現代物理化学 1-1(4)16.ppt
|
|
|
- そうすけ はやしもと
- 9 years ago
- Views:
Transcription
1 (pdf)
2 pdf pdf Duet a.
3 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W Q, d Q Q, d Q W, d W W, d W ΔUΔU 1-1-3
4 1-1-4 PV d 'W = P e dv ( d 'W = P e dv ) dx P (as) A P e 2.2(P > P e ) d W d 'W = F e dx = (AP e )dx = P e (Adx) = P e dv P e dv = Adx PVPdV P 1,, TP 2,, T P > P e = 0 W = d'w = P e dv = 0 P > P e = W = d'w = P e P P e dv = P e dv = P e ( ) = P e ΔV W r = d'w r = P e dv = P dv r : reversible,
5 nrt W r = d'w r = P e dv = P dv = V dv (P = nrt / V ) T nrt W r = d'w r = P e dv = P dv = V dv = nrt ln P e ~ V P + a n 2 V V nb ( ) = nrt P = nrt V nb a n 2 V W r = P e dv = P dv = nrt / (V nb) a(n / V ) 2 dv = nrt ln nb nb + 1 an d W P e [N m ] dv [m ] P e dv γ [N m ] da [m ] γ da f [N] dl [m] fdl Δφ [V] dq [C] Δφ dq H [A m ] dm [Wb m] HdM
6 -2-1 µ (T, P 0 ) < µ l (T, P 0 ) l [G m (T, P0 ) < G m (T, P 0 )] P V µ (T, P) = µ l (T, P) [G m (T, P) = l Gm (T, P)] P V 4-a. G m (T, P) = l Gm (T, P) T, V da=(µ µ l )dn < 0 da = 0 T, PdG=(µ µ l )dn < 0 dg = 0 P e = P ± dpt e = T ± dt T 2-2 (a) (b) P e < P (c) P e = P dp 1
7 2-3 (P a, V a )(P b, V b )(P a, V a ) ΔU = µ (T, P 0 ) < µ l (T, P 0 ) l [G m (T, P0 ) < G m (T, P 0 )] P V µ (T, P) = µ l (T, P) [G m (T, P) = l Gm (T, P)] P V 4-a. G m (T, P) = l Gm (T, P) W 1 = 0, Q 1 = ΔU v Δ P e = P (Δ = Δ < 0) W 2 = P e Δ > 0, Q 2 = ΔH v < 0 ΔU = Q + W = 0 Q = W = W 1 + W 2 Q [= (Q 1 + Q 2 )] Q = W 1 + W 2 = P e Δ = P e Δ > 0 P e = P W 1 = PΔ > 0, Q 1 = ΔH v > 0 P e = P (Δ = Δ < 0) W 2 = PΔ > 0, Q 2 = ΔH v < 0 ΔU = Q + W = 0 Q = W = W 1 + W 2 Q [= (Q 1 + Q 2 )] Q = W 1 + W 2 = PΔ PΔ = 0 2
8 T, V ldn l > 0dn () n = n l + n, dn = dn l + dn = 0, dn l = dn = dn(l ) > α α β β da = µ i dni + µ i dni +, 0α µ i (T, P) = 0α Gi,m (T, P) α α Gm (T, P) = Gm da = G l A ( m G m )dn(l ) = (Δ l Gm )dn(l ) = n(l ) dn(l ) T,V da < 0, G m G m l ( ) l < 0 G m (T, P0 ) < G m (T, P 0 ) 4-b. A, G VP T PG m G m dg m = G m P dp = V m dp T V l ( m >> V m > 0) da = G l ( m G m )dn(l ) = (Δ l Gm )dn(l ) = P (G l G m < G m ) l m G m AA G m (T, P) = Gm l (T, P) PT 3
9 2-7 G m = H m TS m H m S m = H l l ( m TS m ) ( H m TS m ) ( ) T S l ( m S m ) = Δ l Hm T Δ l Sm Δ l Gm = G m G m l = H m H m l Δ l Hm > 0, Δ l Sm > 0, but Δ l Gm < 0 T Δ l Sm > Δ l Hm Δ l Hm Δ l Sm Δ l Gm = Δ l Hm T Δ l Sm = 0 [i.e., G m (T, P) = Gm l (T, P)] Δ l Sm = Q r / T t = Δ l Hm / T t 2-8 P, T G dg = 0 µ (T, P 0 ) < µ l (T, P 0 ) l [G m (T, P0 ) < G m (T, P 0 )] P V µ (T, P) = µ l (T, P) [G m (T, P) = l Gm (T, P)] P V 4-a. G m (T, P) = l Gm (T, P) dg = (µ µ l )dn(l ) = (G m l Gm)dn(l ) = 0 G m (T, P) = l Gm (T, P) G = A+PV 4-b. A, G 4
10 G m G m = U m + PV m TS m = H m TS m = A m + PV m dg m = du m + d(pv m ) d(ts m ) = (TdS m PdV m ) + (PdV m + V m dp) (TdS m + S m dt ) = S m dt + V m dp = G m / T ( ) P = S m S l m >> S m ( G m / P) T = V m V l m >> V m G m / T ( ) P dt + ( G m / P) T dp ( > 0) > 0 ( ) 2-9 G m dg m = S m dt G m dg m = V m dp G m G m (T, P) = l Gm (T, P) G m (T + dt, P + dp) = l Gm dg l m = dg m (T + dt, P + dp) 2-10 dg l m = dg m and dg m = S m dt + V m dp S S m dt + V m dp = S l m dt + V l m, V m (T, P) m dp dp dt = S m l S m V l m V m = Δ l S m = Δ l Hm Δ l Vm T Δ l Vm (Δ l Vm = V l m V m dp dt = Δ l Hm = Δ l H m TV m RT 2 P dp P = Δ l Hm RT 2 dt, P dp = P 0 P (Δ l Hm = constant) ln P P 0 = Δ l H m R 1 T 1 T 0, V m = RT / P) T T 0 Δ l Hm RT 2 dt ln P = Δ l H m RT + C ( P vs t ) 5
11 2-11 P = A exp Δ l Hm RT ln P = Δ l Hm RT + C ( P vs t ) 2-12 T b P e P e T b 1 atm (0.1 MPa) T b0 ln P e 1 = Δ l Hm 1 1 R T 0, b T b ln P e = Δ l Hm + C RT b Δ l Hm RT b = Δ l Sm R PDF 6
12 PT -3-1 dp dt = S β m α Sm β V m α = Δ β α Sm = Δ β α Hm β β Vm Δ αvm T Δ αvm - P P e l s s l α β β β Δ α Hm > 0, Δ αvm > 0, dp / dt > 0 PT Δ l s V m < 0 Δ l s V m 0 ln P P 0 = Δ α β H m R 1 T 1 T 0, lnp = Δ α β H m RT + C CO 2 H 2 O S 3-2 T c P c V c T c P c CO 2 PV m
13 kbar 3-4
14 T, P T, PG m T, P dn (> 0) αβ dg = (G m β Gm α )dn 3-5 dg < 0, dg = 0, i.e., G m β < Gm α i.e., G m β = Gm α β G m dg m = G m T dt + G m P P dp = S m dt + V m dp T G m G m T = S m < 0 S l m >> S m > S s m > 0 P ( ) G m G m P ( ) = V m > 0 V l m >> V m > V s m > 0 T 3-6 P P G m T G m P ( ) = S m < 0 P S l m >> S m > S s m > 0 = V m > 0 T V l m >> V m > V s m > 0 ( ) T, PG m 2
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
untitled
