縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ"

Transcription

1 , 86 タ 縺48 縺 タ 縺 ,.. 68 ィ (9489) 67449, , ィ b キ3, 縺874ィ チ , タ ィ ィ PACS numbers:.. タs,..Lf,..Mg (3).. 縺 (6)... " ". "94847" , 閨 (b = ) (6) b キ 縺 b キ タ ィ 閨 ィ 縺 (66) 縺 縺 縺 "6968" ィ チ チ9 399 (7) 縺 チ タ タ (74). 6.. タ89 チ ( ). 7. 縺 チ93799 (78) チ " ", 38 38, , 8899 T. (9) , 47 38, , (9) チ 閨 閨99- タ98 (83). 8.. タ タ チ チ93799 閨99- タ (89) (76 タ) ("388") チ999 閨 ィ 349 (93) (93) タ ィ チ チ , チ , 679, タィ ィ ( ィ b < ) , ィャ , 86978, ィ ィ (467937, チ チ), 9 ィ ィ チ チ , " " 6837, "87", 3774ィ 9 898, ィ , , "439 8 b キ3 " ( ). 894, 9. 68, # ,

2 縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ , ィャ , 3 ィャ 罍タ, 4 ィャ "34999", () 67449ィ "399" 9 "39894": ィャ " ", ィャ "83449" 39894, 3 ィャ (3 縺3), 4 ィャ ィ チ チ73973, 9 6ィ ュn ; H6 9H > : ュ: n ィャ ィ " " (798. ). 3 ィ , 39 4 チ , d : dr i : ュ:6 9 8 ィ c , [ 4]. ィ 99 79, 44, , ュd r e ィ , (.). 3 ィ 縺3944, , , , ィ "64" (798. ) ィ "8939", , ィ ィ ( 罍タ ), ィ ィ 罍タ , , 977, 849 [], " ". タ , 884ィ ィ 4 チ9379ィ, ィ 9, ィ [6, 7], "39939" ィ 7 49 (798. ), , , ィャ " ". タ , 884ィ ィ 4 チ9379ィ, ィ タ ィ ィ 349: " ", ィ 9 6, ィ , " チ9897" , 97 " " 3, 8639ィ ィ 4 チ9379ィ 3499ィ, 縺44, 687ィ , ィ ィ ィ , 67937ィ 9 84, 34 H! ( ) , チ9379, , 7744ィ " b キ3 " , ュb 6キ チ , 8463ィ [8] , ィ タ-94933, 縺79483 [9] ィ (Myxine glutinosa) ィャ " " 39439, ィ ィ

3 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 J z J y H S : () "997-47" [8, ]; () [4, 4] (S ィャ ); () "7744" [, 6]; (3) 49 8 "744739" [, 9] , , 9 9 ィ : "99747" 8 b <, ュb キ3 6 9, ュb キ3 6 9, 9744 ィャ ィ , (798. 3) , , , 674, []. 縺 ィ タィ b (798. 3) []. タ79 チ ィ : "Internal-conductor devices for low-b toroidal conィヲnement are reviewed". 縺98ィ 4 944, , , , b. タ , , b ィ (798. 3) , 8949 "7744" (649- タ9773) 79ィ [6] (798. 3). 縺 , , ィ, , , ィ , ィャ ィ , , , "6968", [8] ( ). *, 縺 : () 8 チ797 []; () 999-7ィ [7]; () "7744" [6] , , ィ チ チ ィ 349. タ ( , ) , ィ 縺 , , , , ィ ィ , b キ , 縺 ィ ィ ィ ( 閨)

4 縺 縺8 縺, [ ィ , ィ , [9]. タ 閨 チ , ィ 9 "77" チ " " , , ( ) 9, 468ィ , , , ( ), , , ( ) ィ , ィ , , ィ , , b キ , ィ ィ 縺 " ". "94847" 49 縺 ィャ , タ ィ タ ィ (3887) (388) ィャ , 4, 679, ィャ (ィ ) 縺 ィ ィ 7. タ , タ ィャ , , ィ タ ィャ , 縺44 ィ チ "67344" (b < 9 47 b ) , , 934, , ィ 7 ("87-6 "4" タ " "? 6"), 449ィ チ , , y m キ3 L=d L ィャ , d ィャ 縺44 "77" 49 (" ") ィ , 縺 ィ ィ 縺 ィ , b キ3, H =8p キ3 nkt , , , ィ , タィ (" ") 8, 8939ィ ィ 499, - 4ィ ィ ィ 縺 , , ィ , , 687ィ , 9 ィ , , 9, チ9-, 374, 679, , , , ィ b キ ィャ " ", - 677, , "969" (683), ( ) "969" , "87", , ィ , 3, , ィ ィ 縺 D 3 He, DD 9 47., b キ , ィ , ィ

5 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 縺 ィ ィ , ィ チ チ , ィ t E 38, ( ), ィ ィ (79 タ) n , T i T e ィ 9 t E , ィ H 4 7, r i 83, ィ チ チ チ チ b 9 T e ィ D? c sm c 7 : ュ:6 9 4ps 8488 s ィャ " " タィ , 4 97ィ 6749 チ , d , [6] , ィ , : ) ; ) 878 ィ 47399, , ; 3) "74" (8 79), ィ 9, , タィ ィ , , 489ィ , ( ), チ チ チ73 rg キ3 ; j SP H? : ュ: r ィャ , j SP ィャ , , H? ィャ , タ48999 (.) r キ , j SP キ , g , ィ H? : ュ: , , , ィ タ474 ィ , , ィ ィ d m 78 sm: タ79 ィ H? 73 : , b キ (DT, n i キ3 n e キ , T i キ3 T e キ3 ィ ) H b 4 7, H? ィ 47399, ィ , ( 83 DT-8389) , T K , Nb 3 Sn ィ , ( ) , ィ , ィ ィ 683. 縺3944, ィ , 閨 チ ィ ィャ b キ3. 縺 ィ , タ , , 閨6-4 チ ィ ィ ィャ ィ (" ") {T} ( ) ( ) 439, { 閘 , タィ , ィ : fgg ftg : ュ: , ィ 9 399, 68-9ィ 9, , b 4 4

