Excelによる統計分析検定_知識編_小塚明_1_4章.indd
|
|
|
- ちかこ かりこめ
- 9 years ago
- Views:
Transcription
1 第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは, 円グラフと棒グラフです まず, 図 2.1 に, 円グラフの例を示します これは, 学生に好きなスポーツを質問した際に得られたデータをまとめた例です 図 2.1: 円グラフの例 1変量データのまとめ方57 一方, 図 と図 の棒グラフの例は, 各項目の割合を比較するだけでなく, データの度数 ( 頻度 ) そのものを比較することができます
2 識編111第2 章 図 2.2.1: 棒グラフの例図 2.2.2: 棒グラフの例 ( 降順 ) 円グラフと棒グラフは, 状況に応じて使い分けます 円グラフは, 項目数がそれほど多くない場合に, 各項目の割合を比較する際に有用です 割合の大小を直感的に理解できます 一方, 各項目の度数を比較したい場合や項目数が多い場合には, 円グラフよりも棒グラフのほうが適切です 棒グラフの棒が高いものから低いものへと並ぶように, 頻度順で降順に並び替えてグラフ化することも多くの場合, 有用です このとき, その他 については, 個別に頻度を計算すると数が小さくなってしまう項目 を集めたものと考えられるので, 各項目を降順に並べ替えた後のいちばん最後に示すことが一般的です 度数分布表とヒストグラム 1 変量量的データをまとめる基本的な方法はヒストグラムであり, ヒストグラムを描くためにデータを表形式でまとめたものを度数分布表といいます 一般に, 調査や実験により得られた量的データは, そのままでは数値の羅列にすぎません まず最初に, これらの量的データがどのようにばらついているのかを調べることが必要です ここでは, ヒストグラムを用いて量的データの分布を調べる方法について説明します 度数分布表とヒストグラムの読み方日本人の 20 歳男性 120 人の身長 ( cm ) のデータが以下のように得られたとします このような量的データに対しては, データの傾向をとらえるため, 表 2.1 のような度数分布表を作成します 度数分布表では, データを階級と呼ばれるいくつかのグループに分け, 22222と 知
3 第2章各階級に含まれるデータの個数 ( 度数 ) を数えたものを表にします 各階級は, 同じ幅を持 った区間で与えられ, 階級の中心の値を階級値といいます 度数分布表を作成する手順は次 のとおりです 表 2.1: 20 歳男性身長 ( cm ) の度数分布表 階級 階級値 度数 相対度数 累積度数 累積相対度数 150 ~ ~ ~ ~ ~ ~ ~ ~ 計 Step 1 データの最大値, 最小値を見つけ, データの範囲 R = 最大値 - 最小値を求める Step 2 階級値 c を決める 階級数は 10 程度に分けることが多いが, データ数に応じて c n 程度を目安として決める 1 Step 3 階級幅 w を,w R/c を目安として決める ただし w は測定単位の整数倍となるように調整する Step 4 階級を決める もっとも小さい階級の下側境界値を 最小値から測定単位の半分を引いた値 とし, ここから w ずつ加えていき, 各階級の境界値を求める このとき, 境界値が最大値 x max より大きくなるまで階級を作る Step 5 各階級をもとに, データの度数を数え, 度数分布表を作成する 度数分布表は, 各階級に含まれるデータが何個あるかという度数を表示しています また, データの総数に対する度数の割合である相対度数は, データ数が異なる複数のデータを比較する場合などに用います さらに, 度数, 相対度数それぞれの累積値を累積度数, 累積相対度数と呼び, これらの値が有効な場合もあります この度数分布表をグラフ化したものがヒ ストグラム ( 図 2.3) です 1変量データのまとめ方59 1 という記号は, だいたいそのくらいの値という大よその等号を表しています たとえば, 階級幅は切りのよい数字が望ましいので,R/c = のような場合,w 2.0 などとしてもよいでしょう
