<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
|
|
|
- てるえ あわたけ
- 7 years ago
- Views:
Transcription
1 第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを 0 回振ったときに が 0 回出る ( x = 0 ) 確率は, P( 0) = 0. 6 である. さいころを 0 回振ったときに が 3 回出る ( x = 3 ) 確率は, P( 3) = である. 二項分布では母平均 μ = np, 母分散 σ = np( p) となる. エクセルでの計算例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. n = 0, p = の二項分布になる 6 エクセルでは P ( x) = BINOMDIST( x, n, p, false) 例をエクセルで計算すると以下の通りになる. 上の結果をグラフで示すと右のようになる.
2 009 年 月 0 日 練習 A 社のチョコレートにはくじが入っていて, 当たる確率は 0.5 である.0 個買ってつも当たりが入っていない確率,つだけ当たりの入っている確率を求めよ. さらに下の表を完成させよ. n =, p = 当たりの数 エクセルでの計算式 確率 ポアソン分布ポアソン分布は一定の長さの時間, 一定の大きさの空間においてごくまれに起こる事象を表現するときに用いる. 二項分布において p をどんどん小さくする一方で, n を無限大にすると得られる. 非常に大きな集団においてきわめて起こりにくい事象を対象としたときの分布である. 二項分布と違って, 分布の大きさ n は必要ない. 例えば, 交通事故死はきわめてまれなものである. その対象となる n はしかも何人か決めようがない. 運転者や歩行者の数は毎日異なるからである. そういうときにポアソン分布は有効である. 例ある島では毎年, 何千羽ものヒナが生まれる. 毎年平均 0.5 羽の出現率で黄金色の羽をもつヒナが生まれるという. μ = 0. 5 であるから, 黄金の羽を持つヒナが 0,, 羽, 出現する確率はそれぞれポアソン分布に従う.( ここでは毎年それぞれ誕生するヒナの数が何千羽であるかを正確にわかっていなくてもよいし, 異なっていたとしてもよい. そこが二項分布と違う.) ポアソン分布の計算には母平均だけが必要である. ここでは母平均 μ = 0. 5 である. エクセルでは, P( x) = POISSON( x, false)
3 009 年 月 0 日 ポアソン分布では平均 μ が決まると分布の形が決まる. ポアソン分布では, 母平均 μ と母分散 σ は等しい μ=0. μ=0.5 μ= μ= μ= 練習 A 君は 時間, 夜空を見上げると流れ星を平均 0.4 個みるという. ポアソン分布に従うとすれば, 時間で流れ星を 0,, 個見る確率を計算せよ. μ = 当たりの数エクセルでの計算式確率 0. 連続分布 一様分布 ( 矩形分布 ) すべてが同じ確率で起こる分布 f(x) b a a 図一般的な一様分布 b 3
4 右の確率分布において確率変数が 0 となる確率は? 実験計画学 009 年 月 0 日 確率変数が となる確率は? 確率変数が 0~0. となる確率は? 確率変数が 0~ となる確率は? 一様分布 ( 矩形分布 ) の例 正規分布二項分布で p = 0. 5 としたときに n を無限大にするとえられる. たくさんのランダムなことが組み合わさった場合に p = 0. 5 の二項分布の極限である正規分布となるとみなすことができる. 例えば, 概念的には, パチンコ台での球の分布を見ると釘に当たり右と左に行く確率は同じだとすれば, 球の分布は図のようになる. これは二項分布に従う ( パスカルの三角形 : n = 8, p = 0. 5 の場合と n = 0, p = 0. 5 の場合 ). パチンコ台での玉の分布 パスカルの三角形 正規分布に ( 近似的に ) 従う事象はたくさんある. 人の身長の分布, 犬の体重, 卵の重さなどの分布は正規分布に近似できる. 4
5 B. 正規分布. 正規分布の特徴 実験計画学 009 年 月 0 日 母平均 μ と母分散 σ を与えると形が決まる. これを ( σ ) N と書いて表現する. 平均 μ を中心にして左右対称である. よって, 平均より大きい値あるいは小さい値を取る確 率はそれぞれ (0.5,0.5) である. 3 曲線は平均 μ の近傍で高く, 両側に行くにしたがって単調に低くなる. 4 平均 μ は曲線の位置を決める. 平均 μ のみ異なる つの曲線は左右に移動させれば重ねるこ とができる ( 図 ). 5 標準偏差 σは曲線の形を決める.σ が大きければ曲線は扁平になる ( 図 3). 6 (a) (b) μ σ と μ + σ の間の確率変数を取る確率は約 である ( 図 4). μ σ と μ σ + の間の確率変数を取る確率は約 である. (c) μ 3σ と μ + 3σ の間の確率変数を取る確率は約 である (95%) の確率で μ. 96σ と μ +. 96σ の間の確率変数を取る 0.99(99%) の確率で μ. 576σ と μ σ の間の確率変数を取る N(0. ) σ= σ= N(. ) 図 正規分布 μ=0,σ= μ=0,σ= μ=0,σ= 図 正規分布 N( ) の確率密度関数 u 図 3 正規分布 N(0, σ ) の確率密度関数図 4 u の分布, N (0, ) 5