6 縺 縺8 縺, [ , b loc キ3 ; ィ 349 (.4) , 44 ィ (798. 4). 7, 89 "38974" 7989 チ (ィ ) , 閨9ィ 閨9ィ -3 ( 閨) チ (798. 4) [, ]. [] タ (798. 4), , ィ , チ , , 縺 "89" , 884, チ b. 4 ィ 9 87ィ , [], [3] "39" チ チ タ ィャ 閨99- タ98 [4] (798. 4) , , , タィ , , "47" : () "38974" ィャ 閨99-3:, ィャ , 3 ィャ 閨 b キ3 ; () (693); () 閨99- タ98; (3) チ チ S 3 3 4, 9344, "83ィ " , , チ 縺 チ タ ィ 縺 : ) , , 9 " "; ) ( ), 97 (6837, 69, ィ ), , , ; 3) b キ , ; 4) "949" ( ) ; ) ィャ " ", ィ, , , タ ィ , , : ュb! チ ュb キ3 6 9, d L, 34 L ィャ " ィ " C b キ3 const (C ィャ チ ), ィ (467937, U キ3 6 7 H 7 dl キ3 min) b! チ , 9 949ィ S ( (r; z)) C b, , 483 "673", H b キ3 min H ュC b 6 9 ュ:6 9 ィャ " " ィ b! , "8ィ " S 9 "8ィ " Hb, , , ィ Hb , 84949ィ H キ チ , 34 H! チ " ", 9-7ィ ィ C G, P G キ3 yp y ;, P ィャ

7 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 , 34 H! "7874ィ " C b, , ィ タ79 ィ 93, , C G 4 C b ; C > : 9, ィ, "67- " S 9 "7874 6" H b ィ b. 縺3-944, ィ b: b loc キ3 8pP H : ュ:6a6 9 4 チ チ " 閨749347" b G : b G キ3 8pP HG : ュ:6b6 9 y! チ99 b G. 3. " " b s : b s キ3 8pP H s : ュ:6w H s ィャ [7]. 4. "478747" b: b b キ3 8pP H b : ュ:6g b b G チ 閨377 " " []. ィ , (798. ) チ73 ィ , 8494, , ィ V s キ , L A L キ3 V s t E キ3 V s n : ュ: A キ3 ュnt E 6 9 min ィャ , DT タ n s キ , ィ チ S : () ィ : ィャ , ィャ 8494, 3 ィャ ; () 49 チ チ "8344" ( 閨3); () 49 チ チ ィ 閨99-3 ( 閨9). t E キ3 7 c 9 L n s H s 7. タ t キ3 t E キ3 7 c チ チ899 d ュc タィ , d s ィ , , P , 閨 D s 3 3, ィ ィャ " " , " " 797, タ , , チ ィ : " , , 37873, タ , , , ィ ィ. 縺44 93ィ , , ィ チ944897ィ " [7] , , ィ タ89 [6] " " S S 3

8 縺 縺8 縺, [ [8 3] , ィ タ ィ ( ), , , , ィ ィ ィ 974. 縺 (9934, 4788; 979, 8794; , 8899) (6 タ8) , 34797ィ ィ 3 閨9, 8 ィ ィ ィ タ , , , "47" タ8, "87347" , ィャ ィ (798. ) , 7889ィ "3749 チ チ84" " " (798. ), , , ィ (94937) , ィ , 87443, 7889ィ , チ チ t dif L s : ュ:86 9 a s V s 8488 a s ィャ a s 3 3, t dif 7 83, V s キ3 キ , 6393 L s m: ィ , a s L s 8 m: タ チ " 閨39" "399" チ チ ィ , , ィ チ73 (798. ) " ィ 93- ", , , 9 49 " ィ 93" 8893, , 39, , 3899 "879", , ィ ィ , N 6ヲ ィ 9 93, t N t N : ュ: t ィャ タ チ チ 陦縺 9 76 タ [3]. 陦縺 ィャ ィャ タ ィャ ィャ ィ タ タ タ8, チ チ 閨 チ チ 閨 ィャ 閨9 [] ィ 閨99-3 (798. 4) 閨 閨 ィャ ィ ィ ィ , ィ タ ィ (7): ("388"), ィャ 4 " 縺968" ィ ィ 閨 ィ 99 ィ ィ ィ チ チ b キ 閨99 9 閨99- タ98, (b = ) b = , 679, , ィ ィャ , b キ , ィ 3ィ ィ , 489ィ ィ 98 N 39894: Df キ3 ; M k g 6ヲ ュ j H dv キ3 ; c V k ュ r k g 6ヲ c j H r dv キ3 : V k ュ3:a6 9 ュ3:b6 9 ュ3:w [] " 閨94- 閨99" " 閨3". 8999, 閨3 ィャ ィ 陦縺 ィ , 76 タ ィャ.. ァ

