数理研渦波09.dvi

Size: px
Start display at page:

Download "数理研渦波09.dvi"

Transcription

1 (Yasuhide Fukumoto) Faculty of Mathematics, Kyushu University (Makoto Hirota) Japan Atomic Energy Agency Helmholtz [9] (vorticity) 1859 Helmholtz [10] Green Kirchhoff Green 20 Lighthill [20] 20 = [15]. [18] 3 Kelvin [27, 5]. [16] Kelvin [7] 1 3 Moore-Saffmann-Tsai-Widnall (MSTW ) [24, 27, 3, 5] 2 Kelvin Hamilton Krein [1, 2]. Lamb [19] p

2 1: U, ũ ũ α u u = U + ũ; ũ = αũ α2 ũ 02 + (1) 0 α αũ 01 Kelvin 1 Kelvin ΔH Kelvin ΔH = 1 u 2 dv 1 U 2 dv = αh α2 H 2 + ; (2) (ũ2 ) H 1 = U ũ 01 dv, H 2 = 01 + U ũ 02 dv. (3) (U 0) α 2 Kelvin ũ 02 α 2 ũ 02 [5] Kelvin (isovortical sheet) Euler 2

3 [1,2,14] 1 2 H 2 [12, 13] [7] H 2 H 1 =0 (H 2 0) U (3) H 2 H 2 0 ũ 02 ( ) ũ 02 : U ũ 02 dv < 0 isovortical Euler Lagrange Lagrange 2 [7]3 [11] Kelvin ( [12, 13] ) Malkus [21] MSTW ( [4, 16] ) Euler Kelvin [29, 26] 2 Kelvin 2 1 ) Lagrange [7] 3 [23] (Hamiltonian normal form) [17] [29, 26] Euler Euler MSTW [7] isovortical 3 3

4 [22] [25] Euler 2 Lagarage 2 3 Euler [11] 4 Kelvin 5 Kelvin 2 [8] 2 Lagrange Arnol d [1, 2] - Euler Lagrange [14] [12, 13, 7] Lagrange 2 2 D R 3 SDiff(D) Lie g <, > R g g u g v g < u,v> g <, > ( ) Lie [, ] g ad ad(u 1 )u 2 =[u 1,u 2 ]=(u 2 )u 1 (u 1 )u 2 for u 1,u 2 g. (4) u i = u i g g F 1 F 2 Lie-Poisson [ δf1 {F 1,F 2 } = δv, δf ] 2,v δv (5) Euler Poisson F/ t = {F, H} g ad ξ g ad u, ad(ξ) v = ad(ξ)u, v. Poisson v g v t = ad ( ) δh v. (6) δv [1] δh/δv u(t) g Euler-Poincaré [14] Euler ad 4

5 i [ad (ξ)v] i =[ ξ ( v)+ f] i (i =1, 2, 3) (7) f D ξ D f v g D D D D (6) v(t) =Ad ( ) ϕ 1 t v(0) ϕt δh/δv SDiff(D) t {Ad (ϕ)v(0) g ϕ SDiff(D)} (isovortical sheet) t 0 u(t 0 )= ( t ϕt ϕ 1 t 0 t0 ) = δh δv (8) t0 SDiff(D) ϕ t g v(t) t =0 v(0) ϕ α,0 SDiff(D) v α (0) = Ad ( ϕα,0) 1 v(0) α R v α (0) v(t) SDiff(D) v α (t) t ϕ α,t SDiff(D) v α (t) v(t) v α (t) =Ad ( ) ( (ϕα,t ) ) ϕ 1 α,t v(t) =Ad 1 ϕ t v(0). (9) α, ϕ α,t t Lie ξ α (t) g ϕ α,t =expξ α (t) ξ α α O(α 2 ) ξ α = αξ α2 ξ 2 +. (10) Ad ( ϕ 1 α,t) = n=0 [ ad (ξ α )] n /n!, (9) v α = v + αv α2 v 2 + ; v 1 = ad (ξ 1 )v, v 2 = ad (ξ 2 )v +ad (ξ 1 )ad (ξ 1 )v. (11) (v = v g ), v 1 = P [ξ 1 ω], v 2 = P [ ξ 1 ( (ξ 1 ω) ) + ξ 2 ω ] (12) 5