6 009 年 月 0 日 正規分布の例 :0~4 歳の男性の身長は人間生活工学研究センターの調査 (99-994) による と平均 70.5cm, 標準偏差 5.9cm であった. 身長の分布が正規分布するなら, σ 以上平均よ り背の高い人, すなわち 8.3cm 以上は全体の.8% である. 平均から標準偏差以内, すなわち 64.6~76.4cm に全体の約 68% が属する. 全体の 95% は 58.9~8.cm に属する. 練習 :30 歳代の男性の身長の平均は 69.5cm, 標準偏差は 5.8cm であった. 身長の分布が正規分布するなら, 平均から標準偏差以内, すなわち ( 63.7)~( 75.3)cm に全体の約 (68 )% が属する. σ 以下平均より背の低い人, すなわち ( 57.9)cm 以下は全体の (.8)% で ある. 全体の 95% は (58. )~(80.9 )cm に属する.. 正規分布において任意の値と任意の値の間の範囲をとる確率をエクセルから計算する方法連続分布であるから, 正規分布において任意の値を取る確率は 0 である. 任意の値と任意の値の間の範囲を取る確率を計算するにはエクセルの関数を利用するのが簡単である. エクセルの正規分布に関する関数はいくつかある. 今回, 利用するのは NORMDIST 関数である. NORMDIST 関数は平均 μ, 標準偏差 σ の正規分布において, ( 無限大 ) から x までの値を取る確率を以下のように入力することで計算する. = NORMDIST( x, 例えば, 前述の身長に関する正規分布の例 ( 平均 70.5cm, 標準偏差 5.9cm) で, 以下 64.6cm 以下の身長の割合は以下の式で求められる. 練習 0 歳代の男性の身長の平均は 70.5cm, 標準偏差は 5.9cm であった. 身長の分布が正規分 布するなら,60 cm 以下には全体の約 (68 (68 )% が属する. )% が属する. 75 cm 以下には全体の約 6
7 009 年 月 0 日 ある値より大きくなる確率を計算するには, 正規分布全体の確率は となることから, 下の図のように考えて, から下の図の斜線部分の確率を引き算すると = NORMDIST( x, であるから, すなわち, 斜線部に属する確率 (x より大きくなる確率 ) は, = NORMDIST( x, として, 計算する. 練習 0 歳代の男性の身長の平均は 70.5cm, 標準偏差は 5.9cm であった. 身長の分布が正規分布するなら,73 cm 以上には全体の約 (68 )% が属する. 6 cm 以上には全体の約 (68 )% が属する. ある値 ( x ) からある値 ( x ) をとる確率を計算するには, から x までを取る確率から から x までを取る確率の差を取る. すなわち下の図のように計算する. エクセルでは = NORMDIST ( x, NORMDIST( x, として, 計算する. 練習 0 歳代の男性の身長の平均は 70.5cm, 標準偏差は 5.9cm であった. 身長の分布が正規分布するなら, 身長が 60~75cm の間にある人は全体の約 (68 )% である. 7
8 009 年 月 0 日 C. 宿題. 第 回の宿題で調べたデータについて二項分布 ( さいころなど ), ポアソン分布 ( 交通事故死者数など ) で予想される分布とどの程度離れているかを以下の手順で検討せよ. それぞれ二項分布, ポアソン分布に従っているとして, 確率分布を求めよ. なおポアソン分布の計算で用いる母平均 μ は調査したデータの平均を用いたらよい. 二項分布では n=0~0 の場合すべてを計算せよ. ポアソン分布は確率が 0.00 以下となったら計算を止めてよい. で求めた確率分布のヒストグラムの上に, 第 回の宿題で調べたデータから作ったヒストグラムをトレーシングペーパーなどで書き写したものを, 縦軸, 横軸の大きさがそろうように重ねて,つの違いを検討せよ. もし, 大きく異なるときはなぜかを考えてみよ.. ある分布を正規分布とみなしてよいかを判断するには, 厳密にはコルモゴロフ スミルノフの検定を利用する. しかし, ここでは第 3 回の授業の宿題で調べたデータについて, 正規分布で予想される分布とどの程度離れているかを以下の手順で検討せよ. 