FANO多様体の諸問題 (複素幾何学の諸問題)

Size: px
Start display at page:

Download "FANO多様体の諸問題 (複素幾何学の諸問題)"

Transcription

1 $\bullet$ $\bullet$ FANO CONTENTS Fano MMP MMP Fano Fano Novelli-Occhetta Casagrande -BCHM Fano -VMRT VMRT Hwang $\tau:\mathcal{u}--*c$ Fano Fano (MMP) Fano ( ), 1 Kebekus, Mok-Hwang (VMRT ), [BCHM] Fano Fano Fano - - 1

2 107. Fano -VMRT - Fano $*$, $***$, $**$, ( ) $*$ ( ) 2. FANO Fano Fano (Fano ) $\mathbb{r}$- $D$ $(X, D)$ (klt pair) $K_{X}+D$ $\mathbb{r}$-cartier (discrepancy) $-1$ 2 $(X, D)$ $-(K_{X}+D)$ $(X, D)$ Fano Fano 21. $D=0$ 2.2. MMP. [BCHM] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of $log$ geneml type. J. Amer. Math. Soc. 23 (2010), no. 2, $(X, D)$ (MMP) 3 MMP $t$ MMP($MMP$ with scale) $(X, D)$ $A$ $\mathbb{q}$- $(X, D+A)$ $K_{X}+D+A$ $(K_{X}+D)$-MMP $(X, D)$ $(X, D+A)$ ($K_{X}+D+A$ ) MMP 4 2 Ja nos Kolla r, ( ) 3 4 Shokurov BCHM MMP

3 $\lambda_{1}$ $:= $\lambda_{2}$ $:= $\epsilon$ 108 Fano $(X_{1}, D_{1}):=(X, D),$ $A_{1}:=A$ $K_{X}+D$ $(X, D)$ $(K_{X}+D)$-MMP $0<\lambda_{1}\leq 1$ $\}$ \inf\{t\geq 0 K_{X_{1}}+D_{1}+tA_{1}$ $(K_{X_{1}}+D_{1})\cdot R_{1}<0,$ $(K_{X_{1}}+D_{1}+\lambda_{1}A_{1})\cdot R_{1}=0$ $R_{1}$ $R_{1}$ 5 $(K_{X}+D)$-MMP $f_{1}:x_{1}arrow Y_{1}$ $fi$ $fi$ $(K_{X}+D)$-MMP $fi$ $X_{2}:=Y_{1}$, $X_{2}$ $X_{1}$ $D_{2},$ $A_{2}$ $D_{1},$ $A_{1}$ $X_{2}$ $(K_{X_{1}}+D_{1}+\lambda_{1}A_{1})\cdot R_{1}=0$ $(X_{2}, D_{2}+\lambda_{1}A_{2})$ $K_{X_{2}}+D_{2}+\lambda_{1}A_{2}$ $X,$ $D,$ $A$ $(X_{2}, D_{2})$ $X_{2},$ $D_{2)}\lambda_{1}A_{2}$ $\}$ \inf\{t\geq 0 K_{X_{2}}+D_{2}+tA_{2}$ $\lambda_{2}\leq\lambda_{1}$ $(K_{X_{2}}+D_{2})\cdot R_{2}<0,$ $(K_{X_{2}}+D_{2}+\lambda_{2}A_{2})\cdot R_{2}=0$ $X_{1}-*\cdots--*$ $R_{2}$ $1\geq\lambda_{1}\geq\lambda_{2}\geq\ldots$ $D_{i},$ $A_{i}$ $X_{i}-*X_{i+1}-*\cdots$, $D_{1}$ $A_{1}$ $X_{i}$ $(X_{i}, D_{i}+\lambda_{i}A_{i})$ $K_{X_{i}}+D_{i}+\lambda_{i}A_{i}$ $(X_{i}, D_{i})$ $(K_{x_{:}}+D_{i})$. $<0$ $A_{i}$ $(K_{X}+D)$-MMP. $>0$ 1 (BCHM). $D$ (big) 6 $MMP$ 2.3. MMP. $(X, D)$ $K_{X}+$ $\mathbb{q}$- $D$ (pseudo-effective)7 $(K_{X}+D)$ MMP 2. $K_{X}+D$ $(K_{X}+D)-MMP$ 7 $Y$ MMP $H$ $A$ $H$ $\mathbb{q}$ $\mathbb{q}$- $A$ $(X, D+A)$ $K_{X}+D+A$ $(X, D+\epsilon A)$ $K_{X}+D+\epsilon A$ $D+\epsilon A$ 1 $D$ 1 $A$ $(K_{X}+D+\epsilon A)$-MMP $K_{X}+D+\epsilon A$ $(X, D+\epsilon A)$ $A$ $A$ MMP $(K_{X}+D+\epsilon A)$-MMP $(K_{X}+D)$-MMP $(X, D+\epsilon A)$ $\square$ $(X, D)$ [BCHM] 5 $D$ $\mathbb{q}arrow$ 6 $\mathbb{r}$- $\mathbb{r}$- $\mathbb{r}$ $\mathbb{q}$ 7

4 $\mathbb{c}$ Fano 3(BCHM). Fano $(X, D)$ $B$ $B$ $\rangle$ $MMP$ B-MMP, Fano 3 Y. Hu and S. Keel, Mori dream spaces and $GIT$. Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48 (2000), $B$ $A$ 3 3 $A$ B-MMP B-MMP $(K_{X}+D)$-MMP $B$ $B$ $m$ $m(k_{x}+$ $D)+B$ $H\in -m(k_{x}+$ $D)+B $ $A$ $H$ $\mathbb{q}$ $(X, D+A)$ $m\gg O$ $K+D+A$ $\frac{1}{m}b$ $K_{X}+D+ \frac{1}{m}a$ $A$ $\mathbb{q}$- 1 $A$ B-MMP 2 $\mathbb{q}$- $(K_{X}+D+ \frac{1}{m}a)$-mmp, $(Kx+D+ \frac{1}{m}a)-mmp$ $(Kx+D)-MMP$ $\square$ 2.5. Fano Fano $\pi:\mathcal{x}arrow S$ $\pi$ Fano Fano 9 Fano $\epsilon$ Fano $(X, D)$ $-1+\epsilon$ $(X, D)$ $\epsilon$-jll $D=0$ $(X, 0)$ 1- $\epsilon$ 1(BAB $***$ ). - Fano Alexeev ( V. Alexeev and S. Mori, Bounding Singular Surfaces of General Type 10) Borisov 11 3 toric Fano 15 3 (X ). $8[BCHM]$ Fano $(X, D)$ 9F. Campana, Connexite rationnelle des varietes de Fano, Ann. Sci. \ Ecole Norm. Sup. (4) 25 (1992), no. 5, J. Koll\ ar, Y. Miyaoka, and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, $1_{ //wwwmath princeton.edu $/kollar/$ 11 Alexeev

