ii

Size: px
Start display at page:

Download "ii"

Transcription

1

2 ii

3 ABS (Anti Brake-lock System) Direct Yaw Control 4 Brush Model FEM(Finite Elements Model) iii

4 Magic Formula (1) (2) (3) Pure Slip Condition iv

5 v

6 Magic Formula Magic Formula Magic Formula vi

7 SAT Combined Slip Neo-FIALA Combined Slip Combined Slip Neo-FIALA Neo-FIALA ( [ η < 1] ) ( [ η < 1] ) ( [ η 1] ) ( [ η 1] ) Neo-FIALA vii

8

9 1 Symbol Description Unit A Contact area m 2 a Coefficient of dependence on velocity of sliding friction coefficient - a 0 a 17 Magic Formula lateral force model parameter - A s Self aligning torque stiffness of a rigid ring model Nm/rad A s f Stability Factor s 2 /m 2 a y Lateral acceleration m/s 2 B Stiffness factor of Magic Formula - C Shape factor of Magic Formula - C q Compliance of asymmetric coefficient of contact patch 1/Nm C tr Lateral shared stiffness of the tread in FIALA model N/m C x Longitudinal shared stiffness of tread N/m C xc Compliance of the relative position of wheel center 1/N C y Lateral shared stiffness of tread N/m D Peak factor of Magic Formula - E Curvature factor of Magic Formula - E Elastic modulus of the beam Pa F Tire force vector - F x Longitudinal force N F x1 Longitudinal force in adhesive zone N f x1 Stress of x direction in adhesive zone N/m 2 F x2 Longitudinal force in sliding zone N f x2 Stress of x direction in sliding zone N/m 2 F y Lateral force N

10 2 Symbol Description Unit F y1 Lateral force in adhesive zone N f y1 stress of y direction in adhesive zone N/m 2 F y2 Lateral force in sliding zone N f y2 stress of y direction in sliding zone N/m 2 F yα Lateral force caused by slip angle N F y f Lateral force of front tire N F yγ Lateral force caused by camber angle (= Camber thrust) N F yr Lateral force of rear tire N F z Vertical load N F z f Vertical load of front tire N F zr Vertical load of rear tire N G Weighting factor of Magic Formula combined slip model - G mz Torsional stiffness of tread base N/rad G xα G ys Weighting factor of longitudinal force of Magic Formula under combined slip condition Weighting factor of lateral force of Magic Formula under combined slip condition - - h Height of wheel center m I Moment of inertia kgm 2 I z Moment of inertia of the beam kgm 2 k Radius of inertia m K e Control gain of driver-steer system rad K x Braking stiffness of a rigid ring model N K y Cornering stiffness of a rigid ring model N/rad k y Equivalent lateral stiffness of side wall N/m K y f Cornering stiffness of front tire N/rad K yr Cornering stiffness of rear tire N/rad l Contact patch center length m

11 3 Symbol Description Unit l f Distance front axle to c.g. m l h l ll l lr Boundary coordinate between the static zone and the sliding zone of contact patch Distance between front left wheel to lower laser sensor of front left wheel Distance between front right wheel to lower laser sensor of front right wheel m m m l r Distance rear axle to c.g. m l s Distance between upper and lower laser sensor m l ul l ur Distance between front left wheel to upper laser sensor of front left wheel Distance between front right wheel to upper laser sensor of front right wheel m m L x Look-ahead distance of driver m m Total mass of vehicle kg M z Self aligning torque (SAT) Nm M z1 Self aligning torque in adhesive zone N/m 2 M zr Residual torque Nm n Sholder exponent in contact pressure and D gsp (x ; n, q) - P max Maximum pressure of contact area Pa q Compliance of front inclination in contact patch - q Heat flex W R Radius of curvature m r Yaw angler velocity rad/s r e Effective free rolling tire radius m r h Boundary coordinate ratio between the adhesive zone and the sliding zone of contact patch - S Slip ratio (Positive : Braking) - s Laplace variable

12 4 Symbol Description Unit S h Horizontal shift of Magic Formula - S H f Horizontal shift of pneumatic trail - S Ht Horizontal shift of residual torque - S Hxα S HyS Horizontal shift of longitudinal force of Magic Formula under combined slip condition Horizontal shift of lateral force of Magic Formula under combined slip condition - - s.m. Static margin - S v Vertical shift of Magic Formula - S VyS Vertical shift of lateral force of Magic Formula under combined slip condition - T Tire surface temperature C t Pneumatic trail m t time s T 0 Tire surface average temperature during the test measuring the tire force parameters C T h Time constant of phase lead as driver-steer system s T k Time constant of phase lag as driver-steer system s T R Road surface temperature C u Longitudinal velocity of vehicle c.g. m/s u 0 Longitudinal constant velocity of vehicle c.g. m/s u δ Additional steer angle using front active steering system rad V Velocity of vehicle c.g. m/s v Lateral velocity of vehicle c.g. m/s V b Velocity of tire belt m/s V c Critical speed m/s V r Velocity of road surface m/s V s Slip velocity vector -

13 5 Symbol Description Unit V sx Slip velocity of x direction m/s V sy Slip velocity of y direction m/s W Heat capacity J/K w Contact patch width m x 1 Longitudinal distance from front contact edge m x 1 Non-dimensional longitudinal distance from front contact edge - x b x coordinate of the point of belt m x r x coordinate of the point of road surface m y 0 Lateral bending stiffness of tread base N/m y 1 Lateral distance of contact patch from rim center m y b y coordinate of the point of belt m y r y coordinate of the point of road surface m α Slip angle of tire rad α e Effective slip angle rad α f Slip angle of front tire rad α f l Slip angle of front left tire rad α f r Slip angle of front right tire rad α r Slip angle of rear tire rad β Slip angle of vehicle c.g. rad δ f Steer angle of front tire rad δ f l Steer angle of front left tire rad δ f r Steer angle of front right tire rad X Y x component of the distance between road surface and belt y component of the distance between road surface and belt m m ϵ Deflection compliance of belt 1/Nm

14 6 Symbol Description Unit η Relative change ratio of contact patch length with change of camber angle - γ Camber angle rad γ e Effective camber angle rad γ f l Camber angle of front left tire rad γ f l Camber angle of front right tire rad λ Thermal conductivity W/m 2 K µ Friction coefficient of tread rubber - µ B Braking force coefficient [ ] = F x /F z - µ d Sliding friction coefficient of tread rubber - µ d0 Sliding friction coefficient of tread rubber at V = 0 - µ s Adhesive friction coefficient of tread rubber - ω rotational angler velocity rad/s ω n Natural frequency rad/s ϕ Non-dimensional slip angle - φ Roll angle of vehicle rad ψ Yaw angle rad τ s Dead time of driver-steer system s θ Direction of friction force rad ξ Compliance of contact patch shift m/n ζ n Damping ratio -

15 7 JASO Z Z (+) Camber Vertical Load F z Angle γ Self Aligning Torque M z Direction of Tire Center Slip Angle α Over Turning Moment M x Longitudinal Force X (+) Direction of Road Surface Wheel Plane Road Plane Tire Rotational Axis Rolling Resistance Moment M y Y Lateral Force F y (+) Fig. 1 Definition of motion of the wheel and the forces and moments acting from the road on the wheel

16

17 ( ) 1888 John Boyd Dunlop 1895 A. & E. Michelin 115

18 10 1 ABS(Anti Brake-lock System) Direct Yaw Control 4

19 Fromm Julien Brush model Fiala FIALA model (17) ( ) FIALA SAT (18) Frank FIALA model (19) FIALA model FIALA model (20) 2.3 (21) 6 (22) (25) (26) (32)

20 12 1 Pacejka Pacejka Stretched-String model (33) (34) SAT Stretched-String model SAT Stretched-String model FIALA model (35) Radt Milliken (36) 1987 Bakker (37) Magic Formula Magic Formula (38) (39), (40) (41) Jagt (42) Magic Formula Magic Formula (43)

21 (17) Experimental data only Using similarity method Through simple physical model Through complex physical model Degree of fit Number of full scale tests Effort Complexity of formulations Insight in tire behavior Number of special experiments [Magic Formula] [FIALA model] [FEM] Empirical Approach more Theoretical Fig. 1.1 Four categories of possible types of approach to develop a tire model Magic Formula (38) Magic Formula 2.4 MF-Tire Magic Formula Full-set Tire Model λ 3 Fiala

22 14 1 (FIALA model (44) ) Segel (Brush model (45) ) Fiala 2.3 FEM ABS(Anti-lock Brake System) MSC/ADAMS 1998 Zegelaar (46) 1999 Maurice (47) 2000 TNO Automotive SWIFT (Short Wavelength Intermediate Frequency Tire) Model Esslingen University Prof. Gipser 1987 (48), (49) 1999 ADAMS FTire (50) 1999 ADAMS RMOD-K (51) Gim Hankook tire model (52) (56) Guo UniTire (57) (59) 2005 Tire Model Performance Test(TMPT) (60) 1. : :

23 : : 3. : ABS : FEM 1.2 (61) 1.3

24 16 1 Fig. 1.2 TNO tire test trailer (61) 1.2 1) 2) 3) Magic Formula 1)

25 Fig. 1.3 Indoor test machine for tire force and moment measurement (MTS Flat-Trac III)

26 18 1 Magic Formula 2) 3) FIALA Model Neo-FIALA Model (3) (5) (6) (12) ( ) ( SAT ) ( ) (13) (16)