6 ω = v P ϕ α,t ϕ t u α (t 0 ) = ( ) t ϕα,t ϕ t ϕ 1 t 0 ϕ 1 α,t 0 t0 ( ) 1 = u(t 0 )+ (n +1)! [ad(ξ α)] n ξα t ad(v)ξ α (13) n=0 u α = u + αu α2 u 2 + ; u 1 = ξ 1 t ad(u)ξ 1, u 2 = ξ 2 t ad(u)ξ 2 +ad(ξ 1 ) ( ) ξ1 t ad(u)ξ 1 (14) H D u α g v α g u α (t) = δh δv (t) =v α (t). (15) α 1 H = D v2 α /2dV v α (t) u α (t) (12) (14) ξ 1, ξ 2 ξ 1 t +(U )ξ 1 (ξ 1 )U = v 1, (16) ξ 2 t +(U )ξ 2 (ξ 2 )U +(v 1 )ξ 1 (ξ 1 )v 1 = v 2 (17) v 1, v 2 (12) U = v (12) ω = U 1 (16) 2 (17) [7] [7], (17) 6

7 3 α H (v α )=H(v)+αH α2 H 2 + (18) ( v/ t = 0), (11) 1 δh δh H 1 = δv,v 1 = δv, ad (ξ 1 )v = ξ 1, v =0. (19) t Euler [1, 2] 2 H 2 = δh δ 2 δv,v H 2 + δv v 1,v 2 1 = ξ 1, v 1 = t = ξ 1, ad ( ξ1 t ξ 2, v t = ω ) v D ξ 1, v 1 t ( ξ1 t ξ 1 ) dv (20) (20) (20) 2 2 Lagrange ξ 2 (x,t) 1 ξ 1 (x,t) (20) ( [2]), 2 ξ 2 O(α 2 ) [11]. η g, J =< η,v> Noether exp η J v α J α =<η,v α > J α J α J α =<η,v>+αj α2 J 2 + (21) (11) 2 J 1 = η, v 1 = η, ad (ξ 1 )v = ξ 1, ad (η)v, J 2 = η, v 2 = ξ 2, ad (η)v + ξ 1, ad (η)v 1 (22) 7

8 v(t) ad (η)v =0, 1 J 1 =0 2 J 2 Euler J 2 = ad(η)ξ 1, ad (ξ 1 )v = ω (ξ 1 L η ξ 1 )dv (23) L η ξ 1 = ad(η)ξ 1 ξ 1 η Lie 2 J 2 1 Lagrange ξ 1 D 4 Kelvin Kelvin O(α) r =1 z- (r, θ, z) 2 r θ U 0 V 0 P 0 0 [26, 23] U 0 =0, V 0 = r, P 0 = r 2 /2 1 (24) ũ = αu 01 3 u (m) 01 = A m (t)u (m) 01 (r)e imθ e ikz, A m (t) e iω 0t A m (t) t ω 0 m( Z) k( R) Kelvin u (m) 01 (r) Euler L m,k = (25) L m,k u (m) 01 + p (m) 01 = 0, u (m) 01 =0. (26) i(ω 0 m) i(ω 0 m) i(ω 0 m) (27) m- 1 Bessel J m { u (m) i 01 = m ω 0 m +2 r J m(η m r)+ ω } 0 m ω 0 m 2 η mj m+1 (η m r), { } v (m) 1 m 01 = ω 0 m +2 r J 2η m m(η m r)+ ω 0 m 2 J m+1(η m r), w (m) k 01 = ω 0 m J m(η m r), p (m) 01 = J m (η m r) (28) 8

9 3 2 1 Ω k 2: Kelvin (m = 1) (m =+1) η m η 2 m =[4/(ω 0 m) 2 1] k 2 (28) u (m) 01 =0atr =1 J m+1 (η m )= (ω 0 m 2)m (ω 0 m)η m J m (η m ) (29) [28, 23] 2 (m = ±1) (m = 1) (m =+1) (m =1) (k, ω 0 )=(0, 1) (m = 1) (k, ω 0 )=(0, 1) 20 [27, 5] (isolated modes) 5 Kelvin Kelvin αu 01 ũ O(α 2 ) α 2 u 02 (θ z ) z- z- θ z Euler [26] O(α 2 ) [7] ( 1) Lagrange 2 Lagrange [7, 8] 9