5 110 Fano J. McKernan and Y. Prokhorov, Threefold thresholds, Manuscripta Math. 114 (2004), no. 3, C. Birkar, Ascending chain condition for $log$ canonical thresholds and termination of $log$ fiips, Duke Math. J. 136 (2007), no. 1, $d$ 4. 2 (1) $\mathbb{q}$- $d$ $MMP$ (2) $d$ $\epsilon$ $BAB$ Picard 1, $\mathbb{q}$- - Fano $d+1$ C. Birkar and V. V. Shokurov, $Mld svs$ thresholds and flips, J. Reine Angew. Math. 638 (2010), ( 18 ). BAB 2( BAB $***$ ). $no$ $d$ 5. 3 (1) $\mathbb{q}$- $d$ $MMP$ (2) (minimal $d$ $log$ discrepancy $(mld)$) 12 (3) $d$ $\mathbb{q}$ $BAB$ Picard 1, - Fano f $d+1$ BAB Batyrev 3 $(**)$. $-mk_{x}$ Cartier Fano 13 $m$ J. McKernan, Boundedness of $log$ terminal Fano pairs of bounded index, $arxiv:math/ $ 3. Fano 14 Kollar 12 statement $13_{X}$ - $14_{n}$ $n-1$ $S$ $P^{1}\cross S-*X$

6 $\mathcal{h}$ $\rho \mathcal{u}\mathcal{k}\downarrowarrow^{\mu}$ $\mathcal{h}$ 111 J. Koll\ ar, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 32. Springer-Verlag, Berlin, viii$+320$ pp 15 $\mathcal{o}_{x}$- $x\in X$ $\mathcal{f}^{x}:=\mathcal{f}_{x}\otimes_{0_{x,x}}k(x)$ 16 $n$ ( ) 1:1 ( ) RatCurve$n(X)$ 17 Univ $(X)arrow RatCurve^{n}(X)$ $\rho:\mathcal{u}arrow \mathcal{k}$ $\mathbb{p}^{1}$- $RatCurve^{n}(X)$ Univ $(X)arrow RatCurve^{n}(X)$ $\mu:\mathcal{u}arrow X$ $\mathcal{k}:={\rm Im}\mu$ Locus 18 (3.1) Locus $\mathcal{k}\subset X$ $\mu$ $x\in X$ $\mu^{-1}(x)$ (locally unsplit) ( ) $x\in X$ $\mu^{-1}(x)$ Univ $(X)arrow RatCurve^{n}(X)$ IP 1, $\mathbb{p}^{1}\cross Hom($ $X)_{red}arrow Hom(\mathbb{P}^{1}, X)_{red}$ $\mathbb{p}^{1}$ Aut $F:\mathbb{P}^{1}\cross Hom(\mathbb{P}^{1}, X)_{red}arrow X$ 20 (P., $[f )$ 19 ($p,$ $[f )\in \mathbb{p}^{1}\cross Hom(\mathbb{P}^{1}, X)_{red}$ $T_{P^{1}}^{p}\cross H^{0}(\mathbb{P}^{1}, f^{*}t_{x})arrow T_{X}^{f(p)}$ Zariski $\mathbb{p}^{1}\cross Hom(\mathbb{P}^{1}, X)arrow X$ $H^{0}(\mathbb{P}^{1}, T_{1P^{1}})arrow T_{1P^{1}}^{p}$ $T_{X}^{f(p)}$ $H^{0}(\mathbb{P}^{1}, T_{1P^{1}})$ $T_{X}^{f(p)}$ $H^{0}(\mathbb{P}^{1}, f^{*}t_{x})arrow$ $H^{0}(\mathbb{P}^{1}, f^{*}t_{x})arrow T_{X}^{f(p)}\simeq(f^{*}T_{X})^{p}$ $f^{*}t_{x}\simeq\oplus_{i=1}^{n}o_{p^{1}}(a_{i})$ $a_{i}$ $f^{*}t_{x}$ $f$ $f$ $f$ 21 $\grave$ $f^{*}t_{x}$ $\iota_{\llcorner}^{\vee}$ self-contained 16 $n$ 17 (normalization) $18\mathcal{K}$. $S$ Locus $S$ 19 $Hom(P^{1}, X)$ $P^{1}\cross \mathcal{h}arrow X$ $P^{1}$ 20 O 21 $f^{*}t_{x}$ $f:p^{1}arrow X$ $P^{1}\cross Hom(P^{1}, X)_{red}arrow X$

7 $ _{-\dot{\hat{\supset}}}^{-}--$ $([f, 112 Fano $x\in$ Locus (3.2) $\dim X+\deg \mathcal{k}-3\leq\dim \mathcal{k}=\dim$ Locus $\mathcal{k}+\dim$ Locus $\mathcal{k}_{x}-2$ (3.3). $\deg \mathcal{k}\leq\dim$ Locus $\mathcal{k}_{x}+1$ $\deg \mathcal{k}$ $(-K_{X}\cdot C)$ 22 $\mathcal{k}_{x}=\rho(\mu^{-1}(x))$ $Hom$ $\mathcal{u}arrow$ Locus $\mu^{-1}(x)$ $\dim \mathcal{k}_{x}$ $\mu _{\rho^{-1}(\mathcal{k}_{x})}$ (generically finite) $\mu _{\rho^{-1}(\mathcal{k}_{x})}$ bend and break 23 $\mathcal{k}_{x}$ Locus $\dim\mu^{-1}(x)=\dim$ Locus (3.2) $\mathcal{k}_{x}-1$ $\mathcal{u}arrow X$ $\dim$ Locus $\mathcal{k}=n$ $f:\mathbb{p}^{1}arrow Carrow X$ $Carrow X$ $f^{*}t_{x}\simeq\oplus_{i=1}^{n}o_{p^{1}}(a_{i})$ $a_{i}$ $Hom(\mathbb{P}^{1}, X)$ $[f]$ $H^{0}(\mathbb{P}^{1}, f^{*}t_{x})$ $[f]$ $[f]$ $Hom(\mathbb{P}^{1}, X)$ $[C]$ $H^{0}(\mathbb{P}^{1}, f^{*}t_{x})/h^{0}(\mathbb{p}^{1}, \sim 1)$ $[C]$ $Hom(\mathbb{P}^{1}, X, 0\mapsto x)$ (3.2) $\mathcal{k}_{x}$ $[f]$ ( ) $[C]$ $Hom(\mathbb{P}^{1}, X, 0\mapsto x)\cross \mathbb{p}^{1}arrow$ $\mathcal{k}_{x}$ Locus y)(y\neq 0)$ $\dim$ Locus $\mathcal{k}_{x}=\#\{i a_{i}\geq 1\}$ $\deg \mathcal{k}=\sum_{i=1}^{n}a_{i}$ (3.2) $0\leq p\leq n-1$ $\sum_{i=1}^{n}a_{i}=\#\{i a_{i}\geq 1\}+1$ Aut $\mathbb{p}^{1}$ $f^{*}t_{x}\simeq O_{P^{1}}(2)\oplus O_{1P^{1}}(1)^{\oplus p}\oplus O_{P^{1}}^{\oplus n-p-1}$ $f$ (standard rational curve) 24 $P$ $f$ 4. FANO Fano 3 Picard 1 Fano $F(X)$ $:= \max\{m\in N (-K_{X})/m\in$ Pic $X\}$ Fano Fano 1 3 Fano $g(x)=$ $22C$ 23 24Kolla r 25Max-Planck Golyshev