4 識編第2 ヒストグラム章図2.3: ヒストグラムは, その形状によりデータの分布を直感的に把握することができます 特に以下の点について注目することが重要です 1. 単峰形かそうでないか : 得られたデータが一山形の分布 ( 単峰形分布 ) であるのか, 二山, またはそれ以上のピークを持つ分布 ( 多峰形分布 ) であるのかは重要な観点です ( 図 2.4) 山が複数存在する多峰形の場合には, 異なる性質を持つ複数のデータが混在している可能性があるので, その原因を探る必要があります 2. 対称かそうでないか : ヒストグラムが左右対称か非対称かは, この分布が第 7 章の検定や推定で出てくる正規分布をあてはめてよいかどうかに通じます 分布が左右非対称である場合, データの平均値が直観とは異なる値をとることもあるので注意が必要です 3. 中心位置はどこか : データの中心位置を知ることは, 統計解析における基本事項であり, ヒストグラムからおおよその中心を把握することができます 4. ばらつきはどの程度か : データの中心と同時に, データのばらつきの程度を調べることは, もっとも基本的な事項の 1 つです 後述のばらつきを測る尺度と結び付けて, 理解するとよいでしょう 5. 外れ値が存在するか : 外れ値とは, ほかの大多数のデータとかけ離れた値を持つ観測値のことをいいます ( 図 2.5) 外れ値が存在する場合には, その原因を探求してみる必要があります 外れ値が発生する原因はさまざまで, データの転記ミスといった場合もあれば, 何かしらの重大な異常が隠されている場合もあります 外れ値が生じた原因を探ることで, 重要な発見につながる可能性があります 260 知
5 第2章図 2.4: 一山型と二山型のヒストグラム 図 2.5: 外れ値を含むデータに対するヒストグラム データの中心を表す統計量 データからなんらかの計算により得られた値のことを統計量と呼びます 統計量にはさま ざまな種類があり, データの持つ統計的性質を定量的に測る基準となります ここでは, 統計量のなかでも, 連続データの中心位置を表す統計量について解説します 平均値 代表値のなかで, もっともよく用いられるのが平均値です n 個の観測値 x 1,x 2,,x n が与えられたとすると, 算術平均 x は次の式で計算されます 1変量データのまとめ方61 この算術平均は, 相加平均とも呼ばれ, 日常的にもよく用いられる平均値です ほかの種類の平均値と区別するときには算術平均と呼ばれますが, 単に平均値や平均と呼んだ場合には, この算術平均を指していることが多くあります また, 統計解析において標本平均といった場合も, この算術平均を指す場合がほとんどです 本書においても, 単に平均値という
6 識編 中央値 ゆが平均値は, 外れ値が存在したり, 分布が片方に歪んでいると, その影響を強く受けること が知られています このような外れ値や分布の歪みに影響を受けにくい統計量として, 中央 値 ( メジアン ) があります 中央値は, データを大きさの順に並べたとき, ちょうど真ん中 にくる観測値で定義され, データが偶数個の場合は中央にくる 2 つの観測値の平均を中央値とします たとえば, 以下の 10 個のデータが与えられた場合, 中央値は (5 + 6)/2 = 5.5 となります 一方, これらのデータの平均値を計算すると,9.5 になり,50 以外のすべてのデータは平均値よりも小さいデータであることになります これは平均値が外れ値の影響を受けやすいことを示しています 中央値は, 上の例の 50が1000になっても変わらず 5.5となります 最頻値 度数分布のなかでもっとも度数の大きい階級の階級値を最頻値 ( モード ) といいます たとえば, 表 2.1 のデータであれば, 最頻値は 167.5cmということになります 離散データの分布であれば, もっとも頻度の高い値を特定できますが, 連続データの場合には同じ観測値が観測されないことが多いため, 通常は上記のように階級値を使うしかありません そのため, この場合の最頻値は, 度数分布表の階級の作り方により変わることを認識しておく必要があります また, 最頻値も外れ値の影響を受けにくい統計量であると言えるでしょう 平均値 中央値 最頻値の関係 ヒストグラムを描いたときに, 左右対称の単峰形分布であれば, 平均値, 中央値, 最頻値はほとんど値が変わりません 一方, 分布が歪んでいる場合には, 図 2.6 のようになります このグラフのように, ヒストグラムが左に偏った形状の場合, 代表値の値は, 最頻値 < 中央値 < 平均値の順番になります 逆に右に偏った形状の場合は, 最頻値 > 中央値 > 平均値となり, 平均値よりも中央値の方がデータの中心を表すのに適していると考えることもできます たとえば, 日本の社会人全体の収入の程度を把握するために, 平均年収を用いるのが妥当かどうか, という議論はよくあります 年収 5,000 万円以上という高額所得者がいる一方, マイナスの所得者はいませんから, 左右非対称の分布になります 平均年収は, 大多数の人の年収より高めに出るので, 中央値や最頻値を合わせて見るべきと言えます 第2 章場合には算術平均を意昧するものとします 262 知
Microsoft Word - lec_student-chp3_1-representative
1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )
平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 )
