(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Size: px
Start display at page:

Download "(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t"

Transcription

1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ] [ α α = E α Z = E Z α α Z ] [ ( α ] ( = E Z e α Z α ] + ie[ Z Im α Z ( α ( = e α 1 ( E[ Z ] α Z α Z 6.3 X ϕ X (t X (characteristic fuctio ϕ X (t = E[e itx ] = E[cos(tX] + i E[si(tX], t. 6.4 (i X (ii t ϕ X (t 1 (iii ϕ X ( = 1 ϕ X (t = ϕ X ( t (iv t ϕ X (t : (i, (ii e itx 2 = cos tx + i si tx 2 = cos 2 tx + si 2 tx = (iii ϕ X ( = E[e ] = E[1] = 1, ϕ X ( t = E[e X ] = E[e X ] = E[e itx ] = ϕ X (t (iv {h } sup s ϕ X (s + h ϕ X (s ( sup s E[ e isx (e ihx 1 ] = E[ e ihx 1 ]. e ihx 1 e ihx + 1 = 2 E[2] = 2 < Lebesgue E[ e ihx 1 ] E[ e 1 ] = 6.5 X a, b ϕ ax+b (t = e itb ϕ X (at. : ϕ ax+b (t = E[e iatx e itb ] = e itb E[e iatx ] = e itb ϕ X (at. 6.6 (1 X B(, p, q = 1 p, ϕ X (t = E[e itx ] = ( e itk p k q k = k k= k= ( (pe it k q k = (e it p + q. k 13

2 (2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t = E[e itx ] = e itx 1 2π e 1 2 x2 dx = e 1 2 t2 1 2π e 1 2 (x2 dx (6.1 itx 1 2 x2 = 1 2 (x it2 1 2 t2 > 4 C ( C,1 :, C,2 : it, C,3 : it it, C,4 : it. e 1 2 z2 C Cauchy e 1 2 z2 dz = C 4 e 1 2 z2 dz = e 1 2 z2 dz C C, =1 C,1 e 1 2 z2 dz = C,2 z = + iy dz = i dy e 1 2 z2 dz C,2 = C,4 z = + iy = e 1 2 z2 dz C,4 t t = e 1 2 x2 dx e 1 2 (+iy2 i dy t e 1 2 x2 dx = 2π. e 1 2 (2 y 2 +iy i dy e 1 2 (2 y 2 dy t e 1 2 (2 t 2. C,3 z = x it dz = i dx C,3 e 1 2 z2 dz = 2π ( 17 t e 1 2 ( +iy2 i dy t e 1 2 (2 t 2. e 1 2 (x2 dx = e 1 2 (x2 dx e 1 2 (x2 dx. e 1 2 (x2 dx = (6.1 ϕ X (t = e 1 2 t2 1 2π 2π = e 1 2 t2 6.8 X N(m, σ 2 ϕ X (t = e imt 1 2 σ2 t 2 : Z = X m σ Z X = σz + m 6.5 ϕ X (t = ϕ σz+m (t = e imt ϕ Z (σt = e imt e 1 2 (σt2 = e imt 1 2 σ2 t 2 14

3 6.9 X Cauchy f(x = 1 π ϕ X (t = e t : ϕ X (t = E[e itx ] = e itx 1 π 1 ( < x < 1 + x2 1 dx ( x2 1st step t > > 1 2 C ( C,1 :, C,2 : z =, Im z. g(z = eitz z i z + i 1 e 2πi C itz 1 + z 2 dz = 1 g(z e t dz = g(i = 2πi C z i 2i. (6.3 C,1 e itz C e itz 1 + z 2 dz = z 2 dz = =1 C, e itz C,2 z = e iθ, θ π, dz = ie iθ dθ C,2 e itz 1 + z 2 dz = = π π e iteiθ e 2iθ ieiθ dθ t si θ e 2 e 2iθ + 1 dθ dz ( z2 e itx 1 + x 2 dx e itx 1 + x 2 dx π π e it(cos θ+i si θ 2 e 2iθ dθ + 1 t si θ e 2 1 dθ π e 2iθ e 2iθ 1 = 2 1 θ π si θ t > e t si θ 1 (6.3, (6.4 1 e itx e t dx = 2πi 1 + x2 2i 2i (6.2 ϕ X (t = 1 π 2d step t = ϕ X ( = 1 6.4(iii t < (6.2 y = x ϕ X (t = e it( y 1 π e itx 1 + x 2 dx = e t ( y 2 dy = e i( ty 1 1 π 1 + y 2 dy = e ( t = e t. 3 t > 1st step 6.1 X E[ X k ] < ϕ X (t C k - ϕ (k X (t = ik E[X k e itx ] : 16 15