8 $\mathbb{q}$ Mazur 26? $(^{***})$ : $\mathbb{z}/m\mathbb{z}(1\leq m\leq 12, m\neq 11),$ $\mathbb{z}/2\mathbb{z}\oplus \mathbb{z}/2m\mathbb{z}(1\leq m\leq 4)$. ( ) 4 5 $(**)$. Picard 1 4 Fano Fano 6 $(*\sim**)$. Fano 4 : H.Sato, Toward the classification of higher-dimensional toric Fano varieties, Tohoku Math. J. 52 (2000), (221), (222), (223) 4 Fano Picard 29 3 Calabi-Yau 3 Calabi-Yau 4 Fano Calabi-Yau Picard $B_{5}$ 3 Fano 5 del Pezzo $U_{22}$ 4.2. Fano (geography) Fano S. Mukai, Problems on chmcterization of the complex projective space, Birational Geometry of Albgebraic Varieties Open Problems, The 23th international symposium, division of mathematics, the Taniguchi fundation, August 22 August 27, Katata, 1988 $26B$. Mazur, Modular curves and the Eisenstein ideal, IHES Publ. Math. 47 (1977), B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), $27F(X)=1$ 28O. Kuchle, On Fano 4-fold of index 1 and homogeneous vector bundles over Grassmannians, Math. Z. 218 (1995), no. 4, Grassmann $29_{4.4}$ Casagrande 30 $F(X)\geq 2$ 4 Fano 3 Calabi-Yau?

9 114 Fano Picard Fano 7( ). $(F(X)-1)\rho(X)\leq\dim X$ $X\simeq(\mathbb{P}^{F(X)-1})^{\rho(X)}$ S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 9, $F(X)=\dim X-3$ Fano $ -K_{X}/F(X) $ 31 Fano Fano Fano Fano $i(x):= \min\{(-kx\cdot C) C$ $\}$ Fano $(-K_{X}/F(X))\cdot C\geq 1$ $i(x)\geq F(X)$ $(-K_{X})\cdot C\geq F(X)$, 8( ). $(i(x)-1)\rho(x)\leq\dim X$ $X\simeq(\mathbb{P}^{i(X)-1})^{\rho(X)}$ - 32 ( ) - -Shepherd-Barron 6. $n$ Fano $i(x)\geq n+1$ $i(x)=n$ 33 9 $(**)$. $n\geq 4$ $n$ Fano $i(x)=n-1$ ) del Pezzo $F(X)$ $i(x)$ 36 $a>b>0)$ $F(X)=1,$ $i(x)=b+1$ $X=\mathbb{P}^{a}\cross \mathbb{p}^{b}(a+1,$ $b+1$ 31 Mella Ambro $32_{F(X)=\dim X+1}$ $F(X)=\dim X$ 33 Hwang-Mok $34F(X)=n-1$ Fano 35 $i(x)=n-1$ $n=4$ $\rho(x)\leq 2,$ $n\geq 5$ $\rho(x)=1$ $n\geq 5$ ( 6 ) 11 36

10 $\overline{\mathcal{k}}_{1}$ $(**)$. Fano $i(x)=$ $\min$ $\{(-K_{X}\cdot l_{i}) [l_{i}]\in R_{i},$ $l_{i}$ $\}$ $R_{i}:X$ 3 4 T. Tsukioka, On the minimal length of extremal rays for Fano 4-folds, arxiv: Picard $(**)$. Picard 1 Fano $i(x)=1$? $F(X)$ $i(x)$ $F(X)=i(X)$? $F(X)=1$ $-K_{X}$ $F(X)=1$? $\dim X=3$ Fano $\dim$ $\llcorner\hat$ t $X\leq$ [NO] C. Novelli and G. Occhetta, Rational curves and bounds on the Picard number of Fano manifolds, Geometriae Dedicata, 147, no. 1, 207-2I7 4, $(*\sim**)$ $6$. 8? 4.3. Novelli-Occhetta [NO] Picard Cartier $S$ $N_{1}(X)$ $N_{1}(S, X)$ RatCurve$n(X)$ $:={\rm Im}(N_{1}(S)arrow N_{1}(X))$ : $S$ Chow -S $(X)$ RatCurv$e^{}$ $\mathcal{k}_{1}$ $\pi_{1}:x-*y_{1}$ $\mathcal{k}_{1}$ $Y_{1}$ $\overline{\mathcal{k}}_{1}$ $Y_{1}$ 39 $\mathcal{k}_{2}$ $\mathcal{k}_{1}$ $\mathcal{k}_{1},$ $\mathcal{k}_{2}$ $\pi_{2}:x--*$ 37Kolla r 113. $38J$. Koll\ ar, Y. Miyaoka, and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, $39X-*Y_{1}$ $\mathcal{k}_{1}$

11 $\Gamma_{j_{0}}$ $\overline{\mathcal{k}}_{1}$ $\overline{\mathcal{k}}_{1}$ $\overline{\mathcal{k}}_{1}$ $\mathcal{k}_{1},$ $\mathcal{k}_{m}$ 116 Fano $\overline{\mathcal{k}}_{2}$ $Y_{2}$ $\mathcal{k}_{1},$ $\mathcal{k}_{2}$ $\mathcal{k}_{3}$ $\mathcal{k}_{1},$ $\mathcal{k}_{m}$ $\ldots,$ $\overline{\mathcal{k}}_{2}$ 2 $\overline{\mathcal{k}}_{m}$ (4.1) $\dim X\geq(\sum_{i=1}^{m}\deg \mathcal{k}_{i})-m$ 40 $\deg \mathcal{k}_{i}\geq i(x)$ $\dim X\geq m(i(x)-1)$ $\mathcal{k}_{i}$ 41 (quasiunsplit), $\rho(x)=m$ 42 $\overline{\mathcal{k}}_{i}$ $\mathcal{k}_{i}$ [NO] $i(x) \geq\frac{\dim X+3}{3}$ $\mathcal{k}_{i}$ ( ) $\deg \mathcal{k}_{i\text{ }}\geq 2i(X)$ i $i(x) \geq\frac{\dim X+3}{3}$ (41) $m=1$ 2 $\overline{\mathcal{k}}_{1}$ $\overline{\mathcal{k}}_{1}$ $k$ 2 2 $\overline{\mathcal{k}}_{1}$ $k$ $x\in X$ $\Gamma_{1},$ $\Gamma_{k}$ $x\in\gamma_{1},$ $\Gamma_{1}\cap\Gamma_{2}\neq\emptyset,$ $\Gamma_{k-1}\cap\Gamma_{k}\neq\emptyset$ $\overline{\mathcal{k}}_{1}$ $\ldots,$ $\ldots,$ $\Gamma_{j}$ $\Gamma_{j}$ $\Gamma_{j}$ $i$ $j_{0}$ $\Gamma_{1}\cup\cdots\cup\Gamma_{k}$ $\Gamma$j $\Gamma_{j_{0}}$ $\mathcal{k}_{1}$ ( ). $j_{0}\geq 2$ $\Gamma_{j_{0}-1}$ $x_{1}$ $io=2$ $x_{1}=x,$ $j_{0}\geq 3$ $\Gamma_{j_{0}-2}\cap\Gamma_{j_{\text{ }}-1}$ $Y$ $(\mathcal{k}_{1})_{x_{1}}$ Locus $\Gamma_{j_{0}}$ (3.3) $\dim Y\geq\deg \mathcal{k}_{1}-1$ $i(x) \geq\frac{\dim X+3}{3},$ $\deg \mathcal{k}_{1}\geq 2i(X)$ $\Gamma_{j_{0}}$ $\dim Y>\dim X-i(X)$ $\Gamma $ $Y$ $j_{0}$ $x_{1}$ 40 (3.3) [ACO]M. Andreatta, E. Chierici, and G. Occhetta, Generalized Mukai conjecture for special Fano varieties, Cent. Eur.. Math. 2 (2004), no. 2, Lemma $J$ 54 $X\simeq(P^{i(X)-1})^{m}$ 41 [NO] Lemma44 $A$ G. Occhetta, characterizalion of products of projective spaces, Canad. Math. Bull. 49 (2006), no. 2, $\mathcal{k}_{i}$ 42 [ACO] Lennna 44 $\ldots,$