27 Magic Formula FIALA Model Fig. 1.4 The outline for the thesis 2 (1), (2)

28 20 1 FIALA model (18), (44), (62) Magic Formula (37), (38), (63), (64) 3 Magic Formula (3) (5) 4 Magic Formula (6) (12) 3 4 Magic Formula CAE 5 (13) (16) ( )

29 (18) Milliken (65) Segel (66) Radt (67) (Bicycle model) ( 2.1 ) V mv ( ) dβ dt + r = 2F y f + 2F yr (2.1) I dr dt = 2l f F y f 2l r F yr (2.2)

30 22 2 2F yr l r α r l y l f β V 2F yf α f δ x Fig. 2.1 Bicycle model in a cornering manoeuvrer F y f = F y f (α f ) (2.3) F yr = F yr (α r ) (2.4) α f, α r α f = δ f ( β + l ) f r V (2.5) ( α r = β l ) rr V (2.6) F y f = K y f α f (2.7) F yr = K yr α r (2.8)

31 (2.5) (2.6) (2.1) (2.2) mv ( ) ( dβ dt + r = 2K f β + l f I dr dt = 2l f K f ( β + l f V r δ ) ( V r δ 2K r ) ( + 2l r K r β l r β l r V r ) V r ) (2.9) (2.10) mv dβ { dt + 2(K f + K r )β + mv + 2 ( ) } l f K f l r K r r = 2K f δ (2.11) V 2 ( ) dr l f K f l r K r β + I dt + 2 ( l 2 f K ) f + lr 2 K r r = 2l f K f δ (2.12) V ( ) (2.11) (2.12) dβ/dt = 0 dr/dt = 0 β r 1 m l f V 2 2l l β = r K r l r 1 m l f K f l r K r l δ (2.13) V 2l 2 K f K 2 r 1 V r = 1 m l f K f l r K r l δ (2.14) V 2l 2 K f K 2 r (= 1/R) 1 R = r V = 2K f K r l 2K f K r l 2 mv 2 (l f K f l r K r ) δ (2.15) δ = 1 [ l mv 2 l ] f K f l r K r R 2K f K r l (2.16)

32 24 2 (2.16) A s f = m 2l 2 l f K f l r K r K f K r (2.17) δ = l R ( 1 + As f V 2) (2.18) a y = V 2 /R (2.18) δ = l R + A s f l a y (2.19) 2.2 δ [rad] l R 0 Understeer A sf l 1 Neutral steer Oversteer a y Fig. 2.2 The steer angle vs. lateral acceleration at constant path curvature 2.2 V c = 1 A s f 0 (62) A s f (2.17) l f K f l r K R (2.10) β

33 I dr dt + 2 ( l 2 f K ) f lr 2 K r r = 2 ( ) l f K f l r K r β (2.20) V l f K f l r K r s.m. = l f K f l r K r l ( K f + K r ) (2.21) ( ) (2.9) (2.10) miv s2 + 2m ( l 2 f K ) ( ) f + lr 2 K r + 2I K f + K r s + 4K f K r l 2 2 ( ) l f K f l r K r miv miv 2 I = 0 (2.22) s 2 + 2Ds + P 2 = 0 (2.23) 2D = 2m ( l 2 f K ) ( ) f + lr 2 K r + 2I K f + K r (2.24) miv P 2 = 4K f K r l 2 2 ( ) l f K f l r K r (2.25) miv 2 I I I = mk 2 (2.26) k l f l r K f K r (2.24) (2.25) 2D = 2 ( ) 1 + k2 K f + K r l f l r mv k 2 l f l r (2.27)

34 26 2 P 2 = 4K f K r l 2 m 2 k 2 V 2 ( 1 m ) l f K f l r K r V 2 2l 2 K f K r (2.28) ω 2 n = P 2 (2.29) 2ζ n ω n = 2D (2.30) ζ n = K f + K r 2 k K f K r l ω n = 2 K f K r l 1 + As f V 2 mk V ( 1 + k 2 ) ( ) ( ) /l f l r + 1 l f l r l f K f l r K r k 2 /l f l r k 2 (2.31) K f + K r 1 + As f V 2 (2.32) ω n ζ n K f, K r V ω n ζ n (2.32) K f K r Radt Handling Curve (67) 2.3 F y f F z f = F yr = a y F zr g (2.33) δ ( α f α r ) = l R (2.34)

35 Fig. 2.3 Handling diagram resulting from normalized tire characteristics.

36 Handling curve 2.2 a y = Vr = V2 R (2.35) 2.3 (2.34) 2.3 Handling curve 2.4 Fig. 2.4 A number of handling curves arising from the pairs of normalized tire characteristics shown left(1:front, 2:rear)

37 Handling Curve (cornering coefficient) (load transfer coefficient) (68) Allen (69) 1.1

38 30 2 (1), (2) 2.2 (1) (2.9) (2.2) (2.7) (2.8) (2.5) (2.6) m v = 2F y f + 2F yr (2.36) Iṙ = 2l f F y f 2l r F yr (2.37) ( ) v u0 ψ + l f r F y f = K y f δ f u δ u 0 ( ) v u0 ψ l r r F yr = K yr u 0 (2.38) (2.39) ẏ = v (2.40) ÿ = a y (2.41) ψ = r (2.42)

39 ( 2.5 ) δ(s) = K e T h s + 1 T k s + 1 e τs {y(s) + L x ψ(s)} (2.43) v u δ δ f ψ L x ψ y r u 0 L x l r l f Fig. 2.5 Driver model Padé e τs 1 τ/2s 1 + τ/2s (2.44) ẋ = Ax + Bu δ (2.45) x = [y, ẏ, ψ, ψ, δ f, δ f ] T (2.46) J = 0 { g1 (y + L x ψ) 2 + g 2 ψ 2 + g 3 (k e δ ψ) 2} dt (2.47) (2.47)

40 32 2 f 1 Σ + - f 2 Gain scheduler f 3 f 4 f 5 δ f δ sw r y u 0 f 6 s µ-estimator filter filter filter filter filter Fig. 2.6 Control signal flow of active front steering control system (2) VSC(Vehicle Stability Control) H (70) Brush model (71) FIALA model (44), (62), (72)

41 FIALA model Fiala ( 2.7 ) Radial Tire Tread Belt Sidewall Z Rim r Y X x 1 Fig. 2.7 Tire structure of FIALA model ( ) x 1 x 1 y 1 x 1 x 1 x 1 y 1 0 x 1 l h

42 34 2 Fig. 2.8 Tire deformation of FIALA model l h < x 1 l α l w 2.9 F y EI z d 4 y dx 4 + k yy = 0 (2.48) x = 0 dy/dx = 0 y 1b = λ 2k y F y e λx 1 (cos λx + sin λx) (2.49) λ = 1 ( ) 1 ky 4 (2.50) 2 EI z

43 Fig. 2.9 Deformation of belt and sidewall during cornering, and their elastic beam approximation. The tire illustrations are in an extremely stretched view for clarity. x 1 - y 1 y 1b y 1b = λ3 l 2 F y 2k y x l ( 1 x ) l (2.51) α 0 x 1 l h y t y t = x 1 tan α (2.52) Y f y1 [ f y1 = C tr (y t y 1b ) = C tr x 1 tan α λ3 l 2 F y x ( 1 1 x )] 1 2k y l l (2.53) Y f y2 1.

44 Y 3. 2 p = 4p max x 1 l ( 1 x 1 l ) (2.54) p max p max = 3F z 2wl (2.55) f y2 µ f y2 = µwp = 4wµp max x 1 l ( 1 x ) 1 l (2.56) l h f y1 = f y2 x 1 [ C tr x 1 tan α λ3 l 2 F y x ( 1 1 x )] 1 x ( 1 = 4wµp max 1 x ) 1 (2.57) 2k y l l l l x 1 l h = l 1 C tr lw tan α 4wµp max + C trλ 3 l 2 2k y (2.58) dx 1 f y1 dx f y2 dx F y lh l F y = f y1 dx 1 + f y2 dx 1 0 l h lh [ = C tr x 1 tan α λ3 l 2 F y x ( 1 2k y l 0 1 x 1 l )] l x ( 1 dx 1 + 4wµp max l h l 1 x 1 l ) dx 1 (2.59) F y α = 0 F y = K y tan α K2 y K tan 2 y 3 α + 3µF z 27µ 2 Fz 2 tan3 α (2.60)

45 K y = df y dα = α=0 wc tr l 2 2 (1 + C ) (2.61) trλ 3 l 3 12k y K y α = 0 F y SATM z M z = lh 0 = C tr lh + o l l h ( x l ) l f y1 dx l h ( x l ) f y2 dx 1 2 ( ( x l ) [ x 1 tan α λ3 l 2 F y x 1 2 2k y l ( x l 2 ) x ( 1 4wµp max l 1 x 1 l 1 x 1 l )] dx 1 ) dx 1 (2.62) F y α = 0 M z = l K y 6 tan α K2 y K tan 2 y 3 K 4 α + tan 3 y α tan 4 α (2.63) 6µF z 18µ 2 Fz 2 162µ 3 Fz 3 (2.60) (2.63) SAT FIALA model SAT (2.60) (2.63) ϕ = K y F z tan α (2.64) F y µf z = ϕ ϕ2 3 + ϕ3 27 M z µf z l = ϕ 6 ϕ2 6 + ϕ3 18 ϕ4 162 (2.65) (2.66) (2.65) (2.66) SAT (2.65) (2.66) ϕ 3 F y /µf z 1 ϕ 3/4 SAT M z /µf z l 27/512

