 dx 1 ) ( ) μ ν 4 4=16 ds 2 = 3 3 ds 2 = g μνdx μ dx ν (3.8) μ=0 ν=0 g μν x μ ( g μν = g μν(x 0,x 1,x 2,x 3 ) ) μ ν ds 2 = g μνdx μ dx ν (3.9) ( ) g μν R μν, R g μν 2 R μν 1 gμνr = κtμν (3.10) 2 N N S km S S km S (x, y, z) S =(2, 1, 0) S x =2 S y = 1 S z =0 S a ( a = x, y, z ) A abc... a, b, c,... 2 R μν ( ), R ( )
31 3 31 ( ) μ ν 4 4 4=16 10 μ μ = t, x, y, z μ = t, r, θ, φ (principle of general relativity) T μν T μν =0 T μν 0 ds 2 = ( 1 2m r ) c 2 dt ( 1 2m r ) dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 (3.11) m = GM/c 2 (M ) r =2m g tt =0 g rr = 3.4 τ σ
32 3 32 (i) (ii) r, θ, φ (FIDO: fiducial observers) ( ) 3.5 τ ( ) ( (Δs) 2 = 1 2m ) (cδt) ( r 1 2m )(Δr) 2 + r 2 (Δθ) 2 + r 2 sin 2 θ(δφ) 2 (3.12) r ( Delta ) Δr =Δθ =Δφ =0 (Δs) 2 = (Δτ) 2
33 (Δs) 2 = (1 2m/r)(Δt) 2 [(Δs) 2 ] 1 Δt = ( ) 1 2m 1/2 Δτ (3.13) r 1/(1 2m/r) 1/2 lapse finction 3 (r =3m) r =2.9m r =2.8m r =2.7m r =2m r =2m r =2m r =2m (event horizon) : r (Δθ =Δφ =0 ) (Δτ =0) Δl Δr ( Δr = 1 2m ) 1/2 Δl (3.14) r r =3m 1m 0.58m Δt =Δr =0 Δτ =Δl =0 r c c
34 3 34 c a = 0 Light Rays a = 0 Wave Fronts Black Hole Black Hole 3.2: m 2m ( ) 3.6 ( ) r =0
35 3 35 2π Δr Δl (t, r, θ, φ) ( ) l 2π ( ) r Schwarzschild radial coordinate ( ) proper radial distance R (proper radial diistance) r (Schwarzschild radial coordinate) R 2M = r 2M 1 2M r dr [ ] R =2M + r(r 2M)+2M ln r/2m 1+ r/2m R 2M 3.3: (a) (b) ( ) (c) ( ) (a) ( ) (b)
36 36 4 ( ) 4.1 I/II ( ) ( ) ( ) ( )
37 4 37 ( ) ( ) : H 4 2 He + 2e+ + ν (4.1) ( ) ( )
38 4 38 ( ) ( ) ( ) 10 7 K ( ) K K 10 7 K ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
39 4 39 β β β m ( ) TNT ( ) ( ) 1000 ( ) : ( II ) Fe ( ) Fe Fe E =Δm c 2 (Δm c 2 )/A A
40 4 40 ( ) ev 1932 ( ) 7 3 Li H 2 4 2He (4.2) E = mc MeV K ( )
41 : 4.2 ( ) X X X Cyg X- 4.4: X ( ) ( ) B X 8.7 X
42 4 42 ( ) ( ) ( ) ( ) X Cyg X- X X 100keV X ( ) ( 100km ) ( X ) X X Cyg X- ( ) ( ) 1. ( ) 2. ( ) ( ) 3. ( ) 4. X 5. 6.