12 $\Gamma_{j_{0}}$ 117 $\Gamma $ $N_{1}(Y, X)$ $W$ $\Gamma $ $\dim$ Locus $\mathcal{w}_{y}\geq\dim Y+(-K_{X}\cdot\Gamma )-1>\dim X-i(X)+i(X)-1$ Locus Wy $Y$ $\mathcal{w}$ Locus, $\mathcal{w}_{y}=x$ $\mathcal{w}$ $\mathcal{k}_{1}$ 13 $(**)$. $i(x)= \frac{n+2}{3}$, $\frac{n+1}{3}$ 43 $\rho(x)\geq 2$? 4.4. Casagrande BCHM -. C. Casagrande, On the Picard number of divisors in Fano manifolds, arxiv: [BCHM] Fano ( 16). Picard ( 4 ) Fano Picard ( 12) 4 Fano Picard $S$ $\rho(x)-\rho(s)\leq$ codim $N_{1}(S, X)$ Fano Fano (1) $i(x)=2$ 1 45 Fano $Z$ $\mathbb{p}^{1}$ (2) $D$ $\rho(d)$, ) $i(x)$ 1 $Z$ - Fano $N_{1}(D, X)=N_{1}(X)$ $\rho(x)\leq$ $N^{1}(X)arrow N^{1}(D)$ ($i(x)>1$ ) $D$ 3 D-MMP $K_{X}$-MMP Fano MMP $Y$ $Yarrow Z$ MMP $N_{1}(D, X)$ $D$ $Y$ $D_{Y}$ $D_{Y}$ $D_{Y}arrow Z$ $\rho(y)-\rho(z)=1$ codim $N_{1}(D_{Y}, Y)\leq 1$ $X_{i}$ MMP (X ) $X_{i}arrow Y_{i}$ $R_{i}$ $X_{i}--*X_{i+1}$ $X_{i}arrow Y_{i}$ 46 Fano $X_{i}arrow Y_{i}$ $D$ $D_{i},$ $D_{i+1}$ $R_{i}\subset N_{1}(D_{i}, X_{i})$ $X_{i},$ $X_{i+1}$ codim $N_{1}(D_{i}, X_{i})=$ codim $N_{1}(D_{i+1}, X_{i+1})$, codim codim $N_{1}(D_{i+1}, X_{i+1})$ codim $N_{1}(D_{Y}, Y)\leq 1$ $N_{1}(D_{i}, X_{i})-1=$ 43 $n=5$ Occhetta $45Y$ 8 46 (2) Picard Picard

13 118 Fano codim $N_{1}(D, X)$ $R_{i}\not\subset N_{1}(D_{i}, X_{i})$ $R_{i}\not\subset N_{1}(D_{i}, X_{i})$ $X_{i}arrow Y_{i}$ $D_{i}$ $l$ $X_{i}arrow Y_{i}$ 1 $D$ Sing $X_{i}\subset D_{i}$ $X_{i}-*X$ $l$ $X_{i}$ Sing $l$ $-K_{X_{1}}\cdot l\leq 1$ $X_{i}$ 47 Sing $l$ $X-*X_{i}$ MMP $-K_{X}$ ( 48 ). Fano $l$ $X_{i}$ Sing $X_{i}arrow Y_{i}$ $Y_{i}$ Sing 2 $\not\subset N_{1}(D_{i}, X_{i})$ $X_{i}arrow Y_{i}$ Fano $i(x)$ 1 MMP $\not\subset$ $N_{1}(D_{i}, X_{i})$ $X_{i}arrow Y_{i}$ $-K_{X}$ 1 codim $N_{1}(D, X)=$ codim $N_{1}(D_{Y}, Y)\leq 1$. codim $N_{1}(D_{Y}, Y)=1$ $D_{Y}$ $Yarrow Z$ $Yarrow Z$ 1 $i(x)\geq 2$ $\square$ $X=Y$ $Xarrow Z$ $\mathbb{p}^{1}$- 5. FANO -VMRT VMRT Kebekus Hwang Mok $\mathbb{p}(t_{x}^{*})$ 49 $\mathbb{p}(t_{x})$ Grothendieck $\mathbb{p}^{*}(t_{x})$ $V$ 1 $\mathbb{p}_{*}(v)$ $RatCurve^{n}(X)$ $\tau:\mathcal{u}-*\mathbb{p}(t_{x}^{*})$ : $\alpha\in \mathcal{u}$ $\rho(\alpha)$ $x:=\mu(\alpha)$ $\mathbb{p}(t_{x}^{*})$ $C\subset \mathbb{p}(t_{x}^{*})$ $\pi:c\subset \mathbb{p}(t_{x}^{*})arrow X$ (Variety of Minimal Rational Tangents), VMRT $\tau$ $\mathcal{k}_{x}$ bend and break $x\in X$ $p$ $p$ $f:\mathbb{p}^{1}arrow X$ $f^{*}t_{x}\simeq O_{P^{1}}(2)\oplus O_{P^{1}}(1)^{\oplus p}\oplus O_{P^{1}}^{\oplus n-p-1}$ $\tau$ $p$ $\mu^{-1}(x)arrow \mathcal{k}_{x}$ $\mathcal{k}_{x}-*c_{x}$ Kebekus $p$ $\mu^{-1}(x)-*c_{x}$ 47S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Am. Soc. Sci., 1 (1988) Kolla r $49_{T_{X}}$ $T_{X}^{*}$