調査したデータの標本平均, 標本分散をそれぞれ母平均, 母分散とした正規分布とすると, 理論的には 68.3% の確率変数は μ σ ~ σ が実際には μ σ ~ σ さらに μ + の間にはいるかを数えて調べよ. μ σ ~ μ + σ, μ 3σ ~ μ 3σ μ + の間にはいる. 自分の調べたデータのうち, 何 % + の間にはいるデータについても数えよ. 3, の結果から, 自分の調査したデータが正規分布に近いかどうかを検討せよ. 3. 第 3 回の授業の宿題で調べたデータについて, そのデータが正規分布で近似できると仮定した場合, 第 3 回の宿題採点表で指定した範囲に属するデータが全体の何パーセントになるかをエクセルの NORMDIST 関数を用いて, 計算せよ. 4. 次回以降の授業ではあるデータが正規分布あるいは二項分布などに基づくと仮定して, 統計的推定 検定を行う. 次回の授業では統計的な推定について考える. 統計的な推定とは, 母集団についてのある数値を知るために, 無作為抽出した標本からデータを集め, そこから母集団についてのある数値を推測することである. 統計的な推定の例を以下にいくつかあげる. 0 歳代の男女を 00 人, 無作為抽出して, ヶ月の携帯電話代を調べたところ, 平均 5000 円, 標準偏差 500 円だった. 母集団 (0 歳代の男女すべて ) の携帯電話代を推定したい. A 農場は B スーパーにトマトを納入している.B スーパーは仕分けの手間を省くためにトマトの重さの標準偏差を g 以内にすることを求めてきた. すべてのトマトの重さを測定できないので,00 個を無作為抽出して標準偏差を調べたところ,0.99g だった.A 農場のトマト全体の重さの標準偏差はいくらと推定できるだろうか? 3 C 林業は D 山を開発しようと考えたが, 開発の利益に出費が見合うかわからない.D 山の樹木すべてを調べることは不可能なので, 無作為に数地点を選んで樹木の価値を算定し,D 山全体の樹木の価値を推定した. 以上のような例に当てはまる事例をいくつか考えてみよう. 提出締め切りは 月 6 日 ( 月 ) 午後 時までに生物資源科学部 号館 04 室に提出のこと. 8
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
不偏推定量
不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
Microsoft PowerPoint - statistics pptx
統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 [email protected]
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
Excelによる統計分析検定_知識編_小塚明_5_9章.indd
第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,
Microsoft Word - apstattext04.docx
4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (
http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
Microsoft PowerPoint - statistics pptx
統計学 第 回 講義 仮説検定 Part-3 06 年 6 8 ( )3 限 担当教員 唐渡 広志 ( からと こうじ ) 研究室 経済学研究棟 4 階 43 号室 email [email protected] webite htt://www3.u-toyama.ac.j/kkarato/ 講義の目的 つの 集団の平均 ( 率 ) に差があるかどうかを検定する 法を理解します keyword:
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
統計学の基礎から学ぶ実験計画法ー1
第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3
スライド 1
計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝
ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝 1. 研究の動機 ダンゴムシには 右に曲がった後は左に 左に曲がった後は右に曲がる という交替性転向反応という習性がある 数多くの生物において この習性は見受けられるのだが なかでもダンゴムシやその仲間のワラジムシは その行動が特に顕著であるとして有名である そのため図 1のような道をダンゴムシに歩かせると 前の突き当りでどちらの方向に曲がったかを見ることによって