1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential
3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T
3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
1
1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1
6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du
2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann
5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1
4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
master.dvi
4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
genron-3
" ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................
untitled
( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A
: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ
17 6 8.1 1: Bragg-Brenano x 1 Bragg-Brenano focal geomer 1 Bragg-Brenano α α 1 1 α < α < f B α 3 α α Barle 1. 4 α β θ 1 : α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ Θ θ θ Θ α, β θ Θ 5 a, a, a, b, b, b
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
物理化学I-第12回(13).ppt
I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)
September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1
September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
KENZOU
KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................
P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2
1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V
1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(
1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log
H21環境地球化学6_雲と雨_ ppt
1 2 3 40 13 (0.001%) 71 24,000 (1.7%) 385 425 111 1,350,000 (97%) 125 (0.009%) 40 10,000 (0.7%) 25 (0.002%) 10 3 km 3 10 3 km 3 /y 4 +1.3 +5.8 (21) () ( ) 5 HNO 3, SO 2 etc 6 7 2009年度 環境地球化学 大河内 10種雲形と発生高度
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α
18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t
( ) Loewner SLE 13 February
( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
空き容量一覧表(154kV以上)
1/3 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量 覧 < 留意事項 > (1) 空容量は 安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発 する場合があります (3) 表 は 既に空容量がないため
2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし
1/8 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( や系統安定度など ) で連系制約が発生する場合があります (3)
y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =
y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w
5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0
5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
1 2
( ) ( ) ( ) 1 2 59 2 21 24 275 43 3 26 486 103 27 28 98 105 104 99 1 48 25 29 72 14 33 11-10 3 11 8 14,663 4 8 1 6.0 8 1 0.7 11-6 27 19 22 71 5 12 22 12 1,356 6 4,397 3 4 11 8 9 5 10 27 17 6 12 22 9
1
I II II 1 dw = pd = 0 1 U = Q (4.10) 1K (heat capacity) (mole heat capacity) ( dq / d ) = ( du d C = / ) (4.11) du = C d U = C d (4.1) 1 1 du = dq + dw dw = pd dq = du + pd (4.13) p dq = d( U + p ) p (4.14)
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2
3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1
80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0
79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t
r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B
1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n
DVIOUT-HYOU
() P. () AB () AB ³ ³, BA, BA ³ ³ P. A B B A IA (B B)A B (BA) B A ³, A ³ ³ B ³ ³ x z ³ A AA w ³ AA ³ x z ³ x + z +w ³ w x + z +w ½ x + ½ z +w x + z +w x,,z,w ³ A ³ AA I x,, z, w ³ A ³ ³ + + A ³ A A P.
K E N Z OU
K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................
K 1 mk(
R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0
B ver B
B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)
23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/
TGS(Tri-glycine sulfate, TGS)
E s s E D-E FerromagnetisFerroeletris (polar) + T Curie-Weiss sµc/m NaKC 4 H 4 O 6-4H O,RSRS Goettingen( Valasek19 ). -18 4 KH O 4 Bush, Sherrer,1935 KH O 4 Slater(1941) BaTiO 3 Wul, Wainer, Ogawa,1943
概況
2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3
nsg04-28/ky208684356100043077
δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!
Lecture 12. Properties of Expanders
Lecture 12. Properties of Expanders M2 Mitsuru Kusumoto Kyoto University 2013/10/29 Preliminalies G = (V, E) L G : A G : 0 = λ 1 λ 2 λ n : L G ψ 1,..., ψ n : L G µ 1 µ 2 µ n : A G ϕ 1,..., ϕ n : A G (Lecture
( ) ) AGD 2) 7) 1
( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