14 119 S. Kebekus, Families of singular rational curves, J. Algebraic Geom. 11 (2002), no. 2, VMRT $C_{x}\subset \mathbb{p}_{*}(t_{x}^{x})$ 14 $(**)$. Picard 1 $S$ Fano Picard 1 50 $x\in X$ VMRT $C_{x}\subset \mathbb{p}_{*}(t_{x}^{x})$ $s\in S^{51}$ $C_{s} \subset \mathbb{p}_{*}(t_{s}^{s})$ VMRT ( ) $X\simeq S$. Mok 14 N. Mok, Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of.minimal mtional tangents, AMS $/IP$ Studies in Advanced Mathematics, 42, Hong-Hwang long simple root 14 J. Hong and J. Hwang, Characterization of the mtional homogeneous space associated to a long simple root by its variety of minimal rational tangents, Algebraic geometry in East Asia-Hanoi 2005, Advanced Studies of Pure Mathematics, 50, Shepherd-Barron 8. VMRT $\mathbb{p}_{*}(t_{x}^{x})$ 52 VMRT $\mathbb{p}_{*}(t_{x}^{x})$ K. Cho, Y. Miyaoka, N. I. Shepherd-Barron, Chamcterizations of projective space and applications to cornplex symplectic $\gamma nanifolds$, Higher dimensional birational geometry (Kyoto, 1997), 1-88, Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002 S. Kebekus, the rojective $Cha7^{\cdot}acter\cdot izing$ $p$ $space$ after $Cho$, Miyaoka and Shepherd-Barron, Complex geometry (G\"ottingen, 2000), , Springer, Berlin, 2002 VMRT 53 VMRT 9. Picard 1 Fano $\mathbb{p}_{*}(t_{x}^{x})$ VMRT Y. Miyaoka, Numerical characterisations of hyperquadrics, Adv. Stud. Pure Math. 42, Math. Soc. Japan, Tokyo (2004) VMRT $50_{S}$ $51S$ 52 6

15 $\mathcal{e}$ slope $\mathbb{p}^{2}$ 120 Fano 5.2. Hwang Hwang VMRT Hwang 15 $(**)$. Picard 1 Fano $n$ 8, 9 $P=n-2,$ $n-1$ Reid $F(X)=1$ Peternell Wis niewski $F(X)\geq\dim X-2$ Hwang 5 6 J. Hwang, Stability of tangent bundles of low-dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998), no. 4, Picard 1 Fano Picard 1 $\mu(\mathcal{e}):=\frac{c_{1}(\mathcal{e})\cdot C}{rank\mathcal{E}}$ 51 $P$, $\mu(t_{x})=l+\underline{2}$ T $r=1$ $r$ Wahl $T_{X}$ $r\geq 2$ Zariski $\mathcal{f} c\subset T_{X} c$ $\mathcal{f} _{C}=\oplus_{i=1}^{r}O_{P^{1}}(a_{i})(a_{1}\geq a_{2}\geq\cdots\geq a_{r})$ $\mu(\mathcal{f})>\mu(t_{x})>0$ $a_{i}$ 2 $a_{1}>0$ $a_{i}$ 1 $T_{X} c$ $a_{1}$ 2 $r<n$ $\mu(\mathcal{f})=\sigma\underline{a_{l}}\leq 1$ Picard 1 $p=0$ $T_{X}$ $T_{X}$ $\mathcal{f} c$ $O_{P^{1}}(1)$ $T_{X} c$ $O_{P^{1}}(2)$ $\mathcal{f} c\subset T_{X} c$ $n=6$ $P=0,4,5$ $p=3$ $\deg \mathcal{k}=5$ $F(X)=1$ 5 $F(X)=1$ Reid, $F(X)=5$ Peternell $p=1$ $T_{X} c$ $a_{1}=1,$ $a_{i}\leq 0(i\geq 2)$ Wi\ {s}niewski $\tau_{x}$ $\mu(\mathcal{f})>0$ $a_{i}=0(i\geq 2)$ $\mu(\mathcal{f})=\frac{1}{r}\leq\frac{1}{2}$. $\mu(\mathcal{f})=\mu(t_{x})$ $n>4$ $\mu(\mathcal{f})<1$ $\mu(t_{x})=\frac{3}{6}$ $T_{X}$ $p=2$ 53 $n=6$ $\mu(\mathcal{f})=\mu(t_{x})$ $T_{X}$ $\mathcal{f} _{C}$ enumeration $\mu(\mathcal{f})=1$ $\mathbb{p}^{2}$ distribution 54 $\mathcal{f} $ $\mathcal{f} <n$ rank Picard 1 16 $(**)$. Picard 1 $n$ Fano $X\simeq \mathbb{p}^{n}$ $(-K_{X})^{n}\leq(n+1)^{n}$ $53VMRT$ fundamental (saturated)

16 121 J. Hwang, On the degrees of Fano four-folds of Picard number 1, J. Reine Angew. Math. 556 (2003), Hwang 4 55 Bogomolov 8 $(-K_{X})^{2}c_{2}(X)\geq$ $3(-K_{X})^{4}$, Riemann-Roch $\dim -K_{X} =\frac{(-k_{x})^{4}}{6}+\frac{(-k_{x})^{2}c_{2}(x)}{12}$ $\dim -K_{X} \geq\frac{19}{96}(-k_{x})^{4}$ $\dim -K_{X} $ $\dim C_{x}=0,1,2,3$ $\dim C_{x}=2,3$ 8, 9 $\dim$ C. $=1$ $F(X)=4,3,2$ $F(X)=1$, $ -K_{X} $ $\dim -K_{X} $ $ -K_{X} $ $F(X)=1$ $\dim -K_{X} \leq 120$ $\dim -K_{X} >120$ $k$ $k\geq 2$ $\frac{1}{6}(k^{3}+6k^{2}-k-6)$ 56 $\dim -K_{X} >120$ $x,$ $y$ 5 $ -K_{X} $ 3 35 $P_{*}(T_{X}^{x})\simeq \mathbb{p}^{3}$ $\deg \mathcal{k}=3$ 4 $ -K_{X} $ $D$ $\mathcal{k}_{x}$ $\mathbb{p}_{*}(t_{x}^{x})$ 4 25 $\dim -K_{X} >2(35+25)=120$ $\mathcal{k}_{x}$ $\dim S_{x}=2$ $\mathcal{k}_{x}$ $M_{C}$ $\bigcup_{y\in C}S_{y}$ $M_{C}$ 3 $H$ 57 $x,$ $y\in C$ $ -K_{X} $ Nadel ( 10) $ -K_{X} $ 4 $H$ $H$ $\square$ $F(X)=1$ Nadel Nadel Picard 1 Fano 10. $C\subset X$ $L$ $\nu:\mathbb{p}^{1}arrow C$ $\nu^{*}t_{x}=\sum_{i=1}^{n}$ $O_{P^{1}}$ $(a_{i})$ $d \leq\min\{a_{1}, \ldots, a_{n}\}$ $d$ 58 $ L $ $D$ $x_{1},$ $\ldots,$ $\sum_{i=1}^{m}(m_{x_{i}}(d)-m_{c}(d))\leq C\cdot L-d\cdot m_{c}(d)$, $x_{m}\in C$ $m_{x_{i}}(d);m_{c}(d)$ $D$ $x_{i}$ 59 K. Watanabe, Lengths of chains 555 $(-K_{X})^{5}\leq 9^{5}$ of minimal mtional curves on Fano manifolds, arxiv: , to appear in Journal of Algebra 56 3 VMRT fundamental $d=0$ $59C$ $m_{x_{i}}(d)\geq m_{c}(d)$.