4 Cauchy t = Cauchy 6.11 p X = (X 1,..., X p p ϕ X (t X { ϕ X (t = E[e it X ] = E[exp i p j=1 t j X j } ], t = (t 1,..., t p p 6.12 p X p A p b ϕ AX+b (t = e it b ϕ X (A t. : ϕ AX+b (t = E[e it AX e it b ] = e it b E[e i(a t X ] = e it b ϕ X (A t X = (X 1,..., X p p N(m, Σ m = (m 1,..., m p p, Σ = (σ ij ϕ X (t = e it m 1 2 t Σt : P = (p ij D = (λ ij P ΣP = D Y = (Y 1,..., Y p = P (X m 4.12 Y N((,...,, D ( 19 Y 1,..., Y p Y j N(, λ jj 4.6 ϕ Y (t = E[e it 1Y1 e it py p ] = E[e it 1Y 1 ] E[e it py p ] = e 1 2 λ11t2 1 e 1 2 λppt2 p = e 1 2 t Dt. X = P Y + m 6.12 ϕ X (t = e it m ϕ Y (P t = e it m e 1 2 (P t D(P t = e it m e 1 2 t P DP t = e it m 1 2 t Σt. 6.2 Dyki 6.14 X µ X : µ X (A = P (X A, A B(. (6.5 B( Borel µ X X (distributio 6.15 µ X X (, B( µ (Ω, F, P µ ( X F X (x F X (x = P (X x = µ X ((, x] 6.16 X, Y X, Y : µ X = µ Y, µ X (A = µ Y (A ( A B( F X (x = F Y (x ( x σ- Dyki 6.17 (1 S P π (a S P, (b A, B P A B P 2 (2 S D Dyki 16

5 (a S D (b A, B D A B A\B D (c A D, A A +1 ( N =1 A D 3 S C C Dyki L(C D λ (λ Λ Dyki λ Λ D λ Dyki ( {D λ } λ Λ C Dyki L(C = λ Λ D λ λ Λ D λ D λ ( λ Λ C Dyki λ Λ D λ = λ Λ D λ 6.18 (Dyki P π L(P = σ(p *4 : σ- Dyki ( 2(2 L(P σ(p L(P σ(p L(P σ- 1st step A P G A = {B; A B L(P} G A P Dyki π B P A B P L(P. B G A, P G A. (a S P G A (b B 1, B 2 G A, B 1 B 2 A B 1, A B 2 L(P A B 1 A B 2 A (B 1 \B 2 = (A B 1 \(A B 2 L(P. B 1 \B 2 G A. (c B G A, B B +1 ( N A B L(P, A B A B +1 A ( =1 B = =1 A B L(P. =1 B G A. L(P G A A P, B L(P A B L(P 2d step A L(P G A = {B; A B L(P} 1st step P G A (a S P G A (b, (c 1st step G A P Dyki A, B L(P A B L(P L(P π 3rd step L(P σ- (i S L(P (ii A L(P (i S L(P A c = S\A A c L(P. (iii A L(P ( N B = k=1 A k (ii L(P π B = ( k=1 A c c k L(P (c k=1 A k = k=1 B k L(P 6.16 : (= A = (, x] ( = J = {(, x]; x } {(, } A = {A B(; µ X (A = µ Y (A} J π A Dyki ( 2(3 x (, µ X ((, x] = F X (x = F Y (x = µ Y ((, x] x = µ X ((, = µ Y ((, = 1. J A 6.18 σ(j = L(J A. J σ- σ(j Borel B( B( A 6.19 f(x f f(x µ X (dx < E[f(X] = f(xµ X (dx. *4 σ(p P σ- 17

