Microsoft PowerPoint - 基礎・経済統計6.ppt
|
|
|
- いとは あさま
- 6 years ago
- Views:
Transcription
1 . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別 : 男に という値を割り振り, 女には 0 を割り振る < 質的尺度の数値化 > ある夫婦の子供の数 :0,,,3,4, < 元々離散 > これらが確率的に決まる場合 連続値なら連続確率変数 離散値なら離散確率変数 度数分布表の応用による確率の表現 度数分布表 データ {4,3,6,5,3,6,4,,,5,,} 階級 階級値相対度数累積相対度数 /6 /6 0.5~.5.5~.5 /6 /6.5~3.5 3 /6 3/6 3.5~4.5 4 /6 4/6 4.5~5.5 5 /6 5/6 5.5~6.5 6 /6 6/6 さいころの確率の 確率分布表 区間 確率変数値 確率 累積確率 0.5~.5 /6 /6.5~.5 /6 /6.5~3.5 3 /6 3/6 3.5~4.5 4 /6 4/6 4.5~5.5 5 /6 5/6 5.5~6.5 6 /6 6/6 3 4 度数分布表, ヒストグラムを応用した確率のグラフ表現 階級は区間と対応 相対度数と確率を対応させて考える 累積相対度数を累積確率に対応させる この対応をつかって確率に対する 度数分布表, 累積度数分布表, ヒストグラム, 累積ヒストグラム などを考える それぞれの呼び方は確率を前につけて, 確率分布表, 累積確率分布表, 確率ヒストグラム などとよぼう. また, この 確率分布表 を元にその平均, 分散を求める. 確率分布に対する平均, 分散 データの度数分布表を元に計算する平均, 分散は標本平均, 標本分散と以後呼ぶ 5 3. 確率関数 3. 概念 離散確率変数に限定 離散確率変数の分布を特定する方法は? 飛び飛びの値それぞれになる確率を示す 確率関数 i, L, v i, つまり, 確率変数 は 個の飛び飛びの値をとるとする. v ( ( ( i P vi p p 0 確率関数を表にすると 確率分布表 になる. 6
2 3. 確率関数とヒストグラム 確率関数のグラフ ある値をとる確率 ( 全事象のうちある値をとる割合 確率関数はある意味で 確率ヒストグラム の極限 ヒストグラムの縦軸として相対度数 ( 全標本のうちある階級に属する割合 ではなく確率をとり, 階級幅をどんどん縮めると確率関数のグラフが得られる. 例はサイコロの目 確率 HL 値 3. の詳しい説明 ヒストグラムの確率版 確率変数値がある区間 ( a, ] ( 階級 に属する確率をもとにヒストグラムを書く a < に対する縦軸の値は, P[ a < ] となる. a,の間隔をどんどん狭めていく. さいころの場合は, P[ a < ] は P ( に近づく,,3,4,5,6 に関しては/6, それ以外は0となる. つまり, 確率関数のグラフになる 確率分布関数 4. 概念 離散確率変数でも連続確率変数でも定義可 確率変数 の分布関数 F( F ( P( 離散確率変数の場合 以下の値をとる確率の合計 F( p( v I ( p( v I v i i ( v i vi vi i 確率分布関数と 累積確率分布表 確率分布関数はある値 以下の確率の合計 確率分布関数の表を作成すると 累積確率分布表 ができる. 累積確率分布表 から 累積確率ヒストグラム を作成する. それは, 確率分布関数のグラフとは違う, 区間幅を狭めることによって, 累積確率ヒストグラム を確率分布関数にいかようにも近づけうる の説明 累積相対度数分布の確率版 確率変数値がある区間 ( a, ] ( 階級 に属する確率をもとに相対度数分布を書き, それを累積することで累積相対度数分布を求める. a < に対する縦軸の値は, P( となる. a,の間隔をどんどん狭めていく. がに近づいていく P が縦軸の値になる ( 累積相対度数の確率版の極限が分布関数 4. の説明グラフ サイコロの目の累積相対度数グラフ ( 下は累積度数多角形 と分布関数グラフ 確率 HL 値