データの分析 データの整理右の度数分布表は,A 高校の 0 人について, 日にみたテレビの時間を記入したものである 次の問いに答えよ () テレビをみた時間が 85 分未満の生徒は何人いるか () テレビをみた時間が 95 分以上の生徒は全体の何 % であるか (3) 右の度数分布表をもとにして, ヒストグラムをかけ 階級 ( 分 ) 階級値度数相対 ( 分 ) ( 人 ) 度数 55 以上 ~65
Microsoft PowerPoint - データ解析基礎2.ppt
データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ
Microsoft PowerPoint ppt
情報科学第 07 回データ解析と統計代表値 平均 分散 度数分布表 1 本日の内容 データ解析とは 統計の基礎的な値 平均と分散 度数分布表とヒストグラム 講義のページ 第 7 回のその他の欄に 本日使用する教材があります 171025.xls というファイルがありますので ダウンロードして デスクトップに保存してください 2/45 はじめに データ解析とは この世の中には多くのデータが溢れています
経営統計学
5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており
データの種類とデータの分布
データの種類とデータの分布 統計基礎の補足資料 218 年 6 月 4 日金沢学院大学経営情報学部藤本祥二 2( 教科書 P.52) データのばらつき 分布について データの分布データ全体のばらつき具合 ( 広がり具合 ) 等の全体的な様子をとらえたもの 度数 ( 頻度数 ) ある項目, 又はある値, 又は範囲にデータがどれくらい存在するのかを頻度で示したもの 度数分布度数に関するデータ全体の様子
Excelによる統計分析検定_知識編_小塚明_1_4章.indd
第1章 母集団と統計データ 本章では, ビジネスのさまざまな場面において統計データを扱ううえで, もっとも基本的事項となる母集団の概念と統計データの種類についてまとめています 母集団の統計的性質を調べるためにとても重要な概念であるサンプリングについて述べるとともに, ランダムサンプリングの重要性についても説明します 統計分析の考え方 ビジネスの多くの場面において, 統計分析は重要です この場合の統計分析とは,
3章 度数分布とヒストグラム
度数分布とヒストグラム データとは 複雑な確率ゲームから生まれたと考えてよい データ分析の第一歩として データの持つ基本的特性を把握することが重要である 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える データが母集団からのランダムサンプルならば 母集団についての推測を行う 度数分布とヒストグラムの作成
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
散布度
散布度 統計基礎の補足資料 2018 年 6 月 18 日金沢学院大学経営情報学部藤本祥二 基本統計量 基本統計量 : 分布の特徴を表す数値 代表値 ( 分布の中心を表す数値 ) 平均値 (mean, average) 中央値 (median) 最頻値 (mode) 散布度 ( 分布のばらつき具合を表す数値 ) 分散 (variance) 標準偏差 (standard deviation) 範囲 (
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデー
社会人のためのデータサイエンス演習第 2 週 : 分析の概念と事例第 1 回 :Analysis( 分析 ) とは講師名 : 今津義充 1 講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデータ分析基礎
3章 度数分布とヒストグラム
3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う
Microsoft Word - 保健医療統計学112817完成版.docx
講義で使用するので テキスト ( 地域診断のすすめ方 ) を必ず持参すること 5 4 統計処理のすすめ方 ( テキスト P. 134 136) 1. 6つのステップ 分布を知る ( 度数分布表 ヒストグラム ) 基礎統計量を求める Ø 代表値 Ø バラツキ : 範囲 ( 最大値 最小値 四分位偏位 ) 分散 標準偏差 標準誤差 集計する ( 単純集計 クロス集計 ) 母集団の情報を推定する ( 母平均
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