6 : f(x f(x = a i 1 Ai (x E[f(X] = i a i P (X A i = i a i µ X (A i = f(xµ X (dx , 4.5 f(x {f q (x} f q f ( 5.12 f(x = f + (x f (x f(x = e f(x + i Im f(x 6.2 (, B( µ, ν f C b ( f(xµ(dx = f(xν(dx µ = ν C b ( : a ( f (x = 1 (x a, = 1 (x a (a < x < a + 1, = (a x f C b ( f (xµ(dx = f (xν(dx f (x 1 (,a] (x ( f (x 1 ( x Lebesgue 1 (,a] (xµ(dx = 1 (,a] (xν(dx, µ((, a] = ν((, a] 6.16 µ = ν ϕ X (t = ϕ Y (t, t, µ X = µ Y ( F X (x = F Y (x, x 6.22 Dirichlet f T (α = T si αt t dt, T >, α (6.6 (1 sup f T (α <, (2 lim f T (α = π { 1(, (α 1 (, (α } T,α T 2 : (1 u = αt f T (α = αt M sup αt π f T (α π 2 2. M π/2 si u u si u u du si u u ( u π 2 si u u du ( 21 (2 α = α > 6.23 α < s = t α > 6.23 si x x dx = π 2. : < ε < Im z 4 C ε, ( C ε,,1 : ε, C ε,,3 : ε, C ε,,2 : z =, Im z, C ε,,4 : z = ε, Im z ε ε 18

7 Cauchy = Cε, e iz z dz = 4 =1 Cε,, e iz z dz. (6.7 Cε,,1 e iz z dz + Cε,,3 e iz z dz = ε e ix ε x dx + e ix x dx = e ix e ix si x dx = 2i ε x ε x dx si x 6.22(1 ε +, 2i x dx C ε,,2 z = e iθ, θ π, Cε,,2 e iz z dz = π e ieiθ e iθ ieiθ dθ π π e i(cos θ+i si θ dθ = e si θ dθ e si θ, e si θ 1 ( < θ < π Lebesgue C ε,,4 Cε,,4 e iz z dz = π e iεeiθ εe iθ εieiθ dθ = i π e iεeiθ dθ ε + e iεeiθ 1, e iεeiθ = e ε si θ 1 ( < θ < π Lebesgue i π dθ = iπ (6.7 si x = 2i dx iπ x ( (Lévy X F ϕ(t a, b (a < b F F (b F (a = 1 T 2π lim T T x F X lim y x F X (y = F X (x x : X µ X 6.19 T T e b e a ϕ(t dt = g(x = e x eb e a T T e b e a ϕ(t dt. (6.8 e b e a e itx µ X (dx dt e b e a = g (ξ(b a = e ξ (b a (a < ξ < b b a Fubii ( 5.14 = ( T T e b e a T T eb e a e itx µx (dxdt b a 2T < ( T e itx si t(x a si t(x b dt µ X (dx = dt µ X (dx T t 19