9 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 f ィャ , r k ィャ , V k ィャ 63 k ィ 749ィ (3.) , 縺 (3.) ィ ィ 閨 (798. 4), z , (3.) Mg キ3 c prj mhr ex ュR; z6 9 : ュ3: Hr ex ィャ r "4443" 69 ( ), J m ィャ R L ィャ , [3] f ュr; z6 9 キ3 ュ 4 r4 r H ュz6 9 dz 7 H ュz6 9 6ヲ 64 H ュz6 9 6ヲ... ュ3: H ュz6 9 ィャ (3.3) 849 H r キ3 7 rh 6ヲ... ; ュ3:4a6 9 H z キ3 H 7 r 4 H 6ヲ... ュ3:4b チ , z L, 39 H ュz6 9 キ3 H 6ヲ z b : ュ3:6 9 タ48999 (3.) 9 (3.4) (3.), z キ3 7 Mgb c pr 7 A : ュ3:66 9 H J m J m 縺 z, : J m キ3 6 A ; H キ3 4 ; b キ3 6 m; R キ3 m; M キ3 M pr キ3 t m 7 : ュ3: M ( ). タ48999 (3.7) (3.6), 633 z 36 sm: (798. 6) ィ , a キ e J 6 A , , 74 F t m 7 : 縺3944, " " ィ : (a) ; () 74849, チ ; () チ チ , , , ュ ュ H 8p n z ds キ3 : 8488 n z ィャ z , チ98977-" " , , 9 " " (798. 6) ( ) ィ ィ ィ 8999ィ, , a R=a 4, チ , 39 チ ィ , , , [7] J f J m キ3 a 6ヲ b 4a ; ュ3: b ィャ チ 縺93993, 39 チ ィ , 8ィ 3ィ " " ィ チ チ9, ィ , J f J m チ ィ , ュJ f キ3 J m 6 9, ィ チ チ9, 縺3944, , 39 チ ィ b キ [33, 34] b 6キ , 縺 b = b キ3 : )

10 縺 縺8 縺, [ , 789ィ , ; ) ; 3) ィ 閨 ィ ィ , 34, , , 8 473, 縺 ィ チ 縺 b キ , , , ィ , 489ィ , 679 チ ィ 9 "377" 7999, , "949347" ィ タィ ィ ィ 3 ィ ィ ィ 747 ィャ チ , ィ 9 78 ィ , タ チ , ィ 7439, ィャ 99944ィ ィ M J, (876749) 68898ィ. 789 h, , M g キ3 J m h c : ュ3: , ィ M d h dt キ3 J m hc 7 M g : ュ3: (3.), d h dt 6ヲ g h h キ3 ; h キ3 h 6ヲ h ; ュ3: , 74 [33] r s g Jm O J キ3 キ3 h c M h : ュ3: , ィ ィ ィ ィ 96 ィ , g F, 993, 39 S F キ3 g F t E > : ュ3: t E ィャ , ィ (3.3), 79798ィ チ , ィ S J キ3 g J t E ; ュ3: g J ィャ , ィ チ ィ , チ [, 3] L キ3 X k 7 X k MV k L k J k c 6ヲ X k; a; b 7 X i>k I k ュa; b6 9 O k ュa6 9 O k ュb6 9 7 M ik J i J k c 7 X k c F e k J k : ュ3: k 4 N ィャ , L k ィャ ィ チ チ , q k (q k ィャ n k ), M ik ィャ ィ チ チ , q k 9 8 n k, F k e ュq i; n i 6 9 ィャ , Ik ュa; e b6 9 ィャ k , O k ュa6 9 ィャ N N ィ N 閨 チ 閨 : z, r 9 44a , , (67347) チ7339 (3.4), (3.) z d z M dt キ3 7M g 6ヲ J m c H r キ3 7M g 6ヲ J m c ュ 7R6 9H z b : ュ3:66 9 縺98ィ 4 849, 39 z キ3 z 6ヲ z, z (3.6) , 499 z r J m RH o z キ3 cb : ュ3:76 9 M

11 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 (3.7), 4493 o z 8 c 7, , x ィ ィ H z , 489ィ ィ x 39894, 74 F キ3 7 RJ m c ュ cos y H z 7 r ュy 6 9; z dy : ュ3: y ィャ q r キ3 x 6ヲ R 6ヲ Rx cos y R 6ヲ x cos y : タ48999 ィ (3.8) 49 H z, 633 H z H 7 R 6ヲ Rx cos y H ; ュ3:96 9 9, 84984, F キ3 RJ m c xrph キ3 JmH pr cb x : , ィ ィ : d r M dt キ3 J m J f c 7 J m c r 7 r ュr 7 r 6 9 ; d r M dt キ3 J m J f c r 7 x b ュr 7 x b 6 9 6ヲ J m J f c r 7 x b ュr 7 x b 6 9 6ヲ J m J f c r 6ヲ x b ュr 6ヲ x b r 6ヲ x b ュr 6ヲ x b J m r 7 r c ュr 7 r 6 9 : ュ3:6 9 タ (3.8), , M d n dt M d n dt キ3 4J m J f a 6ヲ b n 7 J m c n 7 n a 6ヲ b ; キ3 4J m J f a 6ヲ b n 7 J m c n 7 n a 6ヲ b : ュ3: n キ3 r 7 ay, n キ3 r 6ヲ ay, J m 9 J f 8399ィ , , , (3.3), d x dt 7 J mh R cm b x キ3 : ュ3:6 9 M d dt ュn 6ヲ n 6 9 キ3 4J m J f a 6ヲ b ュn 6ヲ n 6 9 : ュ3:46 9 縺98ィ x r J m H R g F キ3 cm b キ3 p oz 7 7 : ュ3: , 39 ィ z. 縺3944, , 89 H ュ6 9 <, z , z キ3 7z 679 r キ3 R ィ チ7, ィ (48 z) ィ , , ィ 9 ィ , チ チ , ィ 989 ィ チ , 9 6ィ ィ, , ィ 989, , , チ9897 (3.8). 縺 r 9 r, 977 x b 9 ュ 7x b 6 9, 縺98ィ 4 944, ィ s J m J f g キ3 M ュa 6ヲ b : ュ3: 縺3944, タ ィ 閨 閨 , R O タ , 9 6ィ ィ J m R O キ3 7 L dj m c dt 6ヲ pr V zh r : ュ3:66 9 c , (3.6) V z dz dt キ3 cmgb H pr d dt 7 a dj m J m Jm dt ; a cmgb H pr ; J m < ュ3:76 9