春学期統計学 I 記述統計と推測統計 担当 : 長倉大輔 ( ながくらだいすけ ) 1 本日の予定 本日はまず記述統計と推測統計の違い 推測統計学の基本的な構造について説明します 2 記述統計と推測統計 統計学とは? 与えられたデータの背後にある 特性 法則 を 検証 発見 分析 するための手法の開発 その応用などに関わる学問の事です 3 記述統計と推測統計 データの種類 データの種類はおおまかに
第4回
Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値
Excelによる統計分析検定_知識編_小塚明_5_9章.indd
第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,
画像類似度測定の初歩的な手法の検証
画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第
データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2
春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
PowerPoint プレゼンテーション
総務省 ICTスキル総合習得教材 概要版 eラーニング用 [ コース3] データ分析 3-3: 基本統計量 クロス集計表の作成 [ コース1] データ収集 [ コース2] データ蓄積 [ コース3] データ分析 [ コース4] データ利活用 1 2 3 4 5 座学実習紹介[3] ピボットテーブルとクロス集計表 本講座の学習内容 (3-3: 基本統計量 クロス集計表の作成 ) 講座概要 数値データの尺度に基づく
目次 1 章 SPSS の基礎 基本 はじめに 基本操作方法 章データの編集 はじめに 値ラベルの利用 計算結果に基づく新変数の作成 値のグループ化 値の昇順
SPSS 講習会テキスト 明治大学教育の情報化推進本部 IZM20140527 目次 1 章 SPSS の基礎 基本... 3 1.1 はじめに... 3 1.2 基本操作方法... 3 2 章データの編集... 6 2.1 はじめに... 6 2.2 値ラベルの利用... 6 2.3 計算結果に基づく新変数の作成... 7 2.4 値のグループ化... 8 2.5 値の昇順 降順... 10 3
Microsoft Word - apstattext04.docx
4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1
統計学 Ⅰ(8) 累積度数 : ある階級以下に含まれる度数の合計 階級 度数 相対度数累積度数 累積相対度数 点以上 ~ 点未満.. ~.. ~. 7. ~ 6..6 ~. 6.8 ~ ~ ~ ~ ~.. ~.. 合計. - -
統計学 Ⅰ(8) 章度数分布とローレンツ曲線. 度数分布表 教科書 8- ページ. 度数分布表 () データの表し方 () 度数分布表 () 度数, 相対度数, 累積度数. ヒストグラム () ヒストグラム () 階級の決め方 () ヒストグラムにおける階級幅の調整 () クロス集計. ローレンツ曲線とジニ係数 () 所得格差の問題 () ローレンツ曲線 () ジニ係数 () データの表し方 例 :
Microsoft PowerPoint - CVM.ppt [互換モード]
遺伝子組み換えコーン油を事例とした CVM 質問 問 1 現在 遺伝子組み換えトウモロコシを原料として使っているコーン油が 1 本 900gあたり約 600 円で販売されています もし 遺伝子組み換え原料を完全に使っていないコーン油を販売しようとすれば それは 流通管理を徹底しなければならないことから 値段がより高くなることが予想されます あなたは 900g のコーン油 1 本について 追加的な値上がりが何円までだったら
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
Microsoft Word - スーパーナビ 第6回 数学.docx
1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16
これに対する度数分布表は次のようになる : 階級 階級値 度数 相対度数 累積度数 累積相対度数 ( 以上 ) ~ ( 未満 ) 0 ~ (3/50 = ) ~ (2/50 = ) ~ (6/5
1. 分布を把握する ( 度数分布表 ヒストグラム ) 本章の目標 度数分布やヒストグラムの必要性やその方法を理解する 度数分布やヒストグラムを用いて, 分布の様子を調べることができる 相対度数や累積相対度数を用いて, 異なるグループの分布を比較することができる Key Words: 階級 度数 相対度数 度数分布 ヒストグラム 1. 度数分布表 ( 量的 ) 変数 ( 例 : 世帯人員数 ) がとる値の範囲をグループ分けしたそれぞれの区間を階級という.