10 α, (16) u 01 = ξ 1 t +(U 0 ) ξ 1 (ξ 1 ) U 0 (30) (24) U 0 = re θ, (30) i(ω 0 m)ξ 1 Kelvin (25) (30) [ ] iam (t) ξ 1 =Re ω 0 m u(m) 01 (r)e imθ e ikz (31) ξ 1 =0. U 0 = re θ U 0 =2e z (23) (12) (20) 2 Lagrange ξ 2 u 02 = P [ξ 1 ( (ξ 1 e z ))] = ξ 1 ξ 1 / z = 4ik (ω 0 m) A m 2 (0,u (m) 2 01 w(m) 01, u(m) 01 v(m) 01 ) (32) Lagrangian k ω 0 (k, ω 0 ) 3 k 0 2 (32) θ z (20) (32) O(α 2 ) H 2 E 2, O(α 2 ) J 2 = u 02 da (33) (25) (action) μ 0 = E 2 /ω 0 J 2θ = mμ 0, J 2z = k 0 μ 0 μ 0 J 2 (pseudo-momentum) 6 z Rankine Kelvin 10

11 [24, 27, 28, 3, 5] Kelvin α O(α 3 ) O(α 2 ) Euler ɛ O(α 2 ɛ) [26, 29] isovortical Kelvin O(α 2 ) O(α 3 ) [23, 8] [17] Kelvin O(α 3 ) Kelvin [21, 4] Kelvin 2 Kelvin [22, 6] 2 Euler O(α 2 ) Lagrange [1] Arnol d, V. I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l hydrodynamique des fluids parfaits, Ann. Inst. Fourier Grenoble 16 (1966) [2] Arnol d, V. I.: Sur un principle variationnel pour les écoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires, J. Méc. 5 (1966) [3] Eloy, C. and Le Dizés, S.: Stability of the Rankine vortex in a multipolar strain field, Phys. Fluids 13 (2001) [4] Eloy, C., Le Gal, P. and Le Dizés, S.: Experimental Study of the Multipolar Vortex Instability, Phys. Rev. Lett. 85 (2000)

12 [5] Fukumoto, Y.: The three-dimensional instability of a strained vortex tube revisited, J. Fluid. Mech. 493 (2003) [6] Fukumoto, Y., Hattori, Y. and Fujimura, K.: Weakly nonlinear evolution of an ellipticalflow,inproc. of the 3rd International Conference on Vortex Flows and Vortex Models (ed. K. Kamemoto, the Japan Society of Mechanical Engineers (JSME), 2005) pp [7] Fukumoto, Y. and Hirota, M.: Elliptical instability of a vortex tube and drift current induced by it, Phys. Scr. T132 (2008) [8] Fukumoto, Y., Hirota, M. and Mie, Y.: Lagrangian approach to weakly nonlinear stability of an elliptical flow, submitted to Phys. Scr. (2010). [9] Helmholtz, H. von: Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen, Crelle s J. (J. Reine Angew. Math.) 55 (1858) [English translation] by P. Tait: On integrals of the hydrodynamical equations, which express vortex-motion, Phil. Mag. (4) 33 (1867) pp [10] Helmholtz, H. von: Theorie der luftschwingungen in röhren mit offnen enden, Crelle s J. 57 (1860) [11] Hirota, M: Action-angle representation of waves in fluids and plasmas: applications to stability analysis and wave-mean field interactions, In COE Lecture Note Vol. 20 Math-for-Industry Tutorial: Spectral theories of non-hermitian operators and their application (Faculty of Mathematics, Kyushu University, 2009) pp [12] Hirota, M. and Fukumoto, Y.: Energy of hydrodynamic and magnetohydrodynamic waves with point and continuous spectra, J. Math. Phys. 49 (2008) [13] Hirota, M. and Fukumoto, Y.: Action-angle variables for the continuous spectrum of ideal magnetohydrodynamics, Phys. Plasmas 15 (2008) [14] Holm, D. D., Schmah, T. and Stoica, C.: Geometric Mechanics and Symmetry (Oxford University Press, 2009). [15] Howe, M. S.: Vorticity and the theory of aerodynamic sound, J. Eng. Math. 41 (2001) [16] Kerswell, R. R.: Elliptical instability, Annu. Rev. Fluid Mech. 34 (2002) [17] Knobloch, E., Mahalov, A. and Marsden, J. E.: Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics, Physica D 73 (1994)