8 e iξ = cos ξ + i si ξ T T cos t(x a cos t(x b dt = t 6.22 f T (α = 2 (f T (x a f T (x b µ X (dx 6.22(1, (2 Lebesgue T π [ 2 1(, (x a 1 (, (x a 1 (, (x b + 1 (, (x b ] µ X (dx 2 [ = π 1(a, (x 1 (,a (x 1 (b, (x + 1 (,b (x ] µ X (dx = π [µ X ((a, µ X ((, a µ X ((b, + µ X ((, b] = π [1 F (a F (a (1 F (b + F (b ] a, b F (6.8 = 1 π [1 F (a F (a (1 F (b + F (b ] = F (b F (a (6.9 2π 6.21 : F X F Y c c c 6.24 a, b c F X, F Y F X (b F X (a = F Y (b F Y (a. {a } c, a F X (b = F Y (b x {b } c b x + F X (x = F Y (x 6.16 µ X = µ Y 6.25 X 1,..., X X j Poisso P (λ j Y = X X Poisso P (λ λ ϕ Y (t = E[e itx1 e itx ] = E[e itx 1 ] E[e itx ] = e λ 1(e it 1 e λ (e it 1 = e (λ 1+ +λ (e it 1 2 X 1,, X 6.6(2 6.6(2 Poisso P (λ λ X 1, X 2,... Cauchy f(x = 1 1 π 1 + x 2 ( < x < 6.9 ϕ Xi (t = e t Y = 1 (X 1 + X X ϕ Y (t = E[e i t X1 e i t X ] = E[e i t X1 ] E[e i t X ] = e t e t = e t Y Cauchy Cauchy 6.27 X ϕ(t f X (x ϕ(t dt < X f X (x = 1 e x ϕ(t dt. (6.1 2π 2

9 : 6.24 eb e a b a (6.8 (, (6.9 F (x a, b (a < b 1 1 {F (b + F (b F (a F (a } = 2 2π e b e a b F (x b a + 1 {F (a F (a } 2 F (x F (x + h F (x = 1 2π h > h x+h x h e (x+h e x e y ϕ(t dy dt 2h F (x + h F (x = 1 2π ϕ(t dt = 1 2π x+h x ϕ(t dt < Lebesgue F (x F (x = f X (x (6.1 ϕ(t dt b a 2π x+h x e y ϕ(t dy dt ϕ(t dt ϕ(t dt < Fubii e y ϕ(t dt dy e y ϕ(t dt y 6.9 : 15(2 f(x = 1 2 e x ϕ(t = 1 ϕ(t dt = π < e x = 1 e x 1 2π 1 + t 2 dt x t, t x Cauchy ϕ X (t 1+t 2 ϕ X (t = e itx 1 π x 2 dx = 2 1 e i( tx 1 2π 1 + x 2 dx = e t = e t ( f C b ( lim E[f(X ] = E[f(X] X X (covergece i law (covergece i distributio X = X C b ( (cf. [D] p.15 pp {X } X 21

10 : 1st step {X } X f C b ( f(x f(x f M f(x M ( x f(x (ω M (ω Ω Lebesgue ( 5.13 X X lim E[f(X ] = E[f(X] 2d step {X } X f C b ( a = E[f(X ] f(x M (x a M {a } a = E[f(X] {a } a {a } {X } 5.6 {X } X 1st step {a } a {a } a lim E[f(X ] = E[f(X] f C b ( {X } X {X } N P (X = 1 = P (X = 1 = 1/2 f C b ( E[f(X ] = 1 2 f( f( 1 lim E[f(X ] = E[f(X 1 ] {X } X 1 ( X k < ε < 1 2 P ( X X 1 ε = P (X 1 = 1, X = 1 + P (X 1 = 1, X = 1 = = 1 2 {X } X µ, = 1, 2,..., µ ( S ( µ µ f C b (S lim S f(xµ (dx = S f(xµ(dx {X } X {µ X } µ X µ ν f(x µ(dx = f(x ν(dx, f C b ( µ = ν {X } X Y F Y (x = P (Y x (1 {X } X (2 F X x lim F X (x = F X (x 22