46 38 2 Fig Relationship between normalized F y and normalized α Fig Relationship between normalized M z and normalized α

47 FIALA model (20), (21), (73) (75) 2.12 C x ω Z V Tread Belt Sidewall Rim z 1 h r e 0 l x 1 X Fig Tire model while braking V ω r e V r (= V) V b (= r e ω) V r > V b 1 t x b = V b t (2.67) 1 t x r = V r t (2.68) t x r x b = (V r V b ) t (2.69)

48 40 2 S = V r V b V r (2.70) X 1 x 1 x 1 = (V r V b ) x 1 /V r = S x 1 (2.71) f x1 f x1 = C x S x 1 (2.72) w l p = 4p max x 1 l ( 1 x 1 l ) (2.73) F z F z = 2 3 p maxwl (2.74) p = 6F z wl x 1 l ( 1 x ) 1 l (2.75) µ s p l h f x Adhesive Sliding µ d p µ s p 0 C x Sx 1 l h l x 1 Fig Braking force profile in circumference direction

49 l h ( 2 3 p l h maxµ s 1 l ) h = C x S l h (2.76) l l ( l h = l 1 K ) xs 3µ s F z K x = C xwl 2 2 (2.77) (2.78) K x S = 0 F x l h µ s µ d f x2 f x2 = µ d p (x 1 ) (2.79) F x F x = = lh o lh 0 f x1 dx 1 + l wc x sx 1 dx 1 + l h f x2 dx 1 l l h 6F z l 3 µ dx 1 (l x 1 ) dx 1 (2.80) (2.80) l h 0 ( F x = K x S 1 K ) 2 ( xs Kx S + F z µ d 3µ s F z 3µ s F z µ B = K ( x S 1 K ) 2 ( xs Kx S + µ d F z 3µ s F z 3µ s F z ) 2 ( 3 2K xs 3µ s F z ) 2 ( 3 2K xs 3µ s F z ) ) (2.81) (2.82) l h 0 l h = 0 (2.80) F x = µ B F z (2.83) µ B F x F z S = V b V r V b (2.84)

50 n (18), (23) µ d (2.79) (2.83) V µ d = µ d0 av (2.85) S V (2.85) V = S V l (2.86) l l h µ d = µ d0 as V l l l h (2.87) n p = ( ) n {( ) n ( 2 l p max x 1 l ) n } l 2 2 (2.88) n n = 4 (2.88) p = n + 1 n 2 n F z l n+1 w [( ) n ( l x 1 l ) n ] 2 2 (2.89) l h (2.72) (2.89) n + 1 n 2 n F z l n+1 w [( ) n ( l l h l ) n ] = C x S l h (2.90) 2 2

51 F x1 (2.80) 1 2 F x2 F x2 = l n + 1 l h n = n + 1 n 2 n F z µ d l n+1 2n F z µ d l n+1 [( ) n l 2 ( l 2 ( x 1 l ) n ] 2 ) n (l l h ) 1 n + 1 dx 1 ( ) n ( l h l ) n+1 2 (2.91) n F x F x = C xs wl 2 h 2 + n + 1 ( 2n F z n l µ n+1 d0 as V l ) ( ) n l l l (l l h ) 1 ( ) n+1 1 h 2 n ( l h l ) n+1 2 (2.92) 2.14 Fig Braking force characteristics with vehicle velocity change on wet road

52 X Y C x C y C x = C y = C r e ω V α V r (= V) V b (= r e ω) 2.15 M z V r F x α V b F F y Fig Axis of forces and velocities of tire 2.16 ABD AC A B C AB BC t (x r, y r ) x r = V r t cos α (2.93)

53 y 1 Adhesive B Sliding D A V r α θ C x 1 V b y 0 X f y µ s p µ d psinθ µ d p 0 f x µ s p[=(f x 2 +f y2 ) 1/2 ] C x Sx 1 sinα µ d pcosθ x 1 µ d p 0 C x Sx 1 cosα l h l x 1 Fig Deformation and forces of tire while combined slip condition

54 46 2 y r = V r t sin α (2.94) t (x b, y b ) x b = V b t (2.95) y b = 0 (2.96) X Y X Y X = (V r cos α V b ) t (2.97) Y = V r t sin α (2.98) V r t = x 1 V b t = x 1 (2.70) (2.84) (S > 0) X = S x 1 (2.99) Y = x 1 sin α (2.100) (S < 0) X = S x 1 (2.101) Y = x 1 (1 + S ) tan α (2.102) f x1 = CS x 1 cos α (2.103) f y1 = Cx 1 sin α (2.104) f x1 = CS x 1 (2.105) f y1 = Cx 1 (1 + S ) tan α (2.106)

55 F x1 F y1 f x1 f y1 l h F x1 = lh 0 wcs x 1 cos αdx 1 (2.107) F y1 = lh 0 wcx 1 sin αdx 1 (2.108) F x1 = lh 0 wcs x 1 dx 1 (2.109) F y1 = lh 0 wcx 1 (1 + S ) tan αdx 1 (2.110) SAT M z1 (Z ) f x1 f y1 M z1 = lh 0 wc [ ( x 1 sin α x 1 l ) ( y 0 + x ) ] tan α S x 1 cos α dx 1 (2.111) M z1 = lh 0 wc [ ( x 1 tan α(1 + S ) x 1 l ) ( y 0 + x ) ] tan α S x 1 dx 1 (2.112) y G y y 0 = F y /G y (µ s p) 2 = f 2 x1 + f 2 y1 (2.113) l h α S ( l h = l 1 K ) tan 2 α + S 3µ s F 2 z (2.114) K = Cwl2 2 (2.115)

56 48 2 V V r V b 2.16 ( ) θ S α S tan θ = tan α (0 θ π) (2.116) F x2 F y2 X Y F x2 = F y2 = l l h µ d wp cos θdx 1 (2.117) l l h µ d wp sin θdx 1 (2.118) SAT M z2 BC M z2 = l l h [ ( ) ( x1 l µ d wp l h l l h tan α + y 0 cos θ + x 1 l ) ] sin θ dx 1 (2.119) 2 S α SAT F x = KS (l h /l) 2 cos α + µ d F z (1 l h /l) 2 (1 + 2l h /l) HS (2.120) F y = K (l h /l) 2 sin α + µ d F z (1 l h /l) 2 (1 + 2l h /l) H tan α (2.121) M z = K (l h /l) 2 [ (4l h 3l) sin α 6y 0 S cos α 2S l h sin α ] /6 µ d F z S H [ (1 l h /l) 2 (1 + 3l h /l) l h tan α/2 + y 0 (1 l h /l) 2 (1 + 2l h /l) ] µ d F z H (1 l h /l) 2 (l h /l) 2 l tan α (2.122)

57 F x = KS (l h /l) 2 + F z µ d (1 l h /l) 2 (1 + 2l h /l) HS (2.123) F y = K (1 + S ) (l h /l) 2 tan α + µ d F z (1 l h /l) 2 (1 + 2l h /l) H tan α (2.124) M z = K (l h /l) 2 [ (1 + S ) (4l h 3l) tan α 6y 0 S 2S l h tan α ] /6 µ d F z S H [ (1 l h /l) 2 (1 + 3l h /l) l h tan α/2 + y 0 (1 l h /l) 2 (1 + 2l h /l) ] µ d F z H (1 l h /l) 2 (l h /l) 2 l tan α (2.125) H = ( 1 tan2 α + S l 2 h = l 1 K ) tan 2 α + S 3µ d F 2 z Table 2.1 Values for calculation of Sakai model Symbol Value Unit Symbol Value Unit F z 4,000 N l m K 57,200 N/rad G y 250,000 N/m µ s µ d F y [kn] 3 Slip Angle [deg] Slip Ratio [-] Fig Examples of simulation results (slip ratio vs. lateral force)

58 50 2 F x [kn] 3 2 Slip Angle[deg] Slip Ratio[-] Fig Examples of simulation results (slip ratio vs. longitudinal force)

59 Slip Angle [deg] 1 2 Slip Ratio [-] M z [Nm] Fig Examples of simulation results (slip ratio vs. SAT) F y [kn] 3 2 Slip Angle [deg] F x [kn] Fig Examples of simulation results (longitudinal force vs. lateral force)

60 Slip Angle [deg] F x [kn] M z [Nm] Fig Examples of simulation results (longitudinal force vs. SAT) 2.4 Magic Formula Magic Formula Pacejka 1987 (37) (TNO) MF-Tire (64) ( ) Magic Formula ( SAT) Pure Slip ( ) 2.22 sine

61 Self Aligning Torque Braking Force Slip Angle Slip Ratio Lateral Force Fig Basic form of steady-state tire characteristics y = D sin (Bx) (2.126) y SAT x (α) (S ) x (2.126) 2.22 x (2.126) y = D sin [C arctan (Bx)] (2.127) Magic Formula (2.127) D B C D C x (2.127) [ π ] y = lim y = D sin x 2 C (2.128) C = 2 y = 0 (2.129) C SAT

62 54 2 Φ = (1 E)x + (E/B) arctan(bx) (2.127) x (2.127) y = D sin [C arctan {Bx E (Bx arctan (Bx))}] (2.130) x y y(x) = D sin [C arctan {Bx E (Bx arctan (Bx))}] (2.131) Y(X) = y(x) + S v x = X + S h (2.132) Magic Formula 2.23 y Y D y S v S h x m arctan(bcd) x X Fig A typical tire characteristic indicating the meaning of the coefficients of Eqs. (2.131) and (2.132)