データ 統計 情報 計算 分析 ( 数量的情報 定性的情報 ) 上の図にもあるように 統計学 の目的の一つとして データ ( 中学校では資料と呼んでいた ) や 統計 を正しく分析し 我々の判断や 行動に役立つ 情報 を導き出す力を養うことが挙げられる ( 度数分布表とヒストグラム ) 1 年 A
第 4 章データの分析 No.01 ( 中学校での履修事項 ) 1 年生 : 資料の整理 1 階級 階級の幅 度数 度数分布表 ヒストグラム ( 柱状グラフ ) 度数折れ線 相対度数 2 範囲 代表値 ( 平均値 中央値 最頻値 ) 3 近似値 誤差 有効数字 3 年生 : 標本調査 1 標本 母集団 標本調査 全数調査 無作為抽出を学んだそうですね? ( なぜ データの分析 を学ぶのか?) 社会活動で
Microsoft PowerPoint - 11統計の分析と利用_1-1.pptx
統計の分析と利用. データとその扱い -. 一次元のデータ 度数分布 ヒストグラム 幹葉プロット 箱ひげ図代表値と散らばり データの尺度 -. 二次元のデータ 堀田敬介 散布図 クロス集計二次元データの関係 : 相関係数 相関比 連関係数 0/9/30, Fri.~ -. 一次元のデータ 度数分布 ヒストグラム 幹葉プロット, =9, =-3, =4, =5, =3, 67 = 箱ひげ図,, 3,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成
講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する
Microsoft Word - Stattext12.doc
章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ
Microsoft PowerPoint - R-stat-intro_04.ppt [互換モード]
R で統計解析入門 (4) 散布図と回帰直線と相関係数 準備 : データ DEP の読み込み 1. データ DEP を以下からダウンロードする http://www.cwk.zaq.ne.jp/fkhud708/files/dep.csv 2. ダウンロードした場所を把握する ここでは c:/temp とする 3. R を起動し,2. の場所に移動し, データを読み込む 4. データ DEP から薬剤
経済統計分析1 イントロダクション
1 経済統計分析 3 よく使う記述統計量 事務連絡 Webclass を使ってみようと思います. 登録できる人はしておいてください. 宿題を webclass 経由で回収 返却する予定です. じつはすでにデータをアップロードしています. MS-Word, Excel が使えますか? VBA とかできなくてもいいです. 宿題をこれらで出していただけると, 採点しやすいです. 互換機能 ( 校閲機能含む
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
青焼 1章[15-52].indd
1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし
DVIOUT-mem
統計学講義メモ (1): 記述統計 高木真吾, 北海道大学 目次 1 データの全体像を見る 1 1.1 全体像を把握する : ヒストグラム.................................. 1 1. 分布状態を比較する : ローレンツ曲線................................ 3 データを要約する 8.1 データを代表する尺度 : 代表値...................................
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
画像処理工学
画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f
ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝
ダンゴムシの 交替性転向反応に 関する研究 3A15 今野直輝 1. 研究の動機 ダンゴムシには 右に曲がった後は左に 左に曲がった後は右に曲がる という交替性転向反応という習性がある 数多くの生物において この習性は見受けられるのだが なかでもダンゴムシやその仲間のワラジムシは その行動が特に顕著であるとして有名である そのため図 1のような道をダンゴムシに歩かせると 前の突き当りでどちらの方向に曲がったかを見ることによって
と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと
.5 Gage R&R による解析.5.1 Gage R&Rとは Gage R&R(Gage Repeatability and Reproducibility ) とは 測定システム分析 (MSA: Measurement System Analysis) ともいわれ 測定プロセスを管理または審査するための手法である MSAでは ばらつきの大きさを 変動 という尺度で表し 測定システムのどこに原因があるのか
このデータは ダイアモンドの価格 ( 価格 ) に対する 評価の影響を調べるために収集されたものです 影響と考えられるものは カラット重量 カラー クラリティー 深さ テーブル径 カット 鑑定機関 の 7 つになります 特に カラット重量 カラー クラリティー カット は 4C と呼ばれ ダイヤモン
JMP 10 のグラフビルダーで作成できるグラフ SAS Institute Japan 株式会社 JMP ジャパン事業部 2012 年 9 月作成 1. はじめに グラフビルダーは グラフを対話的に作成するツールです グラフビルダーでは グラフの種類を選択することにより 散布図 折れ線グラフ 棒グラフなどさまざまなグラフを作成することができます さらに グループ変数を用いて グラフを縦や横に分割することができ
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
【FdData中間期末過去問題】中学数学1年(負の数/数直線/絶対値/数の大小)
FdData 中間期末 : 中学数学 年 : 正負の数 [ 正の数 負の数 / 数直線 / 正の数 負の数で量を表す / 絶対値 / 数の大小 / 数直線を使って ] [ 数学 年 pdf ファイル一覧 ] 正の数 負の数 [ 負の数 ] 次の文章中の ( ) に適語を入れよ () +5 や+8 のような 0 より大きい数を ( ) という () - や-7 のような 0 より小さい数を ( ) という
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
新学習指導要領における数学科 「資料の活用」および「データの分析」 で育む統計的問題解決授業
授業案 Ⅰ 中学 1 年 資料の整理 貧困率 を例にした分布と代表値の理解 筑波大学附属中学校 中本信子 本事例では 子どもたちの身の周りの事象を事象を実データを基にして 統計的な観点から考察させることをねらいとする 学習指導要領では 中学校 1 年生の 資料の整理 の目的として 小学校における学習の上にたって 資料を収集 整理する場合には 1 目的に応じた適切で能率的な資料の集め方や 合理的な処理の仕方が重要であることを理解できるようにする
<4D F736F F D204B208C5182CC94E497A682CC8DB782CC8C9F92E BD8F6494E48A722E646F6378>
3 群以上の比率の差の多重検定法 013 年 1 月 15 日 017 年 3 月 14 日修正 3 群以上の比率の差の多重検定法 ( 対比較 ) 分割表で表記される計数データについて群間で比率の差の検定を行う場合 全体としての統計的有意性の有無は χ 検定により判断することができるが 個々の群間の差の有意性を判定するためには多重検定法が必要となる 3 群以上の比率の差を対比較で検定する方法としては
PowerPoint プレゼンテーション
1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt
重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?