3 4.3 確率分布関数と区間確率 累積相対度数分布からある階級の相対度数を求める ある階級の累積相対度数ーその直前の階級の累積相対度数 類推 P( a < P( P( a F( F( a つまり, ある区間の確率 < ある階級の相対度数 > は, 分布関数の区間の上限の時の値 < その階級の累積相対 > ー区間下限の時の値 < その直前の階級の累積相対 > できまる 確率密度関数 5. 連続確率変数と確率ヒストグラム 離散確率変数についてはヒストグラムに対応するものとして, 確率関数のグラフが考えられた 連続確率変数とは確率分布関数が連続のもの 連続確率変数ではどうだろうか? 離散の場合と同様にやってみると P ( を得る しかし, P ( は連続確率変数の場合は0 つまり, 連続確率変数の場合は, 確率関数は0の値しかとらない. その意味でヒストグラムの極限は横軸に一致する.-> 困った! 4 連続確率変数の場合 ( 0になる F( Pr[ ] はに関して連続である. それを利用するために, 正の小さい数 εに対して F( ε Pr[ ε ] を考える. F( F( ε Pr[ ] Pr[ ε ] Pr[ ε < ] Pr[ ] 0 となる. ところが,F( の連続性から, lim{ F( F( ε } 0となるので, 上の式の最左 ε 0 辺も lim Pr[ ] Pr[ ]. 0 0 ε P 5 5. 連続確率変数と修正ヒストグラム ヒストグラムの場合, 棒グラフの面積の合計はではない. ヒストグラムの面積の合計がになるようにしよう. ( 階級幅 棒の高さ の合計 になるようにする 相対度数の合計 棒の高さ 相対度数 / 階級幅にすればよい. そうすれば, ある階級の累積相対度数は, その階級までのヒストグラムの棒の面積の合計 修正ヒストグラムと呼ぼう 6 5. 連続確率変数と修正ヒストグラム 連続確率変数の場合 修正ヒストグラムの確率版 P( a < が a < のときの, 縦軸 棒の高さ a 幅を0に近づけたときの極限 修正ヒストグラムの極限グラフ P( a < つまり, 横軸がのとき, 縦軸が lim a a これを確率密度関数のグラフと呼ぶ 5.3 確率密度関数の概念 確率密度関数 P ( ( ( a < F( F( a f f lim lim F ( a a a a なぜ密度か? P( a < は確率を区間の長さ 次元面 a 積で割っているので確率の密度と考えられる. a,をに近づけているのでという点での確率密度 7 8 3
4 5.4 確率と確率密度関数 ( 5.4 確率と確率密度関数 ( 修正ヒストグラムの棒の面積のある階級まで合計と, 一つ前の階級までの棒の面積の合計の差がある階級の相対度数 ( 確率 この考え方を修正ヒストグラムの極限である確率密度関数に適用しようー > 右図の灰色の面積が P( a < f x a 4 9 灰色の面積は密度関数の定積分で表せるから, P( a < P( a f ( d a また, とすると, P f d F a ( ( ( では, 離散確率変数に確率密度関数はあるか? 離散の場合, ヒストグラムの極限は確率関数 確率密度関数は修正ヒストグラムの極限 離散の場合, 修正ヒストグラムは, 確率 / 階級幅 ありえる値のところでは, 確率関数が正の値をとるので, 階級幅を 0 に近づけると, 修正ヒストグラムの極限 確率密度は無限大 よって, 離散の場合, 確率密度関数は存在しない 確率関数と密度関数の基本性質 確率関数の場合 確率によるヒストグラムの極限だから関数値 ヒストグラムの高さの合計は確率の合計 確率関数の合計は f ( v i 確率密度関数の場合 ヒストグラムの面積がになるようにした修正ヒス トグラムの極限だから, 密度関数の面積合計も f d F F P P ( ( ( ( ( 0 6. 分布の代表値 データの場合のアナロジー 相対度数によるヒストグラム 代表値 確率分布によるヒストグラム 代表値 分布の代表値 分布の平均 ( 母平均 または期待値 分布の分散 ( 母分散 分布のパーセント点 6. 分布の平均 ( 母平均, 期待値 6. 分布の分散 ( 母分散 分布の重心 計算法 離散確率変数の場合 とりうる値に対してその値になる確率 ( その値に対する確率関数の値 をかけたものの合計 [ ] µ µ vip( vi vi p( vi 連続確率変数の場合 [ ] µ µ f ( d 3 確率分布の散らばりの指標 計算法 離散確率変数の場合 V [ ] σ ( vi p( vi 連続確率変数の場合 V [ ] σ ( f ( d 4 4