63 B : C : Stiffness Factor BCD Stiffness Shape Factor C 1.30 C 1.65 SAT C 2.40 D : E : S h : Peak Factor Curvature Factor Horizontal Shift S v : Vertical Shift C Delft Tyre 96 SAT M z0 = t F y0 + M zr (2.133) t(α t ) = D r cos [ C t arctan { B t α t E y (B t α t arctan(b t α t )) }] (2.134) M zr = D r cos [arctan(b r α r )] (2.135) [ π ] y = D r cos 2 C t (2.136) α t = α + S Ht α r = α + S H f (2.137) SAT 2.24 (2.134) (2.136) 2.25 SAT SAT

64 56 2 Y y -S h D X, x 2 BC x 0 -y Fig A typical tire SAT characteristics indicating the meaning of the coefficients of Eqs.(2.134) and (2.136) M z F y α -t F y M zr α -S Hf t α -S Ht Fig The images of SAT characteristics. Upper: the product of lateral force and pneumatic trail, Middle: residual torque [Eq.(2.135)], Lower: pneumatic trail

65 Combined Slip Magic Formula Combined Slip( ) 1993 Michelin Bayle (76) Pure Slip cosine Combined Slip G = D cos [C arctan(bx)] (2.138) Combined Slip 2.26 (2.138) Pure Slip α = 0 F x S = 0 F y Pure Slip 1 Combined Slip F x F y Pure Slip F x0 F y0 G xα = F x = F x0 G xα (α, S, F z ) (2.139) cos [C xα arctan {B xα α s E xα (B xα α s arctan (B xα α s ))}] cos [C xα arctan {B xα S Hxα E xα (B xα S Hxα arctan (B xα S Hxα ))}] (2.140) α s = α + S Hxα (2.141)

66 58 2 Fig Dimensional graph of combined slip force characteristics

67 F y = F y0 G ys (α, S, γ, F z ) + S VyS (2.142) G ys = cos [ C ys arctan { B ys S s E ys ( ByS S s arctan ( B ys S s ))}] cos [ C ys arctan { B ys S HyS E ys ( ByS S HyS arctan ( B ys S HyS ))}] (2.143) S s = S S HyS (2.144) SAT M z = t ( ) ( ) ( α t,eq Fy + M zr αr,eq + s Fy, γ ) F x (2.145) t ( ) α t,eq = Dt cos [ C t arctan { ( B t α t,eq E t Bt α t,eq arctan ( ))}] B t α t,eq cos (α) (2.146) ( ) M zr αr,eq = Dr cos [ arctan ( )] B t α r,eq cos (α) (2.147) ( ) 2 Kx α t,eq = arctan tan 2 α t + S 2 sgn(α t ) (2.148) α r,eq = arctan tan 2 α r + K y ( Kx K y ) 2 S 2 sgn(α r ) (2.149)

68

69 61 3 (3) (5) Magic Formula ( ) ( ) ( ) (3), (4) Magic Formula SAT 1)

70 62 3 2) 3.2 (39)(40) ( ) Magic Formula 6 Magic Formula Magic Formula (41) Magic Formula Magic Formula 4 ( α S γ F z ) 4 ( F x F y SATM z [ OTM]M x )

71 (α, γ, F z ) ( ) 2 (F y, M z ) ( ) 6 6 ABS (77)(78) (79)(80)(81)(82) 6 (83)(84) (85) 6 (80) α γ 1. ( (86) ) ( 3.1 )

72 ( 500g ) 2. 6 CCD CCD 20g 100g 6 Fig. 3.1 The outline of measurement system for tire forces, torques and attitude angles CCD 3.2 CCD ( 1/60 )

73 Fig. 3.2 Sample of the picture analyzing the slip angle Fig. 3.3 The principle of the slip angle measurement

74 ( ) 0.2deg 3.1 (inverse tangent) ( 3.4 ) Fig. 3.4 The principle of the camber angle measurement 3.5

75 Fig. 3.5 Measurement system of tire forces, torques and attitude angles ( 3.7 ) /65R15 230kPa 1

76 68 3 Fig. 3.6 Example of relation between vertical load versus slip angle when vehicle running Slip Angle 0 :Light Weight :Middle Weight :Heavy Weight 0 Vertical Load Fig. 3.7 Example of relation between vertical load versus slip angle while vehicle running with dead weight

77 3.4. Magic Formula 69 2,214kg +200kg, +400kg 3.1 Table 3.1 Initial load condition of the experimental vehicle Vehicle + Driver Vehicle + Driver Vehicle + Driver + weight 200kg + weight 400kg Front Left Tire 5.45 kn 5.96 kn 6.42 kn Front Right Tire 5.66 kn 6.15 kn 6.70 kn Rear Left Tire 5.45 kn 5.96 kn 6.51 kn Rear Right Tire 5.15 kn 5.59 kn 6.06 kn kN 3.4 Magic Formula Magic Formula Magic Formula (3.1) (3.9) F y (x) = D sin [C arctan {Bx E (Bx arctan (Bx))}] (3.1) F y (α) = F y (x) + S v (3.2)

78 70 3 : Base : Base+200kg : Base+400kg Fig. 3.8 Test result (slip angle vs. lateral force) : :: Slip Angle(deg) Vertical Load(kN) Fig. 3.9 Test result (slip angle vs. vertical load)

79 3.4. Magic Formula 71 x = α + S h (3.3) C = a 0 (3.4) D = ( ) ( a 1 F 2 z + a 2 F z 1 a15 γ 2) (3.5) BCD = a 3 sin (2 arctan (F z /a 4 ) (1 a 5 γ )) (3.6) E = (a 6 F z + a 7 ) ( 1 (a 16 γ + a 17 ) sgn (α + S h ) ) (3.7) S h = (a 8 F z + a 9 + a 10 γ) F z (3.8) S v = a 11 F 2 z + a 12 F z + ( ) a 13 F 2 z + a 14 F z γ (3.9) α, γ, F z α γ F z F y B, C, D, E, S h, S v (factor) a 0 a 17 (parameter) (38) 1. 2 B, C a 0 a a 0 a (43) Magic Formula

80 72 3 (5) ( Levenberg-Marquardt ) Matlab TM (The Mathworks Inc. ) Coefficient Identification Measured Data MF Coefficients Pure Slip Identification (Newly developed) Pure Slip Parameter Identification MF Pure Slip Parameters Combined Slip Parameter Identification MF Combined Parameters Fig The flow of tire model identification Magic Formula Magic Formula Magic Formula SAT (38) Shape factor C Curvature factor E

81 3.4. Magic Formula Lateral Force(kN) Fz=3(kN) Fz=6(kN) Fz=9(kN) Slip Angle(deg) Fig The identified results without constraint conditions (γ = 0[deg]) 1.0 < C < 1.65 (3.10) ( ) C2 < E < 1 (3.11)

82 Lateral Force(kN) Fz=3(kN) Fz=6(kN) Fz=9(kN) Slip Angle(deg) Fig The identified results with constraint conditions of Eqs. (3.10) and (3.11) (γ = 0[deg]) a 17 = 0 where γ = 0 (3.12) S h = S v = 0 where γ = 0 (3.13) 0[deg] 0[N] 0[deg] 3.13 / µ max 3.14 S h S v S h /γ = 0.1(deg) (3.14)

83 3.4. Magic Formula 75 4 Lateral Force(kN) Fz=3(kN) Fz=6(kN) Fz=9(kN) Slip Angle(deg) Fig The identified results with constraint conditions of Eqs. (3.10), (3.11), (3.12), and (3.13) (γ = 0[deg]) 5 Lateral Force(kN) F z = 7 [kn] γ =-4(deg) γ = 0(deg) γ = 4(deg) Slip Angle(deg) Fig The identified results with constraint conditions of Eqs. (3.10), (3.11), (3.12), and (3.13) (Fz = 7[kN])

84 76 3 S v /γ < 25F z (N deg) (3.15) 0[deg] Peak factor D a 15 > 0 (3.16) (3.10) (3.16) Lateral Force(kN) γ = 0 [deg] Fz=3(kN) Fz=6(kN) Fz=9(kN) Slip Angle(deg) Fig The identified results with all constraint conditions (γ = 0[deg]) µ max 3.17 Magic Formula

85 3.4. Magic Formula 77 6 Lateral Force(kN) F z = 7 [kn] γ =-4(deg) γ = 0(deg) γ = 4(deg) Slip Angle(deg) Fig The identified results with all constraint conditions (F z = 7[kN]) Lateral Force(kN) Measured Data Identified Data Error = Sigma = Slip Angle(deg) Fig The comparison between the measured data and the identified results

86 ( 1.3 ) 3M # Table 3.2 Tire test machine specification Maximum tire size Maximum speed 910mm ±250km/h Maximum vertical force 25,000N Maximum longitudinal force Maximum lateral force Maximum over turning torque Maximum aligning torque Maximum spindle torque Maximum slip angle Inclination angle ±10,000N ±15,000N ±10,000Nm ±2,000Nm ±2,800Nm ±30deg -12deg to +45deg

87 Lateral Force(kN) γ = 0 [deg] Fz=3(kN) Fz=6(kN) Fz=9(kN) Slip Angle(deg) Fig The identified results from the data on the flat belt test machine(γ = 0[deg]) Lateral Force(kN) F z = 7 [kn] γ =-4(deg) γ = 0(deg) γ = 4(deg) Slip Angle(deg) Fig The identified results from the data on the flat belt test machine(f z = 7[kN])