Microsoft Word - Stattext12.doc
章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
CAEシミュレーションツールを用いた統計の基礎教育 | (株)日科技研
CAE シミュレーションツール を用いた統計の基礎教育 ( 株 ) 日本科学技術研修所数理事業部 1 現在の統計教育の課題 2009 年から統計教育が中等 高等教育の必須科目となり, 大学でも問題解決ができるような人材 ( 学生 ) を育てたい. 大学ではコンピューター ( 統計ソフトの利用 ) を重視した教育をより積極的におこなうのと同時に, 理論面もきちんと教育すべきである. ( 報告 数理科学分野における統計科学教育
Microsoft Word - å“Ÿåłžå¸°173.docx
回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw
したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算
統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
統計Ⅰ 第1回 序説~確率
授業担当 : 徳永伸一 東京医科歯科大学教養部 数学講座 あらためて注意しておきたいこと ( 前期のはじめに注意したこと +α) 後期の授業は今日を含め ( たった )6 回 成績評価は前期試験 + 後期試験で 後期の方が比重が大きいですが前期の出来が悪かった人はハンデがあると思ってください 後期試験の出題範囲には前期授業の内容も含まれます 復習も怠りなく 欠席した場合は次回までに要点の確認を 次回の授業までに授業スライドを
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三
角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好
. 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,
(1 C205) 4 8 27(2015) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7.... 1., 2014... 2. P. G., 1995.,. 3.,. 4.. 5., 1996... 1., 2007,. ii 2. F. ( ),.. 3... 4.,,. 5. G., L., D. ( )
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
3章 度数分布とヒストグラム
度数分布とヒストグラム データとは 複雑な確率ゲームから生まれたと考えてよい データ分析の第一歩として データの持つ基本的特性を把握することが重要である 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える データが母集団からのランダムサンプルならば 母集団についての推測を行う 度数分布とヒストグラムの作成
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
経営統計学
5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
春学期統計学 I 記述統計と推測統計 担当 : 長倉大輔 ( ながくらだいすけ ) 1 本日の予定 本日はまず記述統計と推測統計の違い 推測統計学の基本的な構造について説明します 2 記述統計と推測統計 統計学とは? 与えられたデータの背後にある 特性 法則 を 検証 発見 分析 するための手法の開発 その応用などに関わる学問の事です 3 記述統計と推測統計 データの種類 データの種類はおおまかに
(3) 検定統計量の有意確率にもとづく仮説の採否データから有意確率 (significant probability, p 値 ) を求め 有意水準と照合する 有意確率とは データの分析によって得られた統計値が偶然おこる確率のこと あらかじめ設定した有意確率より低い場合は 帰無仮説を棄却して対立仮説
第 3 章 t 検定 (pp. 33-42) 3-1 統計的検定 統計的検定とは 設定した仮説を検証する場合に 仮説に基づいて集めた標本を 確率論の観点から分析 検証すること 使用する標本は 母集団から無作為抽出されたものでなければならない パラメトリック検定とノンパラメトリック検定 パラメトリック検定は母集団が正規分布に従う間隔尺度あるいは比率尺度の連続データを対象とする ノンパラメトリック検定は母集団に特定の分布を仮定しない
Microsoft PowerPoint - 14都市工学数理ノンパラ.pptx