5 6.3 確率変数から新たな確率変数を作る 確率変数 の関数もまた確率変数確率変数 g( ができる たとえば, 3 + e.となったときの この確率変数 3 + e の値は 3 + e e + この確率変数 g( の分布関数は, F ( ( P( g( P g ( g ( F ( g ( 期待値計算 (vi を g(vi, をに置き換える [ g( ] g( vi p( v i [ g( ] g( f ( d 期待値, 分散の演算 ( 期待値の性質 離散の場合 [ ] ( vi p( vi 連続の場合 i [ ] ( f ( d f ( d f ( d µ 0 v p ( vi p( vi µ 期待値, 分散の演算 ( 期待値の演算,Yは確率変数,a,は確率変動しないとする [ a + Y ] a[ ] + [ Y ] 分散の演算 V ( a + a V ( と Y が独立の場合 V ( a + Y a V ( + V ( Y 6.4 分布のパーセント点 確率変数 の分布のα% 点 F( P( α / 00 となるの値 分布の中央値 ( メジアン F P 0. となるの値 ( ( 正規確率変数と正規分布 7. 独立な変数の和の分布 ( 独立な確率変数の和の分布を考える,, L, を独立で期待値 [ i ] 0, 分散 V ( i の確率変数の列とする 例えば, コインを繰り返し投げる場合,i 回目に投げたときに表がでると, 裏がでると-の値をとるような確率変数を i とする. この場合, 平均 0で分散がの確率変数列になる このとき, S + + L+ は [ S ] ( ( 0 V ( S ( ( 7. 独立な変数の和の分布 ( Sをその標準偏差 で割る V S V S / [ ] ( ( 一般的にある確率変数をその標準偏差で割って得られる確率変数は分散, 標準偏差ともに. S は平均 0, 分散 の確率変数. さらに を大きくしていくと 0. S の密度関数はきれ + L+ 0 + L+ いな釣り鐘型をする. a -4-4 V + + V f x 5
6 S の修正確率ヒストグラムの推移 正規確率変数に近づく について ( 修正ヒストグラムでの階級の決め方 Sの値はが奇数の場合奇数,が偶数の場合は偶数になる. 従って,Sの値の間隔は. 取りうる値同士の真ん中に階級の境目を持ってくる. P S P < S + ( ( S P 連続補正の根拠 S + P < 3 正規確率変数に近づく について ( 別の階級の決め方では? P( S P( / < S + / S / S + / P P < つまり階級幅を半分で考える. この場合は, P S 0 P / < S / ( ( 0 3 つまり, 修正ヒストグラムは, そこでは0. 33 S の修正確率ヒストグラムの推移連続補正しない場合 正規確率変数に近づく について (3 連続補正に対応しない階級幅の取り方をすると, 修正ヒストグラムは極限は連続な密度関数にならない. 連続確率分布での近似は出来ない. 今回は, S の離散確率分布ががどんどん大きくなるにつれて連続確率分布に近づくことを示したいので, このような修正ヒストグラムではその様子はわからない. 同時になぜ連続補正が必要かも示している 独立な変数の和の分布 (3 S の極限分布 標準正規分布とよぶ (N(0, と書く 密度関数 f ( e π このような分布を持つ確率変数をZとする. 一般の正規分布 平均 μ, 分散 σ ( 標準偏差 σ の正規分布 ( N( µ,σ は確率変数 σ Z + µ の分布 ( µ σ f ( e πσ 36 6
7 修正確率ヒストグラムの極限が例の密度関数になっている ,0,00,000 について修正ヒストグラムの上部のみを重ねて描いた ,000 の修正ヒストグラムと前ページの関数を重ねて書いた 正規分布表 逆に平均 μ, 標準偏差 σの正規分布は標準正規分布の確率変数 Zを使って σ Z + µ で表せるから, Z はN(0, の分布となる. σ 従って, ( µ s µ µ P s P P Z s σ σ σ となり, s 確率は標準正規分布の確率変数が以下 σ になる確率 教科書 p.79の標準正規分布表を使えば計算可 38 注意 正規分布は平均の値を軸にして左右対称な密度関数を持つ 故に, 平均の値を軸にして左右対称な確率分布関数を持つ よって, P( Z a P( Z a P( Z a または, P( Z a P( Z a P( Z a 例えば, P( Z P( Z P( Z P( Z < P( Z 偏差値の意味 正規分布している変数の場合, 偏差値が特定の値以下である確率は標準正規分布表から求められる. 偏差値 S S σ 仮定の下では S Z よって偏差値は仮定の下で平均 50, 標準偏差 0の正規分布 従って, S ( P S P P Z 例 ある変数が正規分布に従っているとして, その偏差値が65 以下になる確率は, P Z P( Z 逆にいうと偏差値 65を上回る確率は6.68% まあ, 一人一人の試験の点をみたときそれが, 正規分布に従う確率変数であることは少ないですが