88 µ max µ max kN 7.3kN µ max kN µ max [deg] [deg] 3.15 µ max 10[deg] [deg]

89 [deg] The Camber Angle(deg) Initial weight Initial + 200kg Initial + 400kg Tire Slip Angle(deg) Fig The relationship between the slip angle and the camber angle in this test (5)

90 Multi-Component Force Transducer Laser Displacement Sensors Fig Experimental setup for measuring the tire data (39), (40) 6 ( 3.22 ) α f l = δ f l α f r = δ f r ( β + l ) f r V x ( β + l ) f r V x (3.17) (3.18)

91 γ f l = φ tan l ul l ll l s (3.19) γ f r = φ + tan l ur l lr l s (3.20) Laser displacement Sensor ϕ Vehicle Center Line l ul l ll Fig Measurement method of camber angle /55R16 230kPa 5.77kN [588kgf], 5.47kN [558kgf] 3 3.3

92 84 3 Table 3.3 Initial camber angle conditions Set of lower arm Left[deg] Right[deg] Original arm Long arm Short arm Fig Measured results (slip angle vs. vertical load) -7 7[deg]

93 Fig Measured results (slip angle vs. camber angle) ( 3.26 ) ( ) 3.27 ( )

94 86 3 Fig The identified results of lateral force using the test data in this section Fig The identified results of lateral force using the data on the flat belt test machine

95 Fig Comparison with the identified model data and the test data ( 3.28 ) TIME 3.29

96 88 3 Fig The example of tire input pattern using tire test machine (87)(88) TIME Procedure Isolated Magic Formula 3. Magic Formula 4.

97 Fig The example of definition of TIME test procedure

98

99 91 4 (6) (12) (87) (6), (9) (7), (8), (10) (12) 4.2 (6), (9) 4.1

100 92 4 Fig. 4.1 The example of lateral acceleration and steering angle of the fish hook test ( 4.1 ) 4.2 SUV , 4.5

101 Fig. 4.2 Maximum lateral acceleration of 1st peak on fish hook test Fig. 4.3 Test sequence for measuring lateral force

102 94 4 Fig. 4.4 Test results of different skip angular velocity (slip angle versus tire surface temperature) Fig. 4.5 Test results of different skip angular velocity (slip angle versus lateral force)

103 Magic Formula (7), (8), (10) (12)

104 96 4 W dt dt = q λa(t T R ) (4.1) q = F V s (4.2) F = Fx 2 + Fy 2 (4.3) V s = V 2 2 sx + V sy (4.4) = (V cos α r e ω) 2 + V 2 sin 2 α (4.5) (4.2) α = 0 q = F x (V rω) = F x VS S = 0 q F y Vα (4.1) λ W λ (4.1) κ = λa/w dt dt = q W κ (T T R) (4.6) q = 0 0 (4.6) κ = dt dt 1 (4.7) T T R κ (4.2)

105 (4.6) Angle[deg] κ Heating ( :205/65R15) Slip Surface Tire Temperature Tire Measuring Surface Time[sec] ] Fig. 4.6 Slip angle measuring the parameter κ and W κ[sec 00 5 Time[sec] Fig. 4.7 Measured results of κ [Vertical load:4600n] κ ( ) κ

106 λ (4.6) κ W W (4.1) W = q dt dt + κ (T T R) (4.8) κ q (4.2) (4.5) F x, F y, V sx, V sy dt/dt, T W q 4.6 ( ) ( 1 Wheel Plane ) 4.8 W ( 4.6 ) W 4.8 W κ (4.8) 4.8 W W W W

107 4.4. W[Nm/K] Measured Result at -10deg +10deg Time[sec] Fig. 4.8 Measured results of W [Vertical load:4600n] Magic Formula 0 0 Pure Slip Condition 0 Combined Slip Condition Pure Slip Magic Formula (64) F i0 (p) = D i sin [ C i tan { ( 1 B i p E i Bi p tan 1 (B i p) )}] + S vi (4.9) α + S hx if i = x p = S + S hy if i = y (4.10) Magic Formula D i ( ) K i = B i C i D i (x = 0 ) (4.9) F i0 (p, T) = D i (T) sin [ C i tan 1 { B i (T)p E i ( Bi (T)p tan 1 (B i (T)p) )}] + S vi (4.11) K i (T) = B i (T) C i D i (T) (4.12) D i K i (4.11)

108 100 4 D i D i D i D i D x D y 4.9, D i 1 D i (T) = D i0 {1 + a i (T T 0 )} (4.13) T 0 Base Magic Formula Parameter K i K i 0.01 ±1[deg] K x, K y K y 1[deg] K i 1 K i (T) = K i0 {1 + b i (T T 0 )} (4.14)

109 Force[N] Measured Breaking Identified Resutls Data 20Tire Surface 40 Temperature[oC] Force[N] Fig. 4.9 Measured data and identified results of D x (T) [Vertical load:4600n] Tire Side Measured Identified Results Data[Plus] Data[Minus] 20 Tire Surface 40 Temperature[oC] Fig Measured data and identified results of D y (T) [Vertical load:4600n]

110 102 4 Stifnes[N] Braking Measured 40Tire 45 Surface 50Temperature[oC] 55 Identified Data 60Results65 Force/Tire Angle[N/deg] Tire Side S lip Measured Identified Results Data[+1deg] Data[-1deg] 20Tire Surface 30 40Temperature[oC] Fig Measured data and identified results of K x (T) [Vertical load:4600n] Fig Measured data and identified results of K y (T) [Vertical load:4600n]

111 K y D y 1 K y Combined Slip Magic Formula Combined Slip F x (α, S, F z ) = F x0 (S, F z ) G xα (α, S, F z ) (4.15) F y (α, γ, S, F z ) = F y0 (α, γ, F z ) G ys (α, γ, S, F z ) + S VyS (4.16) (4.11) F x (α, S, F z, T) = F x0 (S, F z, T) G xα (α, S, F z ) (4.17) F y (α, γ, S, F z, T) = F y0 (α, γ, F z, T) G ys (α, γ, S, F z ) + S VyS (4.18) Combined Slip Pure Slip (11) 4.5 MTS ( 1.3 ) 60km/h ( 1.3 ) Magic Formula

112 [m] (62) 4.13 Magic Formula 2sec 8sec Fig Measurement sequence for longitudinal force tire model and comparison between measured data and simulation results

113 Fig Simulation results of slip ratio vs. braking force using traditional model and developed model [Vertical load:4600n] -10 0[%] -10[%] 15[%]

114 106 4 Fig Measured data and simulation results of slip ratio vs. braking force [Vertical load:4600n] Fig Measured data and simulation results of slip ratio vs. tire surface temperature [Vertical load:4600n]

115 Angle[deg] sec sec Slip Time[sec] Fig Measurement sequence for lateral force tire model and comparison between measured data and simulation results sec 4sec Combined Condition Combined Condition / /

116 108 4 Force[N] Side Tire Measured Simulation Data Results Slip -10 Angle[deg] Fig Measured data and simulation results of slip angle vs. lateral force [Vertical load:4600n] Tire Surface oc] Temperature[ Measured 0 Simulation Data Results Slip -10 Angle[deg] Fig Measured data and simulation results of slip angle vs. tire surface temperature [Vertical load:4600n]

117 / Fig Test sequence for validating the development tire model under the combined condition (89)

118 110 4 Fig Measured data and simulation results of tire force and tire surface temperature under the combined condition

119 Magic Formula Magic Formula 4.22 ( ) Fig Steering angle of Fish Hook pattern test

120 112 4 Fig Lateral acceleration on Fish Hook pattern test comparing the different tire surface temperature Fig Simulation resutls of lateral acceleration on Fish Hook pattern test comparing the different tire surface temperature

121 Fig The second peak value of lateral acceleration comparing the test results and simulation results with the effect of tire surface temperature

122 114 4 [m/s 2 ] Magic Formula

123 115 5 (13) (16) Magic Formula (38) FIALA model (44) ( ) Fiala- Fiala 2 n (18)

124 116 5 (27) (30)(31)(32) n (90) Fiala SAT SAT (91)(92) Combined Slip (13)(14) (93) (15)(16) Magic Formula Fiala- (90) (2.73) p(x 1 ) F z (2.75) p(x 1 ) = 6F z wl x 1 l ( 1 x ) 1 l (5.1)

125 n (2.88) n = 4 n = 4 p(x 1 ) F z (27) p(x 1 ) = 5 ( ) F z l 4 l 5 w 2 ( x 1 l ) 4 2 (5.2) n F x1 = lh 0 C x ws x 1 dx 1 (5.3) l F x2 = µ d w p(x 1 )dx 1 (5.4) l h (2.87) p(x 1 ) p(x 1 ) = n + 1 n ( Fz wl D x1 ) gsp ; n, q l (5.5) D gsp (x ; n, q) = (1 2x 1 n ) [ 1 q(2x 1) ] (5.6) D gsp (x ; n, q) 5.1 n q p(x 1 ) l h C x S l h = µ s p(l h ) = µ s n + 1 n ( Fz wl D x1 ) gsp ; n, q l (5.7) p(x 1 ) µ s, µ d0, p(x 1 ), K x

126 118 5 Fig. 5.1 Generalised skewed parabola D gsp (t ; n, q) for description of contact pressure profile in circumference direction Fig. 5.2 Verification of new concept tire model (called Neo-FIALA tire model) comparing measured data (+) and model fitting results (solid line)

127 5.3. SAT µ S 5.3 Fig. 5.3 Analytical results of Neo-FIALA tire model parameters µ s µ d0 µ s µ d K x n q 5.3 SAT FIALA model