12 縺 縺8 縺, [ (3.4), 933 H r ュz; R6 9 キ3 7 RH ュz6 9 z キ3 7RH キ3 キ3 7 RH a b キ3 7 cmg : ュ3:86 9 J m pr J m ィ ィ : L dj m c dt 7 c L amg J 3 m b 6ヲ R O J m キ3 : ュ3: , ィ L ィ チ チ L eff キ3 L 6ヲ c3 ュMg6 9 b H pr jj m j 3 キ3 L 6ヲ Mgjzj8p p LHJ ; R H J p J m cr : ュ3:36 9 タ39 L キ3 pry, 34 y, L eff キ3 L 6ヲ Mgjzj ; ュ3:36 9 W J 34 W J キ3 H J 8p 4yR3 ィャ 3849 ィ , (3.9) : 7 R Oc L t キ3 ln J m 6ヲ c amg J 3L J 3 m 7 J 3 : ュ3: ィ , ィャ ィ ィ 86449, 6 84 =3 J m ュt6 9 J ; 6ヲ At A 3R O Mga ; ュ3: J ィャ t キ3 ュc R O =L6 9t, 9, (3.3), J=J t K c amg 3LjJ j 3 : ュ3: ィ , ィ 743, ィ (3.) ィ 74 H n キ3. 679, ィ 889ィ 縺 , ィ [33, 34] ィ [33] , "44373" : ) ィ ィ , 9.. a キ3 R=a 4 ; ) ィ , 9 ィ , , タ88 ィ , ィ 939 P ィャ J c 93 7J, q キ3 a x n : ュ3: a ィャ , 489ィ 4 ィ ds, ィ ィ 93 ィ r ュy6 9 キ3 r ュy6 9 6ヲ n ュy; t6 9, 34 y ィャ 67397, 6749ィ , 89989ィ ィ 6749ィ ィ ュn キ , 489ィ ィ , 3944, 74 df キ3 7 J m c n? a 7 x? ds : ュ3: n? ィャ 8899ィ , (3.36), , 489ィ 4 8ィ 39894, F キ3 7 J m c ュ y n? ds a ュy6 9 7 x : ュ3:376 9? 8488 n? キ3 n 7 s ュn; s 6 9, s キ3 dr =ds ィャ , ィ チ , 489ィ ィ 縺 チ737 (3.37) ィ 74. タ ィ チ737 (3.36) 849 d n M dt 6ヲ J m n c a 7 x キ3 : , ィ ィ.

13 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 jnj a, 9 93ィ s Jm O キ3 c M a : ュ3: , 43 チ73- (3.), タ R m, R z, ィ 68899, (3.38) x, p z キ3, s O キ3 J m c a : ュ3:396 9 M , (4 チ "64") ィ 74 c a. ィ ィ 9 チ97: , " " , 8 473, ィ ィ [33] , 39 4 チ , D キ3 R 7 R a ; 縺 , , タ77 49 ィ [36]. 縺 , タィ [37], [38] タ79 ィ , ィ P キ , Nb 3 Sn. 縺 , タ , (7849) % 64ィ ィ ィ ィ ィ ィ チ73, , (6 %) ィ ィ 9 (879) , , ィ (894ィ ィ 84) ィ 47399, 64ィ [38] ( ィャ 4 ), ィ 9 974ィ チ87. タ749ィ ィ , ( チ ) , ィ , , H キ3 4 7, ィ , 縺 , タ ィ 47399, Nb 3Sn ィ ィ ィ ィ ィ ィ チ73 8 チ73 8 チ73 ;8 73 8;39 73 ; 73 3;97 73 ;6 7 3; 7 ;6 7 4; 7 ;67 7 ;63 7 8;38 7 4;3 7 ;8 ;3 ; , , 84ィ 9: ,7 3, , ( j SP キ3 ; ) J m 6;6 33, , , H? キ タ , ィ 989, H?, タ , ,

14 縺 縺8 縺, [ タ (3 縺3) , ィ , ィャ 縺3944, : , 縺3, 973 ィャ , 縺3, , 縺3 b m < R m, 34 R m ィャ 縺 ィャ 縺 , 39 ィ チ チ ィ , , 6797ィ , 縺 ィ () , , , , , 679, ィ ィ タィ ィ , 93ィ ィ 縺3 タ チ 縺3 ィャ ィ チ チ899 3 縺 , ィ ィ ィ 99 チ [8], , ィ , , [39] HP i en キ3 E 6ヲ c V ih 7 6ヲ R ; 7 HP e en キ3 E 6ヲ c V eh 7 7 R ; ュ4: , , R キ3 jk 6ヲ j? 7 ;7 nh k kt e 7 3 n H; HkT e 7 : ュ4:6 9 s k s? o e t e H x , 88 y (8939), 88 z 48 H, 6393 y (4.) 94 j y s キ3 3 n o e t e q qx kt e : ュ4: , 39 qp e =qy キ3, E y キ3, V ex キ3. タ48999 (4.3) 閨 HP キ3 c j; H 7 ; (4.), 633 q qx n ュT i 6ヲ T e 6 9 キ3 3 n qt e qx : , 39 T i キ3 T e キ3 T, [8] nt =4 キ3 y m キ3 const : ュ4:46 9 ュ4:6 9 タ 縺3 n キ , T キ3 ィ, T キ3 ィ n m キ 縺 T i 6キ3 T e, T e =T i キ3 o キ3 const, (4.) 6393 nt ュ 7o=6 9= ュ6ヲo6 9 キ3 const : 64984, ィ 974 ュo キ3 6 9 P キ3 const : ュ4:66 9 ュ4: ィ , T o キ タ79 o > n 9 T i , : ) チ73 (4.), (4.6) , 39 ィ ィ 縺 "ィ " ィ V ex 6キ チ737 (4.4 ) (4.6) ; ) n 9 T 縺 チ ィ q qc PU g ; ュ4: U キ3 6 7 H 7 dl ィャ , C (4.8) ィ , 6393 U / c J m r ュ4:96 9