11 : (1 (2 x F X 1 (,x] (y f + δ, f δ δ > 1 y x f + δ (y = 1 1 δ (y x x < y < x + δ y x + δ ( 1 y x δ, f δ (y = 1 1 δ (y (x δ x δ < y < x y x 1 (,x δ] (y f δ (y 1 (,x](y f + δ (y 1 (,x+δ](y, y F X (x = P (X x = E[1 (,x] (X ] E[f + δ (X ] C b(, f + δ C b( {X } X lim sup F X (x lim E[f + δ (X ] = E[f + δ (X] E[1 (,x+δ](x] = P (X x + δ = F X (x + δ δ + lim sup F X (x lim F X(x + δ = F X (x (6.11 δ + F X (x = E[1 (,x] (X ] E[f δ (X ] f δ C b( lim if F X (x lim E[f δ (X ] = E[f δ (X] E[1 (,x δ](x] = P (X x δ = F X (x δ δ + lim if F X (x lim δ + F X(x δ = F X (x x F X (6.11 lim F X (x = F X (x (2 (1 F X ε > F X a, b (a < b F X (a ε, 1 ε F X (b (2 N N = F X (a 2ε, 1 2ε F X (b δ > f C b ( a = a < a 1 < < a K = b a j (1 j K 1 F X max a j 1 x a j f(x f(a j δ (1 j K 2 f [a, b] h f (x = K f(a j 1 (aj 1,a j](x j=1 23

12 f = sup x f(x y / (a, b] f(y h f (y = f(y f N E[f(X ] E[h f (X ] K E[ f(x h f (X 1 (aj 1,a j ](X ] + E[ f(x h f (X 1 (a,b] c(x ] j=1 K δp (X (a j 1, a j ] + f P (X / (a, b] j=1 = δp (X (a, a K ] + f (F X (a + 1 F X (b δ + 4ε f. E[f(X] E[h f (X] δp (X (a, a K ] + f (F X (a + 1 F X (b δ + 2ε f. a j F X (2 F X (a j F X (a j ( E[h f (X ] = K K E[h f (X 1 (aj 1,a j](x ] = f(a j (F X (a j F X (a j 1 j=1 j=1 K f(a j (F X (a j F X (a j 1 = E[h f (X] ( j=1 E[f(X ] E[f(X] E[f(X ] E[h f (X ] + E[h f (X ] E[h f (X] + E[h f (X] E[f(X] lim sup E[f(X ] E[f(X] 2δ + 6ε f ε, δ ε, δ > δ +, ε + lim E[f(X ] = E[f(X] 6.33 lim sup E[f(X ] E[f(X]. α > X 1, X 2,... i.i.d. f(x = α(x + 1 α+1 1 (, (x (Parate Y = 1/α max{x 1, X 2,, X } {Y } F Z (z Z F Z (z = (z, F Z (z = e z α (z > (Fréchet : z lim P (Y z = z > Y P (Y z = P (X 1 1/α z,, X 1/α z = P (X 1 1/α z P (X 1/α z ( 1/α z = α(t + 1 dt α 1 = (1 ( 1/α z + 1 α ( = 1 1 (z + 1/α α e z α ( {Y } Z S µ 24

13 6.34 S {µ } µ 4 (1 (4 2 (1 {µ } µ (2 S G lim if µ (G µ(g (3 S F lim sup µ (F µ(f (4 S A B(S µ( A = lim µ (A = µ(a A A compact 6.35 (Prohorov {X α } (1, (2 (1 {X α } compact, {X α } {X α } {X αk } X {X α } X (2 ε > M > if α P (X α [ M, M] 1 ε {µ α } (2 if α µ α([ M, M] 1 ε {µ α } tight (2 {X α } tight 6.35 S [ M, M] S compact ( Prohorov 6.36 (Helly {F (x} {F k (x} F (x (F (x F x : 1st step lim F k (x = F (x (6.12 k Q = {x 1, x 2, } F (x = F, (x {F, (x 1 } [, 1] Bolzao-Weierstrass {F 1, (x 1 } F (x 1 {F 1, (x 2 } [, 1] Bolzao-Weierstrass {F 2, (x 2 } F (x 2 j = 1, 2,... {F j+1, (x} {F j, (x} {F j, (x j } F (x j F k (x = F k,k (x j = 1, 2,... {F k (x j } k j {F j, (x j } 1 {F k (x j } k F (x j ( x i < x j F k (x i F k (x j F (x i F (x j 2d step 1st step F (x (x Q F (x (x F (x = if{ F (y; y Q, y > x} (6.13 F F (x (??? x F (6.12 ε > z 1, z 2, z 3 Q z 1 < z 2 < x < z 3 25