128 120 5 Fiala Fiala SAT (18) SAT (30) SAT ( ) SAT (91), (92) Direction of wheel handling α Moving direction of tire Contact patch O Share deformation Fig. 5.4 Contact patch of cornering tire when α (a) F y SAT M z F y = K y tan α = C ywl 2 tan α (5.8) 2 M z = A s tan α = ( Cy wl f ) xwl 2 tan α (5.9) 2

129 5.3. SAT 121 F y 0 Lateral force x 1 F x Longitudinal force 0 Contact patch α Tread base w εlf y 3 M z G mz l (a) Shear deformation of tread rubber (b) Tread base deformation by lateral force F y (c) Tread base rotation by SAT M z Fig. 5.5 Deformation of tread rubber and tread base during cornering at small slip angle α M z 1 SAT 2 SAT f x 2.7 Fiala F y = K y (tan α 1 3 ϵlf y ) (5.10) ( 5.5(b) ) SAT 5.5(c) α e α e = α M z G mz (5.11) α SAT FIALA model C y = C tr (5.12)

130 122 5 FIALA model approach Tread base deflection εlf - y 3 Slip angle α Slip angle correction α = α e - M z G mz (-) α e (-) Shear deformation of tread rubber (Calculation of lateral and longitudinal force profile at contact patch) F y M z Tread base rotation - M z G mz Fig. 5.6 Calculation flow of lateral force and SAT at small slip angle α ϵ = λ3 = (EIz ) k 4 y (5.13) 2k y G mz = k y πh 3 (5.14) α 5.7 V Contact patch (CP) α F x F y Fig. 5.7 The tire forces during cornering 5.2 n p(x 1 ) D gsp (t ; n, q) = (1 2t 1 n ) [ 1 q (2t 1) ] (5.15) p(x 1 ) = n + 1 ( Fz n wl D x1 ) gsp ; n, q l (5.16)

131 5.3. SAT 123 O p(x 1 ) SAT M z q x c /l q = C q M z (5.17) x c l = 1 2 ξm z l 2 (5.18) 2.3 FIALA model SAT l h F y lh F y (α) = w 0 f sy (α, l h ) = µ s p (l h ) (5.19) l f sy (α, x 1 )dx 1 + µ d w p(x 1 )dx 1 (5.20) l h 1 2 SAT M z lh M z (α) = w 0 + CP l f sy (α, x 1 ) (x 1 x c )dx 1 + µ d w p(x 1 )(x 1 x c )dx 1 l h f x (α, y 1 ) (y 1 y c )dx 1 y 1 (5.21) 1 2 SAT 3 SAT SAT α e = α M z G mz (5.22) q = C q M z (5.23) x c l = 1 2 ξm z l 2 (5.24)

132 r h = l h /l 2K y r h [ tan αe ϵlf y (1 r h ) ] = n + 1 n µ s F z D gsp (r h ; n, q) (5.25) 3. F y F y (α) = 2K y rh 4. SAT M z 0 [ t tan αe ϵlf y x 1 (1 x 1 ) ] dx 1 + n n µ df z D gsp (x 1 ; n, q)dx 1 r h (5.26) rh [ M z (α) = 12A s x1 tan α e ϵlf y x 1 (1 x 1 ) ] ( x 1 x ) c dx 1 0 l + n ( n µ df z l D gsp (x 1 ; n, q) x 1 x ) c dx 1 r h l +A x r h tan α e (5.27) A x = f x wl 2 /2 (5.28) Neo-FIALA SAT F y SAT M z F y µ s µ d M z M z 5.2 Combined Slip

133 5.3. SAT 125 Tread base deflection εlf - y 3 Slip angle α Slip angle correction α = α e - M z G mz (-) α e Shear deformation of tread rubber (Calculation of lateral and longitudinal force profile at contact patch) F y M z Change of contact patch pressure p(x 1 ) Tread base rotation - M z G mz Fig. 5.8 Calculation flow of lateral force F y and SAT M z

134 (a1) Tire A: Fy Fy(a) (kn) 4 2 Fya (Adhesive) Fys (Sliding) Fya +Fys a (deg) Mz(a) (kn m) 0.1 (a2) Tire A: Mz Mzy (Side force torque) Mzx (Longitudinal force Mzy +Mzx torque) a (deg) (a3) Tire A: p(x1) 400 (kpa) a = 0 a = 2 a = 6 a = x1 (cm) Fig. 5.9 Identified results of lateral force F y, SAT M z and circumferential contact pressure profile for Tire A

135 5.3. SAT (b1) Tire B: Fy Fy(a) (kn) 4 2 Fya (Adhesive) Fys (Sliding) Fya +Fys a (deg) Mz(a) (kn m) 0.1 (B2) Tire B: Mz Mzy (Side force torque) Mzx (Longitudinal force Mzy +Mzx torque) a (deg) (b3) Tire B: p(x1) 400 (kpa) a = 0 a = 2 a = 6 a = x1 (cm) Fig Identified results of lateral force F y, SAT M z and circumferential contact pressure profile for Tire B

136 (c1) Tire C: Fy Fy(a) (kn) 4 2 Fya (Adhesive) Fys (Sliding) Fya +Fys a (deg) Mz(a) (kn m) 0.1 (c2) Tire C: Mz Mzy (Side force torque) Mzx (Longitudinal force Mzy +Mzx torque) a (deg) (c3) Tire C: p(x1) 400 (kpa) a = 0 a = 2 a = 6 a = x1 (cm) Fig Identified results of lateral force F y, SAT M z and circumferential contact pressure profile for Tire C

137 5.4. Combined Slip Neo-FIALA Combined Slip Neo-FIALA Combined Slip (13), (14) 1. Pure Slip Combined Slip 2. Combined Slip Pure Slip SAT M z Combined Slip F x Combined Slip 1. n D gsp ( x 1 ; n, q) D gsp ( x 1 ; n, q) = (1 2 x 1 1 n ) [ 1 q (2 x 1 1) ] (5.29) 2. F x ( q x c ) x c l q = C q F x (5.30) = C xcf x (5.31)

138 α M z ( α e ) α e = α + M z G mz (5.32) 4. r h = l h /l [r h < 0 r h = 0 ] [ K x r h S 2 + { tan α e ϵlf y (1 (1 + S ) r h ) } ] 2 1/2 n + 1 = µ s F z D gsp (r h ; n, q) (5.33) n 5. θ ( θ = tan 1 tan α ) S (5.34) 6. µ d µ d (S, α, V) = µ d0 α v V { 1 + (S 2 1) cos 2 α } 1/2 7. F x (S, α, V) 1 r h (5.35) F x (S, α, V) = K x r 2 h S n n µ d(s, α, V)F z cos θ D gsp ( x 1 ; n, q)d x 1 (5.36) r h 8. F y (S, α, V) rh [ F y (S, α, V) = 2K y x1 tan α e ϵlf y (1 + S ) x 1 {1 (1 + S ) x 1 } ] d x n + 1 n µ d(s, α, V)F z sin θ 9. SAT M z (S, α, V) 1 r h D gsp ( x 1 ; n, q)d x 1 (5.37) rh [ M z (S, α, V) = 12A s x1 tan α e ϵlf y (1 + S ) x 1 {1 (1 + S ) x 1 } ] d x n + 1 ( n µ d(s, α, V)F z l sin θ D gsp ( x 1 ; n, q) r [ h +r h tan α e 4A s S (r h ) 2 n + 1 n µ d(s, α, V)F z l cos θ x 1 x c l 1 ) d x 1 r h D gsp ( x 1 ; n, q) 1 x 1 1 r h d x 1 ] (5.38)

139 ݽ µèùö ÓÖÒ Ö Ò Ú ËÐ Ò 5.4. Combined Slip Neo-FIALA 131 Û ÓÒØ ØÈ Ø Ë Ö ÓÖÑ Ø ÓÒ Ð Ð ÐØ Ø ÓÒܽ ݽ µ ÓÑ Ò ËÐ Ô ÓÒØ ØÈ Ø Ú ËÐ Ò Û Ë Ö ÓÖÑ Ø ÓÒ Ü½ м Ð ÐØ Ø ÓÒ Ý Ë Ö ØÖ ËØ Ø Ö Ø ÓÒ ÙÖÚ ËÐ Ò Ö Ø ÓÒ Ä Ø Ö Ð ÓÖ ¼ Ú Ð¼ Ð ËÐ Ò Ð Ü½ Fig Deformations of tread rubber and tread base during cornering at small angle α ϵ (a), during cornering and breaking simultaneously (b) and the lateral force profile

140 r h = l h /l [r h < 0 r h = 0 ] [ K x r h S 2 + { (1 S ) tan α e ϵlf y (1 r h ) } ] 2 1/2 n + 1 = µ s F z D gsp (r h ; n, q) (5.33 ) n 5. θ ( ) θ = tan 1 (1 S ) tan α S (5.34 ) 7. F x (S, α, V) F x (S, α, V) = K x r 2 h S + n n µ d(s, α, V)F z cos θ D gsp ( x 1 ; n, q)d x 1 (5.36 ) r h 8. F y (S, α, V) rh [ F y (S, α, V) = 2K y (1 S ) x1 tan α e ϵlf y t (1 x 1 ) ] d x n + 1 n µ d(s, α, V)F z sin θ 9. SAT M z (S, α, V) 1 rh [ M z (S, α, V) = 12A s (1 S ) tan αe ϵlf y x 1 (1 x 1 ) ] ( 0 n + 1 n µ d(s, α, V)F z l sin θ [ +r h tan α e 4A s S r 2 h n + 1 n 1 r h D gsp ( x 1 t; n, q)d x 1 (5.37 ) x 1 x ) c d x 1 l ( D gsp ( x 1 ; n, q) x 1 x c r h l µ d(s, α, V)F z l cos θ 1 ) d x 1 r h D gsp ( x 1 ; n, q) 1 x 1 1 r h d x 1 ] (5.38 ) F x F y SAT M z