15 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 , (4.8), (4.9), g キ3 =3 q qr T 3=4 r =3 > : ュ4: , 9 T 縺3 [4] 縺 ィ タ チ 縺 [39] D C キ3 7 dp ュC6 9 dc ; ュ4:a6 9 T i キ3 T i ュC6 9 ; T e キ3 T e ュC6 9 ; ュ4:b6 9 div K i? HT i キ3 Q i ; ュ4:w6 9 div K e? HT e キ3 Q e 7 j y s 6ヲ S ; ュ4:g6 9 j y s キ3 3 H eo e t e H ; HkT e : ュ4:d6 9 y 8488 K i? キ3 nkt i Mo i t ; K e? キ3 4;66 nkt i i mo e t ; e t i キ3 3 p p M ュkT i 6 9 3= p 4 Le 4 ; t e キ3 3 p p m ュkT e 6 9 3= p n 4 Le 4 ; ュ4:6 9 n L ィャ チ3, Q i 9 Q e Q i キ3 3m nk ュT e 7 T i 6 9 ; M t e p Q e キ3 7Q i 7 an kt e ; a キ3 const : タ Q e (4.a) (4.4) , 374, , , ィ 97439, ィ ィ p div ュK? HT6 9 キ3 an T : ュ4: (4.), div ュK? HT6 9 キ3 ay : ュ4: タ ィ 348, 34 n 9 T 99ィ 989 チ x, H キ3 const , 6749ィ (4.4), A : A キ3 8 p p Le c 3a 734 K i? キ3 A ay H T : p M : ュ4:6 9 ュ4: A sm: ュ4: ィ , 7449 (4.4) d dx ln T キ3 H A L : ュ4:86 9 縺98ィ T T キ3 T T x=l x 7 Lx exp : ュ4:96 9 L , T, ュx キ3 L6 9 ィャ T. タ T 9 T T ュx , 93ィ x min キ3 L 7 L L ln T : T , , ィャ タィ x min L 縺3 L キ3 x min, L 9 T =T : ln T キ3 L T L : ィ ィ 9 チ737 L, 639 T キ3 4 ィ, T キ3 ィ, H キ A (4.7). 734 L キ3 A H r ln T T 9 sm: ュ4: , , , Z >, a- 3899, 9 ィ A, 84399, 9 L 縺 (4.4) ュC キ3 const6 9. B d dc T dt dc 6ヲ r dl H キ3 A 6ヲ dl H : ュ4: ュ C 6ヲ T キ3 T exp 7c r dl 7 dc6ヲ 6ヲ A ュ C C dc C r dl H H 7 ュ C dc C 6ヲ dl : ュ4:6 9 H

16 縺 縺8 縺, [ チ73 (4.) D 3 He [4] , n キ , T キ3 ィ, H キ3 4 7, T =T キ3 4, L キ 縺3 L キ , x min 9 L チ9, ィ , 39 [4] , 縺 [4, 4] 縺 縺 チ9739: , ィ 縺3, , , , , 縺3 L "39893" , , "98899" , Z, , 39 L MOM DT- 79ィ. タ3ィ a ィ 9 ィ ィ , ィ , 縺 (4 チ ). 6 H キ a r a (b m 8 83) , H , 9 6 ィ ィ 縺 L MOM ィ 34, 縺 ; "6968" ィ 縺 "84343" ィ 989, , チ ィ ィ (4.8) チ チ ィ , "6963" [8]. タ [43 4] 閨99-3, , , n G 9 T G , U G U U g G P U g : P G ュ4: , P =P G , U G / x 4 G ; U / R 4 m ; ュ4: x G / R m : ュ4: x G ィャ z キ x G 7 84 [44], ィ , , 縺 , , "6968" [4], ィ [46], 97ィ (798. 7). タ73977 ィ ィ - 9: ,4 33, ,34 3, 63 ィ , 3 3, , (74849) ィ, ィ 974 ィ, , b %. タ ィ [47 49] , , " ", " " (83), : ) , ) , "6968": ィャ 9997ィ 8 (,4 33), ィャ "644779ィ 9" 99 (,3 33), 3 ィャ ィ , 3

17 37. 68, ] 閨 縺83 6 タ 罍閨8 ァ74439 タ3838 タ 縺 縺 ィ, 3) ィ 83 93, , 8 8ィ , ィ 79499ィ ィ ィ H, (798. 8) , ィ , J min キ3 ュ=p6 9H a, 34 a ィャ タ b キ3 ュ=36 9a, ィ j min H a , H キ3 7 9 a キ ィ j min ィ 49 "447" ( ). タィ ィ , H 7, a タ , 97ィ 9 83, チ r s, b z ィャ z 74 b 9 a キ3 83. タ8344ィ 4 チ9379ィ , タ o e t e!, [47] 3 q キ3 7nD qt i qn ; D キ3 r ih t i : ュ4: n ィャ , t i ィャ ィ 7497ィ 3 89 l , q キ3 kt i n D : ュ4:76 9 l 69 ィ (H キ3 4 7, T i キ3 キ3 T e キ3 ィ, l キ3 83, n キ ) 933 q ; ィ , (t f ; 8) Q キ3 qt f ; 73 67, , , 縺44 ィ , , H ュ; 76 9H. タ6 6 93, "99" 83, ィャ , [47] 684, t J ; , , 9. 68, z G y 3/ 7, x 7 y , ィ (83) "967" 縺3944, ィ ィ ィ 3 チ [48]. タ749 /9 /4 / 3/ 4/ /7 / /6 7, x 7 / /9 /4 /7 3/ 4/ / / : (a) チ ; (), () r