17 122 $k_{i}:=m_{x_{i}}(d),$ Fano $l:=mc(d)$ $D$ l-jet $\nu^{*}(sym^{l}t_{x}^{*}\otimes L)$ $\nu^{*}(sym^{l}t_{x}^{*}\otimes L)$ $x_{i}$ ki l $\sum_{i=1}^{m}$(ki l). L dl. $\leq C$ $\square$. C ld $L$ Fano $(-K_{X})^{\dim X}$ 60 ( ) Ran Clemens $A$ ${\rm Res}$ Z. Ran, H. Clemens, New Method in Fano Geometry, Int Math Notices (2000) 2000 (10): (Campana-Peternell61 $**$). Fhno $T_{X}$ : $\mu$ 62 ( ) 63 J. Hwang, Rigidity of rational homogeneous spaces, International Congress of Mathematicians. Vol. II, , Eur. Math. Soc., Z\"urich, 2006 Hwang 4 Mok (3.1) N. Mok, On Fano manifolds with $nef$ tangent bundles admitting l-dimensional varieties of minimal mtional tangents, Trans. A.M.S. 354 (2002), Picard $>1$ Campana-Peternell Picard $>1$ 18 $(**)$. Picard 2 17 Picard 1 $\dim C_{x}\leq 3$ $\dim C_{x}=3,2$ 8, 9 $\dim C_{x}=0$ $\mu$ $\mu$ $\mathbb{p}^{1}$- Picard $\mathcal{u}$ 1 $\dim C_{x}=1$ Mok Mok (4 ), (31) $\mathbb{p}^{3}$ $X\simeq \mathbb{p}^{2},$ $X\simeq Q^{3},$ (5 )G2 $\square$ $61F$. Campana and T. Peternell, Projective manifolds whose tangent bundles are numerically effective, Math. Ann. Vol. 289, Number 1, $64Mok$ Hwang $65_{\mu}$ $P^{1}$ $\rho$ 2

18 $\mathcal{k}_{x}$ $\rangle$ $(*\sim**)$. 4, 5 $\mathbb{p}^{4}$ VMRT 20 $(*\sim**)$. $Z$ Fano 66 $Z$ VMRT Hwang 67 Fano $Z\subset \mathbb{p}^{n}$ 11. $H$ $\pi:xarrow \mathbb{p}^{n}$ $Z$ $Z$ $x\in X\backslash \pi^{-1}(h)$ ( $\pi(x)$ $Z$ $Z$ ), $Z$ 5.3. $\tau:\mathcal{u}-*c$ VMRT Hwang-Mok fundamental 68 J. Hwang, Geometry of minimal mtional curves on Fano manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Thrieste, 2000), , ICTP Lect. Notes, 6, Abdus alam Int. Cent. Theoret. Phys., $S$ $rrieste$, $\tau:\mathcal{u}-*c$ $\mathcal{k}_{x}arrow C_{x}$ $x\in X$ $(***)$. Picard 1 Fano $?X$? VMRT 12 J. Hwang, N. Mok, Birationality of the tangent map for minimal mtional curves, Asian J. Math. 8 (2004), no. 1, Picard 1 $67_{j}$. Hwang, Equivalence problem for minimal rational curves with isotrivial varieties of minimal rational tangents, arxiv: $6S$ Hwang $69\dim C_{x}=0$ $7_{F}$. Zak

19 $\hat{\tau}_{c_{\pi(\alpha)}^{\alpha}}$ $\mathcal{u}$ $\prime \mathcal{r}$ $\mathcal{u}$ 124 Fano 12 $\rho:\mathcal{u}arrow \mathcal{k}$ $\tau$ $\tau$ $x\in X$ $p :=\dim C_{x}$ $C_{\pi(\alpha)}$ $\alpha$ $\hat{t}_{c_{\pi(\alpha)}}^{\alpha}$ $p +1$ $T_{X}^{\pi(\alpha)}$ $f$ $f^{*}t_{x}\simeq O_{P^{1}}(2)\oplus O_{P^{1}}(1)^{\oplus p}\oplus O_{P^{1}}^{\oplus n-1-p}$ 3 $*$ $\alpha$ f T $\hat{t}_{c_{\pi(\alpha)}}^{\alpha}$ 71 $p=p $ $O_{P^{1}}(2)\oplus O_{lP^{1}}(1)^{\oplus p}$ distribution $P$ $\alpha$ $\mathcal{p}^{\alpha}=(d\pi)^{-1}(\hat{t}_{c_{\pi(\alpha)}}^{\alpha})\subset T_{C}^{\alpha}$ $d\pi$ $P$ $\pi$ $\alpha$ subdistribution $\mathcal{p}$ $(\mathcal{p})^{\alpha}:=\{p\in \mathcal{p}^{\alpha} \lceil p, P^{\alpha}]=0\}$ Ch $S$ Jacobi Frobenius $(\mathcal{p})$ Ch $S$ $P$ Gauss $C_{x}-*G(p+1, T_{X}^{x})(\alpha\mapsto\hat{T}_{C_{x}}^{\alpha})$ Gauss $S$ 72 $\mathcal{r}$ $P$ $\tau:\mathcal{u}-*c$ distribution $Hom(\mathbb{P}^{1}, X)$ 3 $[f]$ $[f]$ $H^{0}(\mathbb{P}^{1}, f^{*}t_{x})$ $[C]$ $[C]$ $H^{0}(\mathbb{P}^{1},0_{P^{1}}(1)^{\oplus p})$ \mathcal{r}$ $\prime distribution $\mathcal{f} $ $\alpha$ $H^{0}(\mathbb{P}^{1}, O_{P^{1}}(1)^{\oplus p}\oplus O_{P^{1}}^{\oplus n-1-p})$ $V$ distribution $d\rho$ $\mathcal{u}$ $\mathcal{r}$ $P$ $\tau$ $\pi:carrow X$ $\mathcal{j}$ $\mathcal{f} $ $\mathcal{j}^{\alpha}=(d\pi)^{-1}(\mathbb{c}\alpha)$ $\alpha\in \mathcal{u}$ distribution73 $\alpha$ ( $)v+\mathcal{f} =\mathcal{j}$ (5.1) $P=V+\mathcal{F} +[\mathcal{f}, V]$ $(\mathcal{r})$ Ch Ch $(P)$ $\rho$ $\mathcal{f}\subset$ $\prime p$ $\mathcal{f} \subset$ $( \mathcal{r})$ $\mathcal{r}$ Ch Ch $(P)$ $\mathcal{g}$ Gauss $V$ $\mathcal{g}=$ Ch 74 (51) Ch $(\mathcal{p})\cap V$ $(\mathcal{p})=\mathcal{g}+\mathcal{f} +[\mathcal{f}, \mathcal{g}]$ $\mathcal{g}$ Gauss rank $k-1$ rank Ch $(\mathcal{p})=2k-1$ $T=\pi(S)$ $\dim T=k$ $\mathcal{f} $ $\pi$ $\alpha$ $T$ $T$ $T$ $T^{0}$ $\alpha\in C$ $S$ $\mathbb{p}(t_{t^{0}}^{*})$ $\mathcal{r}$ 72 $\mathbb{p}(t_{t^{\text{ }}}^{*})\cap S$ $\mathbb{p}(t_{t^{\text{ }}}^{*})$ N. Mok $73\mathbb{C}\alpha$ $T_{\lambda}^{\pi(\alpha)}$ $\alpha$ 1 74Gauss