141 5.4. Combined Slip Neo-FIALA 133 Õ Ü Ð ÓÒØ ØÔ Ø ÖÓÒع ÒÐ Ò Ø ÓÒÓ ÓÒØ Ø ÔÖ ÙÖ Ò Û Ö ¹ ØÓ ËÐ ÔÖ Ø Ë Î ÐÓ ØÝÎ ËÐ Ô Ò Ð ÓÖÖ Ø ÓÒ ÑÞ ÅÞ Ë Ö ÓÖÑ Ø ÓÒÓ ØÖ ÖÙ Ö Ç Ü ËÐ Ô Ò Ð ÐÙÐ Ø ÓÒÓ Ð Ø Ö Ð Ò ÐÓÒ ØÙ Ò Ð ÁÆÈÍÌ Ë Û ÐÐÖÓØ Ø ÓÒ ÐØ Ø ÓÒ ÅÞ Ð Ý ÓÖ ØÖ ÙØ ÓÒ Ò ÓÒØ ØÔ Ø ÑÞ Ä Ø Ö Ð ÓÖ Ý ÄÓÒ ØÙ Ò Ð ÓÖ Ü ÇÍÌÈÍÌ Ë Ð ¹ Ð Ò Ò ØÓÖÕÙ ÅÞ Fig Calculation of longitudinal force F x, lateral force F y and self-aligning torque M z under combined slip condition using Neo-FIALA model

142 Combined Slip Neo-FIALA Magic Formula Combined Slip SUV Pure Slip Combined Slip Combined Slip Pure Slip Neo-FIALA Magic Formula Pure Slip tire: 235/50R18 velocity: 80 km/h Longitudinal Force [N] Measured Fz = 2.9, 5.0, 7.1 kn 6000 Magic Formula Neo FIALA Slip Ratio [ ] Fig Results of slip ratio vs. longitudinal force under pure slip condition Neo-FIALA Magic Formula

143 5.4. Combined Slip Neo-FIALA tire: 235/50R18 velocity: 80 km/h 4000 Lateral Force [N] Measured Fz = 2.9, 5.0, 7.1 kn 6000 Magic Formula Neo FIALA Slip Angle [deg] Fig Results of slip angle vs. lateral force under pure slip condition ( ) 0.03 Neo-FIALA 2 Magic Formula Neo-FIALA n 5.16 SAT Magic Formula 15 SAT Neo-FIALA (2.62) (5.27) SAT 0

144 tire: 235/50R18 velocity: 80 km/h Self Aligning Torque [Nm] Measured Fz = 2.9, 5.0, 7.1 kn 150 Magic Formula Neo FIALA Slip Angle [deg] Fig Results of slip angle vs. self-aligning torque under pure slip condition SAT 0 SAT 5.4 Combined Slip Neo- FIALA Pure Slip Combined Slip Magic Formula Combined Model Pure Slip (Pure Slip Parameters) Combined Slip Combined Slip Parameters Combined Slip Magic Formula Tire Model Combined Slip Combined Slip

145 5.4. Combined Slip Neo-FIALA 137 Table 5.4 The structural parameters of Neo-FIALA tire model calculated by measured data under pure slip condition F z = F z = F z = 2.9[kN] 5.0[kN] 7.1[kN] K x (= K y )[kn] A s [knm/rad] µ s µ d [S = 0.0] µ d [S = 0.5] µ d [S = 1.0] n C q C xc [ C y kn/m 3 ] ϵ[1/knm] G mz [knm/rad] [ k y kn/m 2 ] [ EI z knm 2 ]

146 138 5 Combined Slip Combined Slip Magic Formula Pure Slip Neo-FIALA SAT Lateral Force [N] tire: 235/50R18 load: 2.9 kn slip angle: 2 deg velocity: 80 km/h Measured Magic Formula Neo FIALA Longitudinal Force [N] Fig Results of longitudinal force vs. lateral force under combined slip condition Neo-FIALA Magic Formula Neo-FIALA Pure Slip Combined Slip

147 5.4. Combined Slip Neo-FIALA tire: 235/50R18 load: 5.0 kn slip angle: 2 deg velocity: 80 km/h Measured Magic Formula Neo FIALA Lateral Force [N] Longitudinal Force [N] Fig Results of longitudinal force vs. lateral force under combined slip condition Lateral Force [N] tire: 235/50R18 load: 7.1 kn slip angle: 2 deg velocity: 80 km/h Measured Magic Formula Neo FIALA Longitudinal Force [N] Fig Results of longitudinal force vs. lateral force under combined slip condition

148 140 5 Self Aligning Torque [Nm] tire: 235/50R18 load: 2.9 kn slip angle: 2 deg velocity: 80 km/h Measured Magic Formula Neo FIALA Longitudinal Force [N] Fig Results of self-aligning torque vs. lateral force under combined slip condition Self Aligning Torque [Nm] tire: 235/50R18 load: 5.0 kn slip angle: 2 deg velocity: 80 km/h Measured Magic Formula Neo FIALA Longitudinal Force [N] Fig Results of self-aligning torque vs. lateral force under combined slip condition

149 5.4. Combined Slip Neo-FIALA 141 Self Aligning Torque [Nm] tire: 235/50R18 load: 7.1 kn slip angle: 2 deg velocity: 80 km/h Measured Magic Formula Neo FIALA Longitudinal Force [N] Fig Results of self-aligning torque vs. lateral force under combined slip condition

150 Neo-FIALA ( ) Neo-FIALA (15), (16) 5.23 Fz=2[kN], γ=0[deg] Fz=4[kN], γ=0[deg] Fz=8[kN], γ=0[deg] Fz=2[kN], γ=3[deg] Fz=4[kN], γ=3[deg] Fz=8[kN], γ=3[deg] Fig The shape of contact area and contact pressure without camber angle (upper) and with camber angle (lower), Tire size: 195/65R15 91H, Inflation pressure: 200kPa

151 5.5. Neo-FIALA n ( 5.24 ) 5. ( 5.25 ) 6. ( 5.26 ) 7. SAT γ γ e 2. η γ e = γ + ηf yγ G my (5.39) η = w l tan β = 2hw l 2 sin γ e (5.40)

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l A study on the simulation of the motion of personal full-submerged hydrofoil craft by Yutaka Terao, Member Summary A new energy utilization project developed by Tokai University was started in 1991. It

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto Propoal of Control Method for Electric ehicle with In-Wheel Motor Maataka Yohimura (Yokohama National Univerity) Hirohi Fujimoto (The Univerity of Tokyo) Abtract The anti-lip control or the lip ratio control

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

( ) 2017 2 23 : 1998 1 23 ii All Rights Reserved (c) Yoichi OKABE 1998-present. ( ) ( ) Web iii iv ( ) (G) 1998 1 23 : 1998 12 30 : TeX 2007 1 27 : 2011 9 26 : 2012 4 15 : 2012 5 6 : 2015 4 25 : v 1 1

More information

untitled

untitled 2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25

More information

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/050043 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 1 38 2 15 2 1 2 2 1 2 2 1977 2007 2015 10 ii F P = mα g =

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Shigeru Kitamura, Member Masaaki Sakuma Genya Aoki, Member

More information

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo IIC--7 Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon) Abstract Precision

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

Journal of Textile Engineering, Vol.53, No.5, pp

Journal of Textile Engineering, Vol.53, No.5, pp ORIGINAL PAPER Journal of Textile Engineering (2007), Vol.53, No.5, 203-210 2007 The Textile Machinery Society of Japan Analyzing the Path and the Tension of a Yarn under a False-twist Process Using a

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Chikara MINAMISAWA, Nozomu AOKI (Department of Mechanical

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- Simulation of Disturbance Compensation Control of Dual Manipulator for an Inverted Pendulum Robot Using The Extended State Observer Luis Canete Kenta Nagano, Takuma Sato, Luis Canete,Takayuki

More information

MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh

MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh MD-17-071,RM-17-054,VT-17-008 Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Toshiki Niinomi, Hiroshi Fujimoto, Yasumasa Watanabe (The

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会 1. 1(1) 1(2)[1] 1992 [2] 1992 [3] 100 100 比率 (%) 80 60 40 変形腐食亀裂 相対損傷数 80 60 40 変形腐食亀裂 20 20 0 0 5 10 15 20 25 船齢 ( 年 ) 0 0 5 10 15 20 25 船齢 ( 年 ) (1) Ratio of Each Damage (2) Number of Damage Fig.1 Relation

More information

.I.v e pmd

.I.v e pmd Structural Design for Curved Panels by Laminated Composite Materials (Identification of Lamination Parameters Using Modal Testing Method ) Tetsuya NARISAWA, Shohei IWATA Abstract - Using a modal testing

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

untitled

untitled - 37 - - 3 - (a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 - 1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 - FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collapse and LBB behavior of statically indeterminate piping

More information

LM35 高精度・摂氏直読温度センサIC

LM35 高精度・摂氏直読温度センサIC Precision Centigrade Temperature Sensors Literature Number: JAJSB56 IC A IC D IC IC ( ) IC ( K) 1/4 55 150 3/4 60 A 0.1 55 150 C 40 110 ( 10 ) TO-46 C CA D TO-92 C IC CA IC 19831026 24120 11800 ds005516

More information

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6 JSPE-54-04 Factor Analysis of Relationhsip between One's Visual Estimation and Three Dimensional Surface Roughness Properties on Belt Sanded Surface Motoyoshi HASEGAWA and Masatoshi SHIRAYAMA This paper

More information

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1 1.3 (heat transfer with phase change) (phase

More information

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Fig. 1. Schematic drawing of testing system. 71 ( 1 ) 1850 UDC 669.162.283 : 669.162.263.24/. 25 Testing Method of High Temperature Properties of Blast Furnace Burdens Yojiro YAMAOKA, Hirohisa HOTTA, and Shuji KAJIKAWA Synopsis : Regarding the reduction under

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

17_19

17_19 19 横傾斜状態で航行する船の流体力微係数と操縦性 * 正会員 安 川宏紀 正会員 平 田法隆 * Maneuverability and Hydrodynamic Derivatives of Ships Traveling in Heeled Condition by Hironori Yasukawa, Member Noritaka Hirata, Member Summary Oblique

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t Review of Seatbelt Anchorage and Dimensions of Test Bench Seat Cushion JASIC Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test

More information

1..FEM FEM 3. 4.