18 縺 縺8 縺, [ , , ィ , , , , z ュr; y; z (798. 8), ィャ H r, H z ィ ィ チ チ899, チ C ィ 3 94: qc qt キ3 c 4ps ュT6 9 D C ; D キ3 r q q 6ヲ q qr r qr qz : ュ4: s ィャ (349), T, qt rc p qt キ3 j s ュT6 9 ; ュ4:9a6 9 j キ3 j y キ3 7 c 4pr D C : ュ4:9b (4.9) , ィ, ィ 9, ィ C p チ s 9 C p ィ ィ D C キ3 : ュ4: , C qc=qn. 4 " " H r キ3, H z キ3 H 99 C キ3 Hr ; r; z! : ュ4:36 9 タ79 t キ ィ : H r キ3, H z キ3 H < (4.3) , ィ , ィ 9 74 T キ3 K. タ (7373, ィ , ) [48] ィ , T. (3..: 閨 , 963) ィ チ ィ ィ チ , : t s abh H b 6ヲ h : ュ4: a ィャ , b 9 h ィャ , 83; H ィャ , チ ィ 6898, 8843ィ 83, ィ ィ H [49] , R r 93 3, , L キ3 6pr : ュ4: H ュ6 9 r y キ3 hh 7 r ; H z ュ6 9 キ3 H キ3 const ; ュ4:346 9 r r 34 h キ3 H ュ6 9 y =H j rキ3r ィャ m, z m J a m キ3 J c pa : q F m キ3 m qz r : ュ4: r ィャ ュx m ; y m ; z m 縺 ィ w キ3 m H r 3 キ3 pj a ch r 3 : ュ4: , ィ ィ L, タ (4.3) F ms ュx6 9 キ3 XN nキ3 7N F m ュx; x m ; y m ; z m 6ヲ nl6 9 : ュ4:376 9 縺49 689, 39 (4.37) N キ3. タ

, , 3.5. 縺1846 [ ィ , ィ , ,

, , 3.5. 縺1846 [ ィ , ィ , , 13459178 1998 3. 753 168, 2 11 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 92257547 2 7892571 5.4. 458352849274, 3.5. 725219, 3.5. 縺148 5883597547 9225499 9 67525887, 82984475 8 6525454953 チ22575452

More information

縺05, 縺05 縺 [ : チ

縺05, 縺05 縺 [ : チ 1306050100010708 2006 03. 070503 176, 02 12 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 030107080302060405 タ05 縺04020703 0702050109070504090100 090504010901 0802050502 040907050105080504040701

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

閨 , , , 縺05, 縺 縺05, 閨 [

閨 , , , 縺05, 縺 縺05, 閨 [ 04050900708 000 0. 07050 70, 0 0806 タ07 09 0909080900706009 040080 縺0408 縺0505 00070800060405 タ05 縺040070 090800008080900504040009 09050409080500004040009 050000080908 0000 09080905004090 0508050400 0

More information

[ , , ィ

[ , , ィ 13040509010708 1999 03. 070503 169, 02 11 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 030107080302060405 タ05 縺04020703 05000409050600020808000707 05.06. 040508010904 縺01080507 0605080209050504

More information

縺02 縺07 縺 , 縺05 [

縺02 縺07 縺 , 縺05 [ 1309ィ 0408 2003 03. 070503 173, 02 6 0806 タ07 09 090908090107060109 04030801 030707 縺0609010706010907 08030307070109 縺08050105040405080909 0402090705040909 030008090902 02 ィ 020501090705030003040909040500

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

閨 [

閨 [ 1303000709 000 03. 070503 170, 0 3 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 03010708030060405 タ05 縺0400703 060504050ィ 03090405080050400909 03.03. 030007030000908 060005090809 0501080507 080500705030504040701

More information

ァ [ " ", ィ 08 "08

ァ [  , ィ 08 08 1309ィ 0208 2006 03. 070503 176, 02 7 0806 タ07 09 090908090107060109 04030801 030707 縺0609010706010907 08030307070109 0305090008090001090208040705 チ000807, チ000805020705 0607050207000505040909 09 チ000805020705

More information

閨 [ チ , 0

閨 [ チ , 0 13030607050208 1999 03. 070503 169, 02 4 0806 タ07 09 090908090107060109 04030801 090908090103 04030209 06040700 0100010905 0607050102050307 チ0908090109 09 0008090705 チ0908090109 06070504080900020209ィ 090809

More information

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ 13030607050208 2007 03. 070503 177, 02 4 0806 タ07 09 090908090107060109 04030801 080607040500 0505 タ080601 ァ080504030203 "0806 タ07 09 090908090107060109 04030801" 0908050107050905040905 05.02. 閨090408010007030503

More information

37. 7, 3] 65 縺 縺 縺 ィ

37. 7, 3] 65 縺 縺 縺 ィ 3379 3. 753 7, 3 86 タ7 9 9989769 438 4 縺4775697 799 タ 99897 ィャ 998 67547 4957 ィ チ チ59 5. 967357 PACS numbers: 67.9.+z, 73.4.Hm (455589 599. 6953583, 4579 998 3.) 654577495. 5545495 (34).. 6357475 ィ 59754475

More information

タ. タ 縺04 縺 [ チ チ , 080

タ. タ 縺04 縺 [ チ チ , 080 1309ィ 0408 2003 03. 070503 173, 02 6 0806 タ07 09 090908090107060109 04030801 タ050904 縺0505 09 030707 縺0605 090606020706 縺0503040900 0705020200070904 010004030909 05 0709000909 09 0405020505 060501050205040905

More information

縺 縺05 [ )

縺 縺05 [ ) 1306050100010708 1997 03. 070503 167, 02 12 0806 タ07 09 090908090107060109 04030801 04 縺040702070506010907 020701000909 タ 090908090107 ィャ 1996 0602050701090501000305080908 02 3 He: 0509010707090905 09

More information

ィ , 31, 02 2 (2001) タ..0107ィ

ィ , 31, 02 2 (2001) タ..0107ィ 1301010200040905020009 ィ 0205010907050409010000, 31, 02 2 (2001) ke@sci.lebedev.ru 05 http://ke.ioc.ac.ru 95 縺0408 縺05 020008050707 0002080907000105070509010901 090306000208080502 PACS 42.60.Fc; 42.65.Re;