20 $\overline{t}^{n}$ $\overline{t}$ $\overline{t}$ 125 $T$ $t$ $t$ Gauss $\overline{t}$ Gauss $\mathcal{k}^{t}\subset \mathcal{k}$ $\mathcal{u}^{t}$ $T$ $u$ $\mathcal{k}^{t}$ $\mathcal{k}^{t}$ $C^{T}$ VMRT $\overline{t}$ $\overline{t}$ $t\in T$ $\mathbb{p}_{*}(t_{t}^{t})$ $\mathbb{p}^{k}arrow\ovalbox{\tt\small REJECT} T$ 8 Sing $(\mathcal{p})$ Ch $S$ $U^{T}-*\mathcal{K}^{T}$ 8 $\overline{t}$ 12 $T \frac{t}{t}$ $C_{t}$ 21 Gauss $\square$ $t$ Cauchy Gauss Zak $S$ Cauchy $(\mathcal{f}$ Cauchy ) 22 $(**)$. Picard 1 Fano Cauchy??75 23 $(**)$. Picard 1 Fano $\dim$ $\geq 1$. $\ovalbox{\tt\small REJECT} X$ 8 $X^{0}$ Zariski $\mathbb{p}^{p+1}$ - $\varphi:x^{0}arrow T^{0}$ $X^{0}$ ) $X^{0}$ $\varphi$ $p:=\dim C_{x}\geq 1$ C. Araujo, Rational curves of minimal degree and chamcterizations of projective spaces, Math. Ann. 335 (2006), no. 4, $\mathbb{p}^{p+1}$ - Cauchy Andreatta-Wis niewski $T_{X}$ 76 Cauchy [HM] 12 Lazarsfeld 14. Picard 1 $G/P$ $f$ 77 $f:g/parrow X$ $X\simeq \mathbb{p}^{n_{l}}$ 75 $C_{x}=P_{*}(T_{X}^{x})$ $77_{Picard}$ 2 C. Lau, Holomorphic maps from rational homogeneous spaces onto projective manifolds, J. Algebraic Geom. 18 (2009), no. 2,

21 126 Fano 4 Fano VMRT N. Mok VMRT address: takagi@ms.u-tokyo.ac.jp

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable

k k Q (R )Z k X 1. X Q Cl (X) 2. nef cone Nef (X) nef semi-ample ( ) 3. 2 f i : X X i X i 1 2 movable cone Mov (X) fi (Nef (X i)) 3 movable 1 (Mori dream space) 2000 [HK] toric toric ( 2.1) toric n n + 1 affine 1 torus ( GIT ) [Co] toric affine ( )torus GIT affine torus ( 2.2) affine Cox ( 3) Cox 2 okawa@ms.u-tokyo.ac.jp Supported by the Grant-in-Aid

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 3 90 2006 1. V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2 = xz y 2 = 0} V (x,y) n = 1 n = 2 (x,y) V n = 1 n = 2 (3/5,4/5),(5/13,12/13)... n 3 V (0,±1),(±1,0) ( ) n 3 x n + y n = z n,

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

[AI] G. Anderson, Y. Ihara, Pro-l branched cov erings of P1 and higher circular l-units, Part 1 Ann. of Math. 128 (1988), 271-293 ; Part 2, Intern. J. Math. 1 (1990), 119-148. [B] G. V. Belyi, On Galois

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4

1.., M, M.,... : M. M?, RP 2 6, 2 S 1 S 1 7 ( 1 ).,, RP 2, S 1 S 1 6, 7., : RP 2 6 S 1 S 1 7,., 19., 4 1.., M, M.,... : M. M?, RP 6, S 1 S 1 7 ( 1 ).,, RP, S 1 S 1 6, 7.,. 1 1 3 1 3 5 6 3 5 7 6 5 1 1 3 1 1: RP 6 S 1 S 1 7,., 19., RP 3 S 1 S 1 S 1., i., 10. h. h.,., h, h.,,,.. . (, )., i f i ( ). f 0 ( ),

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] =

R C Gunning, Lectures on Riemann Surfaces, Princeton Math Notes, Princeton Univ Press 1966,, (4),,, Gunning, Schwarz Schwarz Schwarz, {z; x}, [z; x] = Schwarz 1, x z = z(x) {z; x} {z; x} = z z 1 2 z z, = d/dx (1) a 0, b {az; x} = {z; x}, {z + b; x} = {z; x} {1/z; x} = {z; x} (2) ad bc 0 a, b, c, d 2 { az + b cz + d ; x } = {z; x} (3) z(x) = (ax + b)/(cx

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $

133 $M$ $M$ expanding horosphere $g$ $N,$ $M $ $M,$ $M $ expanding horosphere $M,$ $M $ Theorem. $\varphi$ : $Marrow M $ $M$ expanding horosphere $M $ 863 1994 132-142 132 Horocycle Rigidity (Ryuji Abe) 1 Introductjon Horosphere horocycle v horocycle horocycle flow $\circ$ M. Ratner [Rl horocycle flow N 2 Riemann $M_{c}$ $N_{c},$ $M_{c} $ Ratner $M$

More information

On the fractional indices for del Pezzo surfaces $\log$ *( ) Kento Fujita (Research Institute for Mathematical Sciences, Kyoto Univer

On the fractional indices for del Pezzo surfaces $\log$ *( ) Kento Fujita (Research Institute for Mathematical Sciences, Kyoto Univer Title 対数的デルペッツォ曲面の分数的指数について (Fano 多様体の最近の進展 ) Author(s) 藤田, 健人 Citation 数理解析研究所講究録 (2014), 1897 1-20 Issue Date 2014-05 URL http//hdl.handle.net/2433/195883 Right Type Departmental Bulletin Paper Textversion

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C

A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0) D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C A 1 Bridgeland A [15] f : X Y = Spec C[x, y, z]/(xy + z n+1 ) A n, Z = f 1 (0)D = D Z (X) X Z C Rf E = 0 E D [15] 1.1 ([15]). D Stab D Stab C Stab C Thomas [22] Bridgeland K3 2 Harder- Narasimhan 2.1 2.1.