14 F (x ε < F (z 1 F (z 2 F (x F (z 3 < F (x + ε x (6.13 k F k (z 2 F (z 2 F (z 1, F k (z 3 F (z 3 F (z 3 k F (x ε < F k (z 2 F k (x F k (z 3 < F (x + ε, F k (x F (x < ε ( : (1 (2 (2 ε > M > if α P (X α [ M, M] < 1 ε {X α } {X α } N P (X α [, ] < 1 ε (6.14 (1 {X α } {X αk } X {X αk } X x F X lim F X α (x = F X (x {x m }, {y m } k k lim x m =, lim y m = x m, y m F X m k m m k < x m, y m < k (6.14 F X (y m F X (x m = lim k (F X α k (y m F Xα k (x m = lim k P (x m < X αk y m lim if k P ( k X αk k 1 ε lim {F X(y m F X (x m } 1 ε. lim F X(y =, lim F X(x = 1 m y x (2 (1 F Xα F Xα Helly ( 6.36 F Xα F Xαk F F x ε > M > lim F X α (x = F (x k k if k P (X α k [ M, M] 1 ε F (x x, y x < M, M < y F (y F (x = lim (F X α (y F Xα (x = lim P (X k k α k (x, y] k k if P (X α k [ M, M] > 1 ε k F (x F X (x = F (x X {X } X ϕ (t (1 {X } X t ϕ (t ϕ X (t (2 t ϕ (t ϕ(t ϕ(t t = ϕ(t X {X } X 26

15 : (1 f(x = e itx cos x, si x (2 1st step 6.35 {X } compact X µ a 1 = si a a si 1 = si a a c = 1/(1 si 1 > M > [ P ( X M E c (1 = c si X M X M ( 1 si x M x M ( = c µ (dx ] [ ( 1 { X ce 1 M 1} µ (dx = c 1 e ix t M 1 si 1 = 1 si a a ( dt µ (dx si X M X M ] 1 si 1 e it x M dt µ (dx ( = c [ 1 e itx dt = 2 1 2ix eitx] 1 = eix e ix = si x t= 1 2ix x, 1 1 ϕ ( t M dt 3 e ix t M 1 Fubii I (M s = t/m ( I (M = c 1 1 1/M 2 1/M ( = c 1 M 2 1/M 1/M I (1 (M + I (2 (M ϕ (sm ds ϕ(s ds + c M 2 1/M 1/M (ϕ(s ϕ (s ds ε > ϕ(s s = ϕ( = 1 M > I (1 (M < ε 2 M lim ϕ (s = ϕ(s ( s ϕ(s ϕ (s ϕ(s + ϕ (s 2 Lebesgue lim I(2 (M = = I (2 (M < ε 2 if P ( X M 1 ε 6.35 {X } compact 2d step {X } {X } 1st step {X } X {X } X (1 ϕ (t ϕ X (t ϕ X (t = ϕ(t Y ϕ X (t = ϕ Y (t 6.21 µ X = µ Y µ X µ X {X } X 27