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
3章 度数分布とヒストグラム
度数分布とヒストグラム データとは 複雑な確率ゲームから生まれたと考えてよい データ分析の第一歩として データの持つ基本的特性を把握することが重要である 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える データが母集団からのランダムサンプルならば 母集団についての推測を行う 度数分布とヒストグラムの作成
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
3章 度数分布とヒストグラム
3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
Microsoft PowerPoint - データ解析基礎2.ppt
データ解析基礎. 度数分布と特性値 keyword データの要約 度数分布表, ヒストグラム 分布の中心を表す基本統計量 平均, 最頻値, 中央値 分布のばらつきを表す統計量 分散, 標準偏差 統計データの構造 - データ解析の目的 具体的な対象 ( 母集団 ) についての調査結果 ( 標本をどう加工 処理し, 有益な情報を引き出すかである. 加工 処理するための調査結果として, データ ( 観測データ
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
Microsoft PowerPoint - statistics pptx
統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
不偏推定量
不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)
ビジネス統計 統計基礎とエクセル分析 正誤表
ビジネス統計統計基礎とエクセル分析 ビジネス統計スペシャリスト エクセル分析スペシャリスト 公式テキスト正誤表と学習用データ更新履歴 平成 30 年 5 月 14 日現在 公式テキスト正誤表 頁場所誤正修正 6 知識編第 章 -3-3 最頻値の解説内容 たとえば, 表.1 のデータであれば, 最頻値は 167.5cm というたとえば, 表.1 のデータであれば, 最頻値は 165.0cm ということになります
モジュール1のまとめ
数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
Microsoft Word - lec_student-chp3_1-representative
1. はじめに この節でのテーマ データ分布の中心位置を数値で表す 可視化でとらえた分布の中心位置を数量化する 平均値とメジアン, 幾何平均 この節での到達目標 1 平均値 メジアン 幾何平均の定義を書ける 2 平均値とメジアン, 幾何平均の特徴と使える状況を説明できる. 3 平均値 メジアン 幾何平均を計算できる 2. 特性値 集めたデータを度数分布表やヒストグラムに整理する ( 可視化する )
データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの 2
春学期統計学 I データの整理 : 度数分布 標本分散 等 担当 : 長倉大輔 ( ながくらだいすけ ) 1 データの整理 ( 度数分布表とヒストグラム ) 1 次元のデータの整理の仕方として代表的な ものに度数分布表とヒストグラムがあります 度数分布表観測値をその値に応じていくつかのグループ ( これを階級という ) に分類し 各階級に入る観測値の数 ( これを度数という ) を数えて表にしたもの
平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 )
データの分析 データの整理右の度数分布表は,A 高校の 0 人について, 日にみたテレビの時間を記入したものである 次の問いに答えよ () テレビをみた時間が 85 分未満の生徒は何人いるか () テレビをみた時間が 95 分以上の生徒は全体の何 % であるか (3) 右の度数分布表をもとにして, ヒストグラムをかけ 階級 ( 分 ) 階級値度数相対 ( 分 ) ( 人 ) 度数 55 以上 ~65
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