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL

Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田, 浩一 Citation 数理解析研究所講究録 (2009), 1665: Issue Date URL Title 素数の3 乗の和で表せない自然数の密度について ( 解析的整数論とその周辺 ) Author(s) 川田 浩一 Citation 数理解析研究所講究録 (2009) 1665: 175-184 Issue Date 2009-10 URL http://hdlhandlenet/2433/141041 Right Type Departmental Bulletin Paper Textversion

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin) 教科専門科目の内容を活用する教材研究の指導方法 : TitleTeam2プロジェクト ( 数学教師に必要な数学能力形成に関する研究 ) Author(s) 青山 陽一 ; 中馬 悟朗 ; 神 直人 Citation 数理解析研究所講究録 (2009) 1657: 105-127 Issue Date 2009-07 URL http://hdlhandlenet/2433/140885 Right

More information

1 2 2 2 1 3 1.1............................................ 3 1.2......................................... 7 1.3.................................. 8 2 12 3 16 3.1.......................... 16 3.2.........................

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°, ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°,   ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊 , 2 August 28 (Fri), 2016 August 28 (Fri), 2016 1 / 64 Outline 1 2 3 2 4 2 5 6 August 28 (Fri), 2016 2 / 64 fibonacci Lucas 2 August 28 (Fri), 2016 3 / 64 Dynamic Programming R.Bellman Bellman Continuum

More information

References tll A. Hurwitz, IJber algebraischen Gebilde mit eindeutige Transformationen Ann. in sich, Math. L27 A. Kuribayashi-K. Komiya, On Weierstrass points of non-hyperelliptic compact Riemann surfaces

More information

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h

1 1. R 2n non-kähler complex structure n = 2 n = 1 complex curve Kähler No n 3 Calabi Eckmann Yes 1953 2 complex structure 2 Hopf h p : S 2p+1 CP p, h Non-Kähler complex structures on R 4 ( ) 1. Antonio J. Di Scala (Politecnico di Torino), Daniele Zuddas (KIAS) [1] R 4 non-kähler complex surfaces Kähler 1. (M, J) complex manifold M complex structure

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

情報教育と数学の関わり

情報教育と数学の関わり 1801 2012 68-79 68 (Hideki Yamasaki) Hitotsubashi University $*$ 1 3 [1]. 1. How To 2. 3. [2]. [3]. $*E-$ -mail:yamasaki.hideki@r.hit-u.ac.jp 2 1, ( ) AND $(\wedge)$, $OR$ $()$, NOT $(\neg)$ ( ) [4] (

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om 1256 2002 161-171 161 $L$ (Hirofumi Nagoshi) Research Institute for Mathematical Sciences, Kyoto Univ. 1. $L$ ( ) 2. ( 0 1 ) $X_{1},$ $X_{2},$ $X_{3},$ $\cdots$ $n^{-1/2}(x_{1}+$ $X_{2}+\cdots+X_{n})$

More information

数論的量子カオスと量子エルゴード性

数論的量子カオスと量子エルゴード性 $\lambda$ 1891 2014 1-18 1 (Shin-ya Koyama) ( (Toyo University))* 1. 1992 $\lambdaarrow\infty$ $u_{\lambda}$ 2 ( ) $($ 1900, $)$ $*$ $350-8585$ 2100 2 (1915 ) (1956 ) ( $)$ (1980 ) 3 $\lambda$ (1) : $GOE$

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

数理解析研究所講究録 第1977巻

数理解析研究所講究録 第1977巻 1977 2015 33-44 33 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute 2015 9 30 Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double

More information

2014 x n 1 : : :

2014 x n 1 : : : 2014 x n 1 : : 2015 1 30 : 5510113 1 x n 1 n x 2 1 = (x 1)(x+1) x 3 1 = (x 1)(x 2 +x+1) x 4 1 = (x 1)(x + 1)(x 2 + 1) x 5 1 = (x 1)(x 4 + x 3 + x 2 + x + 1) 1, 1,0 n = 105 2 1 n x n 1 Maple 1, 1,0 n 2

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

一般相対性理論に関するリーマン計量の変形について

一般相対性理論に関するリーマン計量の変形について 1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

超幾何的黒写像

超幾何的黒写像 1880 2014 117-132 117 * 9 : 1 2 1.1 2 1.2 2 1.3 2 2 3 5 $-\cdot$ 3 5 3.1 3.2 $F_{1}$ Appell, Lauricella $F_{D}$ 5 3.3 6 3.4 6 3.5 $(3, 6)$- 8 3.6 $E(3,6;1/2)$ 9 4 10 5 10 6 11 6.1 11 6.2 12 6.3 13 6.4

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA) Title 集合値写像の凸性の遺伝性について ( 不確実なモデルによる動的計画理論の課題とその展望 ) Author(s) 西澤, 正悟 ; 田中, 環 Citation 数理解析研究所講究録 (2001), 1207: 67-78 Issue Date 2001-05 URL http://hdlhandlenet/2433/41044 Right Type Departmental Bulletin

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Mathematica を活用する数学教材とその検証 (数式処理と教育)

Mathematica を活用する数学教材とその検証 (数式処理と教育) $\bullet$ $\bullet$ 1735 2011 115-126 115 Mathematica (Shuichi Yamamoto) College of Science and Technology, Nihon University 1 21 ( ) 1 3 (1) ( ) (2 ) ( ) 10 Mathematica ( ) 21 22 2 Mathematica $?$ 10

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P 4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

2018 : msjmeeting-2018sep-07i003 ( ) Banach Banach Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B

2018 : msjmeeting-2018sep-07i003 ( ) Banach Banach Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B 2018 : msjmeeting-2018sep-07i003 () Banach Banach 1. 1.1. Banach Banach Banach (B, ) ab a b ( a, b B) B Banach B Banach B B B 1 σ(a) = {λ C : a λe B 1 } a B e B Example 1. 1. Hausdorff K C(K) f = sup{

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De Title 可測ノルムに関する条件 ( 情報科学と函数解析の接点 : れまでとこれから ) こ Author(s) 原井 敬子 ; 前田 ミチヱ Citation 数理解析研究所講究録 (2004) 1396: 31-41 Issue Date 2004-10 URL http://hdlhandlenet/2433/25964 Right Type Departmental Bulletin Paper

More information

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medic

BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medic 1575 2008 73-87 73 BORSUK-ULAM (Ikumitsu Nagasaki) Department of Mathematics, Graduate School of Medical Science Kyoto Prefectural University of Medicine 1 BORSUK-ULAM, Borsuk-Ulam Borsuk-Ulam 11 (Borsuk-Ulam

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information