More information

5.9. ァ9 [89 5" [6]. 縺 ィ ィ ィ , チ ィ (7 閨6),

5.9. ァ9 [89 5 [6]. 縺 ィ ィ ィ , チ ィ (7 閨6), 978. 75 7, 86 タ7 9 9989769 8 縺8 縺55 7865 タ5 縺7 959 ィ 597567555898 9 56585578595 799 9ィ 5979.9. ァ9 6 5857 ィ 59755 9 955 ィ 597567555899 565977 799 9ィ 5979. 985757 7588997 9557599589 988559 6755885 9555 56585578599

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

korum2007_1-2.pdf

korum2007_1-2.pdf 130603ィー 07 チ 03030603000703 060808ィヲ 0905020907 09 タ030307 チ 0905010303050300060305 チ 07

More information

_binder_gb_2008_web_de2.pdf

_binder_gb_2008_web_de2.pdf 130808080904 000003 タ02 020302 タ0003050302 01 タ08 0803 050303070103 01 01 タ08 0803 05050303070203 01 0203020500

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

タ 縺5 [ XIV 251 [1] , 254, ,

タ 縺5 [ XIV 251 [1] , 254, , 13459178 25 3. 753 175, 2 11 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 縺18577 451 9 3215195 6529 4853471 9 15839358191 9525815652 5. タ. 5545949152 縺69847 17645495 412ィ 49528475 6755197 658254491

More information

AB rtf

AB rtf 130203070305070701030300 020703 0106000500020305 02030703056 9 縺0203 0907010707 タ01 06ィェィィ 1306ィェィィ 0203070305070701030300 020703 0106000500020305 0203070305* 縺0203 0103 01 040303 04 0502$0003000501 040302

More information

Umgeleitetes Druckdokument von Remotedesktop

Umgeleitetes Druckdokument von Remotedesktop 130905010303 000502030306 05070500 020305 タ020203050205000702010202 罍 03010307 040303 070700010305 タ02020305020500070201 0803 縺07 01 0302 ィャ08 0007000303 0203$050700 020307 030601 09030302050006

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

Katalog_ _test_2 (2).pdf

Katalog_ _test_2 (2).pdf 13 13 チ050500 タ07040207 020103 05 03 タ0101( 060304 タ01 00010305 090303050301; 01 0403 0503ィー ィェ04 ィコ04 04ィェ 080303050302 タ0101( 03 04000607 ィョ 05 0704 タ0307 ィョ 0801070702 ィョ 06 タ020307 タ01 08 0501 タ03

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

fwdv1_stand_sept06.pdf

fwdv1_stand_sept06.pdf 1307 03080508 07 030300030308030003ィョ 05 0305020109 タ0302050003 0201 07 0101070504 0103 縺010306060303 060808ィコ 020300050401

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

0107ィヲ080504ィコ タ タ タ ィコィー0807ィー 0608ィー08ィェィー

0107ィヲ080504ィコ タ タ タ ィコィー0807ィー 0608ィー08ィェィー 0107ィヲ08080805 01 09 0703 0207000305 0100 タ060305 00 0201 タ03 0707 09070707 タ 05 罍 0201 タ010707 タ 07ィィィー0807ィー 0704ィー08ィャィー 00

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

1

1 1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y

More information

ィC ィコ ィー ィケ 09 ィコ ァ ィヲ 09 ィー ィェ ィェ ィェ ィ ィョ ィコ,

ィC ィコ ィー ィケ 09 ィコ ァ ィヲ 09 ィー ィェ ィェ ィェ ィ ィョ ィコ, 13I S S N 2 0 7 1-2 2 4 3 00 03 05 06 01 06 08 00 02 04 02 01 03 04 05 08 02 01 02 01 02 05 07 02 08 04 05 06 00 03 01 01 02 01 02 08 01 04 08 04 01 02 01 02 07 01 06 00 03 04 05 06 06 03 06 08 V E S T

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

VDMA_Heizgeräte_ pdf

VDMA_Heizgeräte_ pdf 1308050708ィョ04 050003 010207070101 0803 020100050102 縺03 タ010307 02$03 04 03 07070301000501 09 タ05 0103050005 0205000305 08050707010305 000504 08000203$02010005010305 05 0203

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

all.dvi

all.dvi 13 06040404 00 06 00 01 07 06040404 00 08 03 06 00 01 07 06040404 00 0802 ィケ01 0601 06 07ィケ 00 0800 00 06 ィケ 00 ィケ 06 00 0704060708 02 00 0604040402 0606 02 07 06040404 00 08 090904 0104040101 02 0108030301080200020302

More information

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 Mg-LPSO 2566 2016 3 2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1 1,.,,., 1 C 8, 2 A 9.., Zn,Y,.

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

77

77 O r r r, F F r,r r = r r F = F (. ) r = r r 76 77 d r = F d r = F (. ) F + F = 0 d ( ) r + r = 0 (. 3) M = + MR = r + r (. 4) P G P MX = + MY = + MZ = z + z PG / PG = / M d R = 0 (. 5) 78 79 d r = F d

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

瀬田唐橋景観検討について

瀬田唐橋景観検討について 3 3 12,174 /12hr 1,110 /12hr 3,066 /12hr 172.0m 51.75m 23.5+5@25.0+23.5m 3@17.25m 14.0m 15.0m 5 6 2009 12 3 2010 2 25 6/22 8/24 10/18 11/16 1/13 1797 16 15 15 13 6 (S49) 54 7 23-2 24 54 50

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

TCSE4~5

TCSE4~5 II. T = 1 m!! U = mg!(1 cos!) E = T + U! E U = T E U! m U,E mg! U = mg!(1! cos)! < E < mg! mg! < E! L = T!U = 1 m!! mg!(1! cos) d L! L = L = L m!, =!mg!sin m! + mg!sin = d =! g! sin & g! d =! sin ! = v