Microsoft PowerPoint ppt
情報科学第 07 回データ解析と統計代表値 平均 分散 度数分布表 1 本日の内容 データ解析とは 統計の基礎的な値 平均と分散 度数分布表とヒストグラム 講義のページ 第 7 回のその他の欄に 本日使用する教材があります 171025.xls というファイルがありますので ダウンロードして デスクトップに保存してください 2/45 はじめに データ解析とは この世の中には多くのデータが溢れています
Excelによる統計分析検定_知識編_小塚明_1_4章.indd
第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 [email protected]
経営統計学
5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており
スライド 1
計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)
講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する fig. ヒストグラムの作成 fig. ヒストグラムの出力例 度数分布表の作成 データの度数を把握する 入力間違いが無いかの確認にも便利 fig. 度数分布表の作成
講義ノート p.1 前回の復習 尺度について数字には情報量に応じて 4 段階の種類がある名義尺度順序尺度 : 質的データ間隔尺度比例尺度 : 量的データ 尺度によって利用できる分析方法に差異がある SPSS での入力の練習と簡単な操作の説明 変数ビューで変数を設定 ( 型や尺度に注意 ) fig. 変数ビュー データビューでデータを入力 fig. データビュー 講義ノート p.2 データの視覚化ヒストグラムの作成直感的な把握のために重要入力間違いがないか確認するデータの分布を把握する
Microsoft Word - 補論3.2
補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は
Microsoft PowerPoint - 第3回2.ppt
講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3
統計学の基礎から学ぶ実験計画法ー1
第 部統計学の基礎と. 統計学とは. 統計学の基本. 母集団とサンプル ( 標本 ). データ (data) 3. 集団の特性を示す統計量 基本的な解析手法 3. 統計量 (statistic) とは 3. 集団を代表する統計量 - 平均値など 3.3 集団のばらつきを表す値 - 平方和 分散 標準偏差 4. ばらつき ( 分布 ) を表す関数 4. 確率密度関数 4. 最も重要な正規分布 4.3
自動車感性評価学 1. 二項検定 内容 2 3. 質的データの解析方法 1 ( 名義尺度 ) 2.χ 2 検定 タイプ 1. 二項検定 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 2 点比較法 2 点識別法 2 点嗜好法 3 点比較法 3 点識別法 3 点嗜好
. 内容 3. 質的データの解析方法 ( 名義尺度 ).χ 検定 タイプ. 官能検査における分類データの解析法 識別できるかを調べる 嗜好に差があるかを調べる 点比較法 点識別法 点嗜好法 3 点比較法 3 点識別法 3 点嗜好法 : 点比較法 : 点識別法 配偶法 配偶法 ( 官能評価の基礎と応用 ) 3 A か B かの判定において 回の判定でAが選ばれる回数 kは p の二項分布に従う H :
散布度
散布度 統計基礎の補足資料 2018 年 6 月 18 日金沢学院大学経営情報学部藤本祥二 基本統計量 基本統計量 : 分布の特徴を表す数値 代表値 ( 分布の中心を表す数値 ) 平均値 (mean, average) 中央値 (median) 最頻値 (mode) 散布度 ( 分布のばらつき具合を表す数値 ) 分散 (variance) 標準偏差 (standard deviation) 範囲 (
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
データの種類とデータの分布
データの種類とデータの分布 統計基礎の補足資料 218 年 6 月 4 日金沢学院大学経営情報学部藤本祥二 2( 教科書 P.52) データのばらつき 分布について データの分布データ全体のばらつき具合 ( 広がり具合 ) 等の全体的な様子をとらえたもの 度数 ( 頻度数 ) ある項目, 又はある値, 又は範囲にデータがどれくらい存在するのかを頻度で示したもの 度数分布度数に関するデータ全体の様子