43 ( ) (QSO) ( ) 1000 ( ) ( ) ( ) ( )
44 : M ( ) 4.3.3
45 ( ) ( ) g ( ) g cm [ 146.6m 230.4m 230.4m (1/3)] g 4.5 : ( )
46 4 46 : κ GM rc 2 λ GM r 3 c 2 AGN κ 1 λ λ
47 47 5 II : ( ) m 10 m 3 /sec W ( ) ( )
48 5 48 Q 1 ( ) (1) ( ) U = mgh m [kg/s] 1 g =9.8m/s 2 h (2) (3) A (1) W, (2) 6.3%, (3) % II r>r e R e m r ( V (r) = GM ) em x 2 dx = GM em (5.1) r M e F = m GM e R 2 e = mg (5.2) R e = 5371 km M e = kg g =9.8 m/sec 2 g R e M e GM e = gre 2 V (r) = mgr2 e r (5.3) E = 1 2 mv2 mgr2 e r (5.4) % 10 1 % %
49 5 49 (5.4) ( ) 2 v(r) = E + mgr2 e (5.5) m r E (r ) E 0 E <0 v g moon (1/6)g earth R moon (1/3.6)R earth c (Schwarzschild radius) (M gal = M ) E <0 L = r p p = mv (r, φ) L = L = mr(r φ) =constant v 2 =(ṙ) 2 +(r φ) m(ṙ2 + r 2 φ2 ) GMm = E = constant (5.6) r 1 2 mṙ2 + L2 2mr 2 GMm = E (5.7) r φ V eff (r) L2 2mr 2 GMm r (5.8)
50 5 50 v r ṙ (5.7) E = 1 2 v2 r + V eff (5.9) (5.8) r r 0 r r V 0 r 5.2: r E>0
51 5 51 A Black Hole 0.9 V/m Black Hole 0.9 V/m B x/m y/m x/m y/m 8 5.3: ( ) ( :L =0) ( :L 0) ( ) (Black Hole) (Event Horizon) (Schwarzschild) φ r [( d 1 2M ) ] ṫ =0, (5.10) dλ r d [ r 2 sin 2 θ dλ φ ] =0. (5.11)
52 5 52 ṫ = dt/dλ φ = dφ/dλ λ τ/m [ ] E/m ( 1 2M ) ṫ = constant r (5.12) L/m r 2 sin 2 θ φ = constant (5.13) r m 2 ṙ 2 = E 2 V (r) (5.14) ( V (r) 1 2M r ) )(m 2 + L2 r 2 (5.15) 5.3 ( ) ( ) ( ) (
53 5 53 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ω F Ω F > ω H BH ω H Ω F < ω H BH 5.4: ( ) ( ) ( ) ( ) ( )
54 X ( ) S
55 : ( ) 6.2 X 6.3
56 : X (Cygnus X-1) η ( ) 6000 X ( 26km) 20% ( ) ( B ) 500 ( X-1 ) (?) 6.4 ( )
57 : 6.4: ( ) ( ) ( ) ( ) ( ) ( )
58 6 58 ( ) ( ) ( ) 90 ( ) 6.4 ( ) ( ) 6.3 ( ) ( BH y [M] x [M] 6.5: ( )
59 6 59 ) 6.4 ( ) 6.5
60 X 6.6: ( radio/spectrum/ radiow/window.htm ) 6.7: (Sgr A ) ( ) ( ) Q (VLA, VLBI)
61 : NGC ? II ( ) ( ) ( ) ( ) ( ) ( )
62 : ( ) 1 ( ) ( ) ( ) 1 II
63 : ( II ) 6.10 ( ) ( ) ( ) ( ) ( ) ( ) ( ) c 6.11:
64 6 64 ( ) ( ) G.Walker, Nature, 378, 332 (1995) ( p.50 ) 6.12: (MCG ) ( ) BH 6.13: Cygnus X-1
65 65 7 ( ) SF ( ) 7.1 ( ) ( ) ( )
66 7 66 ( ) (M/M ) (M/M ) M ( ) ( ) ( ) ( 1 1
67 7 67 ( ) Q ( ) 7.1: 2 Schwarzschild black hole Kruskal coordinate system ( )
68 ) ( ) SF ( ) ( ) TV SF ( ) SF ( ) ( ) (
69 7 69 ) ( ) ( ) ( ) ( ) 7.6 ( ) 7.2: ( ) ( :Worm3.jpg )
70 (?) ( ) ( ) ( ) ( ) 70
71 S II II F Gravitation C.W.Misner, K.S.Thorne, & J.A.Wheeler, W.H.Freeman and Company: New York (1970) Black Holes, White Dwarfs, and Neutron Stars S.L.Shapiro & S.A.Teukolsky, JohnWiley &Sons: New York (1983) Black Holes: The Membrane Paradigm K.S.Thorne, R.H.Price, & D.A.Macdonald, Yale Univ. Press: New Haven and London (1986) ( ) (2007) 71
72
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d
A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9
4 2 4.1: =, >, < π dθ = dφ = 0 3 4 K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R
1 4 4.1 1922 1929 1947 1965 2.726 K WMAP 2003 1. > 100Mpc 2. 10 5 3. 1. : v = ȧ(t) = Ha [ ] dr 2. : ds 2 = c 2 dt 2 a(t) 2 2 1 kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) a(t) H k = +1 k *1) k = 0 k = 1 dl 2 = dx
1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =
1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad
13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =
7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E
B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
C:/KENAR/0p1.dvi
2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x
A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2
1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)
A
A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2
基礎地学I.ppt
I [email protected] http://geotec.sci.hokudai.ac.jp/geotec/ I 800 2940 7/26 8/9 2/3 9 15 10% 6/1 20% 70% 15% 30% 40% 15% R=6400 km θ (S) θ/360 o =S/2πR (1) GPS (Global Positioning System)
untitled
( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656
SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8
NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................
NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................
I 1
I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg
1 23G 2 1 2 3 4 5 6 7 3 a a b c a 4 1 18G 18G 6 6 3 30 34 2 23G 48 23G 1 25 45 5 20 145mm 20 26 0.6 1.000 0.7 1.000mm a b c a 20 b c 24 28 a c d 3 60 70 / a RC 5 15 b 1 3 c 0.5 1 4 6 5 a 5 1 b a b a d
Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e
7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,
Gmech08.dvi
145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2
i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................
2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................
BH BH BH BH Typeset by FoilTEX 2
GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free
2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )
http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n
http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ
Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..
Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.
1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0
A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
ボールねじ
A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49
B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................
平成18年度弁理士試験本試験問題とその傾向
CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3
note01
γ 5 J, M α J, M α = c JM JM J, M c JM e ipr p / M p = 0 M J(J + 1) / Λ p / M J(J + 1) / Λ ~ 1 / m π m π ~ 138 MeV J P,I = 0,1 π 1, π, π 3 ( ) ( π +, π 0, π ) ( ), π 0 = π 3 π ± = m 1 π1 ± iπ ( ) π ±,
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru
1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet
km2 km2 km2 km2 km2 22 4 H20 H20 H21 H20 (H22) (H22) (H22) L=600m L=430m 1 H14.04.12 () 1.6km 2 H.14.05.31 () 3km 3 4 5 H.15.03.18 () 3km H.15.06.20 () 1.1km H.15.06.30 () 800m 6 H.15.07.18
h4_1_et
1 RY RO RM RG RR RW RD LN LM LB LC LD MW MG MB CW SB VR BB EB WR LR MR BR DR PM SM MC CB BO 2 3 RY RO RR RW RD RM RG LN LM LB LC LD MW MG MB 4 CW SB VR BB EB 5 PI PY PP PG PB 6 WR LR MR BR DR 7 SM MC CB
030801調査結果速報版.PDF
15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10
2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g
1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm
m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2
3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
sec13.dvi
13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:
「数列の和としての積分 入門」
7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................
128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds
127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
genron-3
" ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /
2 p T, Q
270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =
cm H.11.3 P.13 2 3-106-
H11.3 H.11.3 P.4-105- cm H.11.3 P.13 2 3-106- 2 H.11.3 P.47 H.11.3 P.27 i vl1 vl2-107- 3 h vl l1 l2 1 2 0 ii H.11.3 P.49 2 iii i 2 vl1 vl2-108- H.11.3 P.50 ii 2 H.11.3 P.52 cm -109- H.11.3 P.44 S S H.11.3
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r
4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)
3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP
1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
Gmech08.dvi
51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r
77
O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d
atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy
1 22 22.1 atomic line spectrum emission line absorption line atom proton neutronnuclei electron Z atomic number A mass number neutral atom ion energy level ground stateexcited state ionized state 22.2
d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r
2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)
1 3 3 3 10 16 24 26 26 41 43 43 43 48 53 61 62 70 () 73 75
001Y219E 1 3 3 3 10 16 24 26 26 41 43 43 43 48 53 61 62 70 () 73 75 90 4 1 3 2 3 3 3 1 2 3 3 4 4 1 2 1 2 90 1983 83 82.6ha 1,800 3 1,036 83 86 1 1-1 1986 2 (1993 ) 3(1997 ) 4(2001 ) 93 97 01 93 97 01 1