1..FEM FEM 3. 4. 008 stress behavior at the joint of stringer to cross beam of the steel railway bridge 1115117 1..FEM FEM 3. 4. ABSTRACT 1. BackgroundPurpose The occurrence of fatigue crack is reported in the joint of

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

CM1-GTX

CM1-GTX CM1-GTX000-2002 R R i R ii 1-1 1-2 1-3 Process Variables Process Variables Pressure Output Analog Output Sensor Temp. Lower Range Value (0%) Upper Range Value (100%) Pressure Pressure Chart Pressure

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

untitled

untitled 1.0 1. Display Format 8*2 Character 2. Power Supply 3.3V 3. Overall Module Size 30.0mm(W) x 19.5mm(H) x max 5.5mm(D) 4. Viewing Aera(W*H) 27.0mm(W) x 10.5mm(H) 5. Dot Size (W*H) 0.45mm(W) x 0.50mm(H) 6.

More information

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization) in the annealed state of iron-cobalt alloys has been

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Research Laboratory Osamu HIROSE Maya OZAKI This paper

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

COE

COE COE COOL05 MD @ @ @ @ n ν x, y 2 2 International Workshop on Beam Cooling and Related Topics ( COOL05) General Topics Overview. S-LSR Report from Lab Report from Lab Electron Cooling Muon Cooling

More information

r z m ε r ε θ z rθ

r z m ε r ε θ z rθ Rolling Characteristics in Three-roll-type Ring Rolling Toshifusa Nakamizo, Morihiko Nakasaki Synopsis: Hot ring rolling is a useful process for producing large seamless rings such as bearing races for

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

S-6.indd

S-6.indd Structural Health Monitoring with Fiber Optic Deformation Sensor ( SOFO ) SOFO SOFO ( SOFO V ) ( SOFO Dynamic ) 2 SOFO The fiber optic deformation sensor, SOFO, has excellent characteristics such as ease

More information

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric IIC-1-19 Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric Vehicle Toru Suzuki, Hiroshi Fujimoto (Yokohama National

More information

main.dvi

main.dvi A 1/4 1 1/ 1/1 1 9 6 (Vergence) (Convergence) (Divergence) ( ) ( ) 97 1) S. Fukushima, M. Takahashi, and H. Yoshikawa: A STUDY ON VR-BASED MUTUAL ADAPTIVE CAI SYSTEM FOR NUCLEAR POWER PLANT, Proc. of FIFTH

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

paper.dvi

paper.dvi 23 Study on character extraction from a picture using a gradient-based feature 1120227 2012 3 1 Google Street View Google Street View SIFT 3 SIFT 3 y -80 80-50 30 SIFT i Abstract Study on character extraction

More information

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system Study of Health Monitoring of Vehicle Structure by Using Feature Extraction based on Discrete Wavelet Transform Akihisa TABATA *4, Yoshio AOKI, Kazutaka ANDO and Masataka KATO Department of Precision Machinery

More information

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 4 Simultaneous reduction-sulfurization and direct sulfurization of iron

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ 51 206 51 63 2007 GIS 51 1 60 52 2 60 1 52 3 61 2 52 61 3 58 61 4 58 Summary 63 60 20022005 2004 40km 7,10025 2002 2005 19 3 19 GIS 2005GIS 2006 2002 2004 GIS 52 2062007 1 2004 GIS Fig.1 GIS ESRIArcView

More information

013858,繊維学会誌ファイバー1月/報文-02-古金谷

013858,繊維学会誌ファイバー1月/報文-02-古金谷 Development of Non-Contact Measuring Method for Final Twist Number of Double Ply Staple Yarn Keizo Koganeya 1, Youichi Yukishita 1, Hirotaka Fujisaki 1, Yasunori Jintoku 2, Hironori Okuno 2, and Motoharu

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt 1 http://www.tytlabs.co.jp/office/library/review/rev371j.html 2 -First Order Analysis- 3 4 CAE TOYOTA s CAR LISTS (66 cars) 5 6-10 years ago - CAE 1,2,3, 7 -CAE - -Now and Future - 8 /CAE /CAE /CAE CAE

More information

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space Characteristics of Hydrostatic Bearing/Seal Parts of Hydraulic Pumps and Motors for Water Hydraulic Systems (2nd Report, Theory) Xiongying WANG, Atsushi YAMAGUCHI In this paper, the characteristics of

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4)

6) , 3) L60m h=4m 4m φ19 SS400 σ y = kn/mm 2 E = 205.8kN/mm 2 Table1 4) 7 Fig.1 5 7) S S 2 5 (Fig.2 ) ( No.1, No.2, No.3, No.4) Damages and Earthquake Resistant Performance of Steel Frame Structures with Self Strain Stress (Faculty of Architecture and Structural Engineering) Yutaka NIHO, Masaru TERAOKA (Professor Emeritus of KNCT)

More information

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and Magnetic Behavior of a-fe2o3, I. Origin of Weak Ferromagnetism and Magnetic Characteristics Masako IWATA (The Research Institute for Iron, Steel and Other Metals, Tohoku University, Katahiracho, Sendai)

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63> Asymmetry of Seismic Displacement Response of Highway Bridge Supported by Spread Foundation Takeshi SHIMABUKURO* Rei FUJITA** and Norihiko YAMASHITA*** The objective of this paper is to discuss the causes

More information

0801391,繊維学会ファイバ12月号/報文-01-西川

0801391,繊維学会ファイバ12月号/報文-01-西川 Pattern Making Method and Evaluation by Dots of Monochrome Shigekazu Nishikawa 1,MarikoYoshizumi 1,andHajime Miyake 2 1 Miyagi University of Education, 149, Aramaki-aza-Aoba, Aoba-ku, Sendai-shi, Miyagi

More information

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li 2004.3.28 物理学会シンポジウム 磁気プラズマセイル の可能性と 深宇宙探査への挑戦 宇宙航空研究開発機構 船木一幸 Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

xEffect_SG_MV_Part2_E_xEffect_SG_MV_E

xEffect_SG_MV_Part2_E_xEffect_SG_MV_E Miniature Circuit Breakers FAZ-NA, FAZ-RT, FAZ-DU SG56912 FAZ-NA/-RT/-DU According to UL 489, CSA C22.2 No. 5 and also IEC 60947-2 standard For Applications, wich are permitted for UL 1077 or CSA C22.2

More information

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

Study of the Vortex of Naruto through multilevel remote sensing. Abstract Hydrodynamic characteristics of the Vortex of Naruto were investigated b Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated based on the remotely sensed data. Small scale vortices

More information

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp) Precision CMOS Dual Operational Amplifier Literature Number: JAJS760 CMOS & CMOS LMC6062 CMOS 19911126 33020 23900 11800 ds011297 Converted to nat2000 DTD Edited for 2001 Databook SGMLFIX:PR1.doc Fixed

More information

FLA Brochure.indd

FLA Brochure.indd Ultra-Flat Brushless DC Actuators FLA Series Ultra-Flat Actuators Integrate a High-Performance Speed Reducer and a Brushless DC Motor The new ultra-flat, ultra-light brushless actuators combine our high-precision/high-performance

More information

mm mm PC PC Epson Endeavor NT mm288 mm 30 mm 3 I II4 1FQR 5 mm II Tab. 1 Characteristics of participants. 2 Fig. 2 Adj

mm mm PC PC Epson Endeavor NT mm288 mm 30 mm 3 I II4 1FQR 5 mm II Tab. 1 Characteristics of participants. 2 Fig. 2 Adj ContributionOffice Chair Design for Notebook PC Work, by Hiroyuki ISHIKURA & Nobutoshi YAMAZAKI. Desk sharing in offices has become recently a trend due to the wide spread use of notebook computers. However,

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

LM3886

LM3886 Overture 68W ( ) 0.1 (THD N) 20Hz 20kHz 4 68W 8 38W SPiKe TM (Self Peak Instantaneous Temperature ( Ke)) SOA (Safe Operating Area) SPiKe 2.0 V ( ) 92dB (min) SN 0.03 THD N IMD (SMTPE) 0.004 V CC 28V 4

More information

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Member (Okinawa Electric Power Co.,Inc.) Toshimitsu Ohshiro,

More information