第4回
Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値
Microsoft Word - å“Ÿåłžå¸°173.docx
回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw
したがって ばらつきを表すには 偏差の符号をなくしてから平均化する必要がある そのひとつの方法は 1 偏差の絶対値を用いることである 偏差の絶対値の算術平均を 平均偏差 という ( )/5=10.8 偏差の符号を取るもうひとつの方法は 2それを2 乗することです 偏差の2 乗の算
統計学テキストの69ページに 平均偏差 分散 標準偏差 変動係数 標準誤差 信頼区間に関する記述がある 分布を考える分布の中心の位置 ( 例 ) 65 53 44 78 50 の数値の算術平均は (65+53+44+78+50)/5=58 である 此れだけでは 分布の状態がわからない ばらつきの程度を表すには最大値と最小値との差 (78-44)=34 これをレンジ ( 範囲 ) と言う しかし 両端の数字だけでは
Microsoft Word - apstattext04.docx
4 章母集団と指定値との量的データの検定 4.1 検定手順今までは質的データの検定の方法を学んで来ましたが これからは量的データについてよく利用される方法を説明します 量的データでは データの分布が正規分布か否かで検定の方法が著しく異なります この章ではまずデータの分布の正規性を調べる方法を述べ 次にデータの平均値または中央値がある指定された値と違うかどうかの検定方法を説明します 以下の図 4.1.1
Microsoft Word - Stattext12.doc
章対応のない 群間の量的データの検定. 検定手順 この章ではデータ間に 対 の対応のないつの標本から推定される母集団間の平均値や中央値の比較を行ないます 検定手法は 図. のようにまず正規に従うかどうかを調べます 但し この場合はつの群が共に正規に従うことを調べる必要があります 次に 群とも正規ならば F 検定を用いて等分散であるかどうかを調べます 等分散の場合は t 検定 等分散でない場合はウェルチ
EBNと疫学
推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデー
社会人のためのデータサイエンス演習第 2 週 : 分析の概念と事例第 1 回 :Analysis( 分析 ) とは講師名 : 今津義充 1 講座内容 第 1 週 データサイエンスとは 第 2 週 分析の概念と事例ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )1 第 3 週 分析の具体的手法ビジネス課題解決のためのデータ分析基礎 ( 事例と手法 )2 第 4 週 ビジネスにおける予測と分析結果の報告ビジネス課題解決のためのデータ分析基礎
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫
6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ
対数正規分布
対数正規分布 ~lognormal distribution~ 平成 0 年 3 月 中央大学理工学部物理学科 4 年 香取研究室 浅野翔 金田佐和子 目次. 対数正規分布とその性質. はじめに. モーメント.3 グラフの概形.4 比例効果の法則と中心極限定理. グラフ 累積分布日本の都道府県の人口分布 (945 年 ) 日本の都道府県の人口分布 (965,985,003 年 ) 無脊椎動物の平均寿命の分布
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
DVIOUT-mem
統計学講義メモ (1): 記述統計 高木真吾, 北海道大学 目次 1 データの全体像を見る 1 1.1 全体像を把握する : ヒストグラム.................................. 1 1. 分布状態を比較する : ローレンツ曲線................................ 3 データを要約する 8.1 データを代表する尺度 : 代表値...................................