都市工学数理 浅見泰司 東京大学大学院工学系研究科教授 Yasushi Asami 1 0. 統計学的検定の基本 母集団と標本 世論調査では 日本人全員に聞くというのは事実上不可能 そこで 日本人全員 (= 母集団 ) から 一部 (= 標本 ) を選んで そこで得られた傾向 (= 仮説 ) が日本人全体にもある程度の信頼性で成り立つかどうかを考える (= 検定 ) 注意 サンプリングの方法 ランダムサンプリングが基本
経済統計分析1 イントロダクション
1 経済統計分析 9 分散分析 今日のおはなし. 検定 statistical test のいろいろ 2 変数の関係を調べる手段のひとつ適合度検定独立性検定分散分析 今日のタネ 吉田耕作.2006. 直感的統計学. 日経 BP. 中村隆英ほか.1984. 統計入門. 東大出版会. 2 仮説検定の手続き 仮説検定のロジック もし帰無仮説が正しければ, 検定統計量が既知の分布に従う 計算された検定統計量の値から,
Excelによる統計分析検定_知識編_小塚明_1_4章.indd
第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,
FdData中間期末数学3年
中学中間 期末試験問題集( 過去問 ): 数学 3 年 http://www.fdtext.com/dat/ 全数調査と標本調査 次の調査で, 全数調査より標本調査が適しているものをすべて選び, 記号で答えよ ア高校の入学試験イ内閣支持率世論調査ウ自動車の衝突実験エ学級での朝の健康観察 [ 解答 ] イ, ウ ぼしゅうだんぜんすうちょうさ調査の対象となる母集団のすべてのものについて調べることを全数調査という
JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかと
JMP による 2 群間の比較 SAS Institute Japan 株式会社 JMP ジャパン事業部 2008 年 3 月 JMP で t 検定や Wilcoxon 検定はどのメニューで実行できるのか または検定を行う際の前提条件の評価 ( 正規性 等分散性 ) はどのメニューで実行できるのかというお問い合わせがよくあります そこで本文書では これらについて の回答を 例題を用いて説明します 1.
Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt
Ⅱ. 統計 確率の基礎知識 リスク計量化の前提となる統計 確率の基礎知識について整理 復習します 図解中心の説明ですので 統計 確率は苦手だと感じている方も理解度アップに繋がります 1 目 次 1. 基本統計量 (1 変量 ) 2. 基本統計量 (2 変量 ) 3. 確率変数と確率分布 4. 推定と検定 2 1. 基本統計量 (1 変量 ) (1) 平均 (2) 分散 (3) 標準偏差 (4) パーセント点
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
3章 度数分布とヒストグラム
3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
Microsoft Word - lec_student-chp3_1-representative
1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )
統計学的画像再構成法である
OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は
Excelによる統計分析検定_知識編_小塚明_1_4章.indd
第1章 母集団と統計データ 本章では, ビジネスのさまざまな場面において統計データを扱ううえで, もっとも基本的事項となる母集団の概念と統計データの種類についてまとめています 母集団の統計的性質を調べるためにとても重要な概念であるサンプリングについて述べるとともに, ランダムサンプリングの重要性についても説明します 統計分析の考え方 ビジネスの多くの場面において, 統計分析は重要です この場合の統計分析とは,
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
Microsoft PowerPoint ppt
情報科学第 07 回データ解析と統計代表値 平均 分散 度数分布表 1 本日の内容 データ解析とは 統計の基礎的な値 平均と分散 度数分布表とヒストグラム 講義のページ 第 7 回のその他の欄に 本日使用する教材があります 171025.xls というファイルがありますので ダウンロードして デスクトップに保存してください 2/45 はじめに データ解析とは この世の中には多くのデータが溢れています
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