16 6.6 (cetral limit theorem 6.38 ( X 1, X 2,... i.i.d. E[X ] = m, V (X = σ 2 > U = 1 σ k=1 (X k m {U } N(, 1 Y : Z = X m σ lim P (a U b = 1 b 2π a e y2 2 dy, < a < b <. (6.15 E[Z ] =, V (Z = 1, U = 1 k=1 Z k U ϕ U (t = E[e i t k=1 Z k ] = k=1 ( ( E[e i t Z k t ] = ϕ ϕ(t Z 1 (Z k ϕ(t = ϕ Zk (t E[Z 2 1] < 6.1 ϕ(t C 2 - Taylor ( t ϕ = ϕ( + t ϕ ( + 1 ( t 2ϕ ( θ t, < θ < 1 2 ϕ( = 1, ϕ ( = E[Z 1 ] = ϕ (θ t = E[Z1e 2 iθ t ] Z 2 1 e iθ t Z 2 1 Lebesgue lim ϕ ( θ t = E[Z 2 1] = 1. ( ( t ( lim ϕ = lim t 2 2 ϕ ( θ t = e t2 2 Y N(, 1 ϕ Y (t = e t (2 {U } Y (6.15 Y F Y (x X 1, X 2,... (cf. 5.9, 5.21, 5.25 (cf. [D] p.127, Example (de Moivre-Laplace p Beroulli X 1, X 2,... : X 1, X 2,... P (X = 1 = p, P (X = = 1 p. S = k=1 X k ( lim P a S p b = 1 p(1 p b e y2 2 dy, < a < b <. (6.16 2π a : E[X k ] = p, V (X k = p(1 p

17 6.41 (1 6.4 S B(, p (6.16 B(, p S (cf (2 de Moivre-Laplace S B(, p Stirlig (6.16 p.17 (cf. 34( S 6 S B(72, 1 6 P (13 S 15 E[S] = 12, V (S = (1 1 S 12 6 = 1 Z := ( P (13 S 15 = P S = P (1 Z = P (Z > 1 P (Z > 3 = = P (a S b P (a.5 S b ( P (13.5 S = P S = P (.95 Z Maple * 5 = P (Z >.95 P (Z > 3.5 = = P (13 S 15 = P (S 15 P (S 129 = = X 1, X 2,... Poisso P o( S := X X Poisso P o( E[X 1 ] = 1, V (X 1 = 1 S P (S = k= ( lim P S = 1 e y2 1 2 dy = 2π 2 k e k! lim (1 e ! + + = 1! 2 *5 S B(, p P (S k stats[statevalf,dcdf,biomiald[,p]](k; 29

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47

(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Pre

John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Pre 214 1 24 1 John K. Hunter nd B. Nchtergele, Applied Anlysis, World Scientific, 21. Wine cellr Applied Anlysis M. Reed nd B. Simon, Functionl Anlysis, Acdemic Press, 198. (fourier22, integrl27) (hilbert212)

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

ito.dvi

ito.dvi 1 2 1006 214 542 160 120 160 1 1916 49 1710 55 1716 1 2 1995 1 2 3 4 2 3 1950 1973 1969 1989 1 4 3 3.1 3.1.1 1989 2 3.1.2 214 542 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

取扱説明書 [N-03A]

取扱説明書 [N-03A] 235 1 d dt 2 1 i 236 1 p 2 1 ty 237 o p 238 1 i 2 1 i 2 1 u 239 1 p o p b d 1 2 3 0 w 240 241 242 o d p f g p b t w 0 q f g h j d 1 2 d b 5 4 6 o p f g p 1 2 3 4 5 6 7 243 244 1 2 1 q p 245 p 246 p p 1

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

Test IV, March 22, 2016 6. Suppose that 2 n a n converges. Prove or disprove that a n converges. Proof. Method I: Let a n x n be a power series, which converges at x = 2 by the assumption. Applying Theorem

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3 3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22

More information

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n

a a apier sin 0; 000; 000 = 0 7 sin 0 0; 000; 000 a = 0 7 ;r = 0: = 0 7 a n =0 7 ( 0 7 ) n n =0; ; 2; 3; n =0; ; 2; 3; ; 00 a n+ =0 7 ( 0 7 ) n apier John apier(550-67) 0 2 3 4 5 6 7 8 9 0 2 4 8 6 32 64 28 256 52 024 4 32 = 28 2+5=7 2 n n 2 n 2 m n + m a 0 ;a ;a 2 ;a 3 ; a = a 0 ; r = a =a 0 = a 2 =a = a 3 =a 2 = n a n a n = ar n a r 2 a m = ar

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information