PowerPoint Presentation
付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像
青焼 1章[15-52].indd
1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし
Microsoft PowerPoint - 11統計の分析と利用_1-1.pptx
統計の分析と利用. データとその扱い -. 一次元のデータ 度数分布 ヒストグラム 幹葉プロット 箱ひげ図代表値と散らばり データの尺度 -. 二次元のデータ 堀田敬介 散布図 クロス集計二次元データの関係 : 相関係数 相関比 連関係数 0/9/30, Fri.~ -. 一次元のデータ 度数分布 ヒストグラム 幹葉プロット, =9, =-3, =4, =5, =3, 67 = 箱ひげ図,, 3,
Python-statistics5 Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (
http://localhost:8888/notebooks/... Python で統計学を学ぶ (5) この内容は山田 杉澤 村井 (2008) R によるやさしい統計学 (http://shop.ohmsha.co.jp/shop /shopdetail.html?brandcode=000000001781&search=978-4-274-06710-5&sort=) を参考にしています
(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)
6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3
画像類似度測定の初歩的な手法の検証
画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第
画像処理工学
画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
統計学 Ⅰ(8) 累積度数 : ある階級以下に含まれる度数の合計 階級 度数 相対度数累積度数 累積相対度数 点以上 ~ 点未満.. ~.. ~. 7. ~ 6..6 ~. 6.8 ~ ~ ~ ~ ~.. ~.. 合計. - -
統計学 Ⅰ(8) 章度数分布とローレンツ曲線. 度数分布表 教科書 8- ページ. 度数分布表 () データの表し方 () 度数分布表 () 度数, 相対度数, 累積度数. ヒストグラム () ヒストグラム () 階級の決め方 () ヒストグラムにおける階級幅の調整 () クロス集計. ローレンツ曲線とジニ係数 () 所得格差の問題 () ローレンツ曲線 () ジニ係数 () データの表し方 例 :
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
Microsoft PowerPoint - 資料04 重回帰分析.ppt
04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit [email protected] http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
Excelによる統計分析検定_知識編_小塚明_5_9章.indd
第7章57766 検定と推定 サンプリングによって得られた標本から, 母集団の統計的性質に対して推測を行うことを統計的推測といいます 本章では, 推測統計の根幹をなす仮説検定と推定の基本的な考え方について説明します 前章までの知識を用いて, 具体的な分析を行います 本章以降の知識は操作編での操作に直接関連していますので, 少し聞きなれない言葉ですが, 帰無仮説 有意水準 棄却域 などの意味を理解して,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
Medical3
Chapter 1 1.4.1 1 元配置分散分析と多重比較の実行 3つの治療法による測定値に有意な差が認められるかどうかを分散分析で調べます この例では 因子が1つだけ含まれるため1 元配置分散分析 one-way ANOVA の適用になります また 多重比較法 multiple comparison procedure を用いて 具体的のどの治療法の間に有意差が認められるかを検定します 1. 分析メニュー
2013年度 九州大・理系数学
九州大学 ( 理系 ) 前期日程問題 解答解説のページへ a> とし, つの曲線 y= ( ), y= a ( > ) を順にC, C とする また, C とC の交点 P におけるC の接線をl とする 以下 の問いに答えよ () 曲線 C とy 軸および直線 l で囲まれた部分の面積をa を用いて表せ () 点 P におけるC の接線と直線 l のなす角を ( a) とき, limasin θ(
統計学的画像再構成法である
OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は
Microsoft PowerPoint - 14都市工学数理ノンパラ.pptx
都市工学数理 浅見泰司 東京大学大学院工学系研究科教授 Yasushi Asami 1 0. 統計学的検定の基本 母集団と標本 世論調査では 日本人全員に聞くというのは事実上不可能 そこで 日本人全員 (= 母集団 ) から 一部 (= 標本 ) を選んで そこで得られた傾向 (= 仮説 ) が日本人全体にもある程度の信頼性で成り立つかどうかを考える (= 検定 ) 注意 サンプリングの方法 ランダムサンプリングが基本
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
Excelによる統計分析検定_知識編_小塚明_1_4章.indd
第1章 母集団と統計データ 本章では, ビジネスのさまざまな場面において統計データを扱ううえで, もっとも基本的事項となる母集団の概念と統計データの種類についてまとめています 母集団の統計的性質を調べるためにとても重要な概念であるサンプリングについて述べるとともに, ランダムサンプリングの重要性についても説明します 統計分析の考え方 ビジネスの多くの場面において, 統計分析は重要です この場合の統計分析とは,