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

P REA.indd

P REA.indd / Series 300mm/s 600mm/s Series Series Series Series R R H S HT L H HT 1043 600 () () Series R 1044 S L H HT Series HTHT HH S L RR 10 20 40 50 63 Series 10 20 40 50 63 R H HT 1045 ø,øø40ø50ø63 R ø10,ø,ø20,ø,ø,ø40

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

genron-7

genron-7 F! Z F = * N s/m)! Z R i K # & = " % ) " $ ) ' F R i i K =! " )! +! N) ) R! " i)! i K )! F ) K F = R!, R >> ), R >> ) 3) K F = " i)!, ) >> R, >> ) )! 4) F i K K K =!, > ) ) ) ) F F! 1µ b a r ) V

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

apple ヲ0 09 apple ヲ apple0309apple076 56ヲ fl 0603apple6ヲ

apple ヲ0 09 apple ヲ apple0309apple076 56ヲ fl 0603apple6ヲ 1305ィャ00010204ィヲ00ィヲ07ィ ィケ ィ 0500090502ィヲ00ィヲ07ィ ィケ, 2009, 6ァ8 6, 06. 1ィC18 ィャ0501 551.23/21;558.42 07ィ 05ィコィヲ0700ィヲ07ィ 02ィ ィケ ィェ00ィコ020200ィイ040107 ィ 05ィェィヲィョ04ィ 01ィヲ05 05ィャ0001020402 02ィャィェ04ィヲ050501ィ

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

…h…L…–…†…fi…g1

…h…L…–…†…fi…g1 RY RO RR RW LN LM LB LC MH MG MB RD RM RG LD CW SB VR BB EB PW PY PP PG PB 0 contents WR LR MR BR DR PM SM MC CB BO 0 P P7 P P5 P9 P 0 P4 P48 P54 P60 P66 P 04 RY RO RR RW RD RM RG LN LM LB LC LD MH MG

More information

13 ー06}"04 {b1 7{"07l ー%06 {%q%{07 6ァ9 00 ッ 05 r 鑾 z v x 閙 05y u w 閨6 5x 1 7x z x u r [ ) [ ) [ ) [ ) [ ) [ )l [ ) [ ]00...

13 ー06}04 {b1 7{07l ー%06 {%q%{07 6ァ9 00 ッ 05 r 鑾 z v x 閙 05y u w 閨6 5x 1 7x z x u r [ ) [ ) [ ) [ ) [ ) [ )l [ ) [ ]00... 130403 閨05 06 07 ァ 0805 03 03 閨05 05 05 03 閨03 07 閨06 ァ 閨03 05 0406 03 閨05 05 03 "!#%$ &05 07'% # 06 06 閨05 07 "()! "!!*+, ァ$ &. / 閨05 06 07 閨06 0+1+! # # $ 2 3 1 3 4 3045 ァ0%1+! # # $ 2 3 1 3 3 6)7 8

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

jse2000.dvi

jse2000.dvi pn 1 2 1 1947 1 (800MHz) (12GHz) (CPUDSP ) 1: MOS (MOSFET) CCD MOSFET MES (MESFET) (HBT) (HEMT) GTO MOSFET (IGBT) (SIT) pn { 3 3 3 pn 2 pn pn 1 2 sirafuji@dj.kit.ac.jp yoshimot@dj.kit.ac.jp 1 3 3.1 III

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s

More information

pdf p7s.pdf

pdf p7s.pdf 130405ィヲ0708ィヲ 130405ィヲ0708ィィ 130405ィヲ070804 130405ィヲ070708 130405ィヲ070707 130405ィヲ070706 130405ィヲ0707ィェ 130405ィヲ0707ィャ 130405ィヲ070705 130405ィヲ0707ィコ 130405ィヲ0707ィヲ 130405ィヲ0707ィィ 130405ィヲ070704 130405ィヲ070608

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg = I. 2006.6.10 () 1 (Fortan mercury barometer) 1.1 (Evangelista orricelli) 1643 760mm 760mm ( 1) (P=0) P 760mm 1: 1.2 P, h, ρ g P 0 = P S P S h M M = ρhs Mg = ρghs P S = ρghs, P = ρgh (1) 1 ρ(= 13.5951 10

More information

01.qxp

01.qxp 1306 05 00 02 ィャ 09 04 06 05 02 08 00 05 02 05 05 04 05 01 05 06 04 08 04 05 05 09 05 02-9 7 07 04 08 05 06 05 08 05 02 09 ィ 00 00 03 ィ 00 05 04ィ 03080606ィ 010104ィ 010609 ァ 03040606ィエ0907 05060601030506

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z

96 5, ' : G! H '(G) =H,, H G, 37 Z Z m a 2 Z m a a p Z m (p.90 ) p(a + b) =a + b = a + b = p(a)+p(b):, p {p(ab) =p(a)p(b){, p ( 95 ). 97. m, n, Z m Z 95 5,,,,,,,, ( ) S 3, f1 2 3g f1 2 3g,,, 5.1,,, 1 1 16 G H ' : G! H, '(ab) ='(a)'(b) for 8a b 2 G (5.1), (,, )., 1 1,, ' e 2 G e 0 2 H '(e) =e 0., g 2 G, '(g ;1 )='(g) ;1 : (5.2) 2, 5.1 2 G, H, G H, '

More information

- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - km2 km2-7 - - 8 - - 9 - EX---------- (EW)-------- ------ (CR)--- (EN)--- (VU)-------- NT (DD)-------- - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - ( ) 150,000 -

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

H22環境地球化学4_化学平衡III_ ppt

H22環境地球化学4_化学平衡III_ ppt 1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

massis21

massis21 1306. 06050804 000400 14 (1464) 0705070500, 0501080406 24, 2010 VOLUME 30, NO. 14 (1464) SATURDAY, APRIL 24, 2010 130603 2-0705070500, 0501080406 24, 2010 08010705090805020505 08 08ィ 080408000505040709

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information