Excel2013基礎 数式と表編集
OA ベーシック Excel2013 基礎数式と表編集 1 / 8 Excel2013 基礎数式と表編集 数式と表編集前編 ( 数式 ) 数式の入力 Excel では 等号 (=) で始まるデータを数式として認識します 数式を入力する場合は 数値を直接入力するのではなく 数値が入力されたセルを参照する形で式を立てます 基本的な 四則演算を行う場合は 四則演算子を使用します 操作数式を入力します 前月比を求める数式
1. 期待収益率 ( 期待リターン ) 収益率 ( リターン ) には次の二つがあります 実際の価格データから計算した 事後的な収益率 将来発生しうると予想する 事前的な収益率 これまでみてきた債券の利回りを求める計算などは 事後的な収益率 の計算でした 事後的な収益率は一つですが 事前に予想できる
Ⅳ ポートフォリオ編 株式や債券などの将来の収益は預貯金などとは違い 不確実です 不確実で 値動きの異なる複数の銘柄やファンドなどを組み合わせた場合に 全体としてどんな動きになるのかということを予想するためには 統計 確率的な手法を取り入れて 計算することができます ポートフォリオに関する計算問題がとっつきにくいと感じる場合は 統計 確率などの考え方をベースにしているのだ ということを意識して 考え方に慣れていきましょう
統計学入門 練習問題解答集
統計学入門練習問題解答集 この解答集は 995 年度ゼミ生椎野英樹 ( 回生 ) 奥井亮(3 回生 ) 北川宣治(3 回生 ) による学習の成果の一部です. ワープロ入力はもちろん井戸温子さんのおかげです. 利用される方々のご意見を待ちます.(996 年 3 月 6 日 ) 趙君が 7 章 8 章の解答を書き上げました.(996 年 7 月 ) 線型回帰に関する性質の追加. (996 年 8 月 )
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
測量試補 重要事項
重量平均による標高の最確値 < 試験合格へのポイント > 標高の最確値を重量平均によって求める問題である 士補試験では 定番 問題であり 水準測量の計算問題としては この形式か 往復観測の較差と許容範囲 の どちらか または両方がほぼ毎年出題されている 定番の計算問題であるがその難易度は低く 基本的な解き方をマスターしてしまえば 容易に解くことができる ( : 最重要事項 : 重要事項 : 知っておくと良い
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
Microsoft Word - 1 color Normalization Document _Agilent version_ .doc
color 実験の Normalization color 実験で得られた複数のアレイデータを相互比較するためには Normalization( 正規化 ) が必要です 2 つのサンプルを異なる色素でラベル化し 競合ハイブリダイゼーションさせる 2color 実験では 基本的に Dye Normalization( 色素補正 ) が適用されますが color 実験では データの特徴と実験の目的 (
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
基礎化学 Ⅰ 第 5 講原子量とモル数 第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1
第 5 講原子量とモル数 1 原子量 (1) 相対質量 まず, 大きさの復習から 原子 ピンポン玉 原子の直径は, 約 1 億分の 1cm ( 第 1 講 ) 原子とピンポン玉の関係は, ピンポン玉と地球の関係と同じくらいの大きさです 地球 では, 原子 1 つの質量は? 水素原子は,0.167 10-23 g 酸素原子は,2.656 10-23 g 炭素原子は,1.993 10-23 g 原子の質量は,