13 [18] Kobayashi, T., Takami, T,, Miyamoto, M., Takahashi, K., Nishida, A. and Aoyagi, M.: Calculation with Compressible LES for Sound Vibration of Ocarina, In Proc. of Open Source CFD International Conference [19] Lamb, H.: Hydrodynamics, 6th ed. (Cambridge University Press, 1932). [20] Lighthill, J.; On sound generated aerodynamically. I. General theory, Proc.Roy.Soc. London A 211 (1952) [21] Malkus, W. V. R.: An experimental study of the grobal instabilities due to the tidal (elliptical) distortion of a rotating, Geophys. Astrophys. Fluid Dyn. 48 (1989) [22] Mason, D. M. and Kerswell, R. R.: Nonlinear evolution of the elliptical instability: an example of inertial wave breakdown, J. Fluid Mech. 396 (1999) [23] Mie, Y. and Fukumoto, Y.: Weakly nonlinear saturation of stationary resonance of a rotating flow in an elliptic cylinder, J. Math-for-Industry 2 (2010) [24] Moore, D. W. and Saffman, P. G.: Instability of a straiht vortex filament in a strain field, Proc.R.Soc.Lond.A346 (1975) [25] Rodrigues, S. B. and Luca, J. D.: Weakly nonlinear analysis of short-wave elliptical instability, Phys. Fluids 21 (2009) [26] Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained Lamb- Oseen vortex, Phys. Fluids 12 (2000) [27] Tsai, C.-Y. and Widnall, S. E.: The stability of short waves on a straight vortex filament in a weak externally imposed strain field, J. Fluid Mech. 66 (1976) [28] Vladimirov, V. A., Tarasov, V. F. and Rybak, L. Ya.: Stability of elliptically deformed rotation of an ideal incompressible fluid in a Coriolis force field, Izv. Atmos. Ocean. Phys. 19 (1983) [29] Waleffe, F. A.: The 3D instability of a strained vortex and its relation to turblence, PhD thesis. MIT. 13

九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics

九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics 九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics, Kyushu University https://doi.org/10.15017/23403

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

: ( ) : ( ) :! ( ) / 32

: ( ) : ( ) :! ( ) / 32 2015 9 30 ( ) 2015 9 30 1 / 32 : ( ) : ( ) :! ( ) 2015 9 30 2 / 32 http://nalab.mind.meiji.ac.jp/koudai2015/ ( ) 2015 9 30 3 / 32 ( ) ( ) ( : ) 1 2 (2014) 1 M2 2 ( ) 2015 9 30 4 / 32 ( ) ( ) ( : ) 1 2

More information

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開) 1719 2010 26-36 26 LES Numerical study on sounding mechanism of air-reed instruments (Kin ya Takahashi) * (Masataka Miyamoto) * (Yasunori Ito) * (Toshiya Takami), (Taizo Kobayashi), (Akira Nishida), (Mutsumi

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t 1 capillary-gravity wave 1) ) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 1, 13, 14, 15) RMI 11) RTI RTI 3 3 4 y = η(x, t) η t + ϕ 1 η x x = ϕ 1 y, η t + ϕ η x x = ϕ y. (1) 1 ϕ i i (i

More information

2 2.1 d q dt i(t = d p dt i(t = H p i (q(t, p(t H q i (q(t, p(t 1 i n (1 (1 X H = ( H H p k q k q k p k (2 ϕ H (t = (q 1 (t,, q n (t, p 1 (t,, p n (t

2 2.1 d q dt i(t = d p dt i(t = H p i (q(t, p(t H q i (q(t, p(t 1 i n (1 (1 X H = ( H H p k q k q k p k (2 ϕ H (t = (q 1 (t,, q n (t, p 1 (t,, p n (t (Clebsch parametrization, Helicity 1 Langer-Perline rylinski vortex Chern-Simons Atiyah-ott symplectic symplectic reduction Jackiw Jackiw Marsden- Weinstein ( Marsden-Weinstein Poisson Poisson Clebch parametrization

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描 419 特集 宇宙における新しい流体力学 - ブラックホールと SASI- SASI Study of SASI in Black Hole Accretion Flows by Employing General Relativistic Compressive Hydrodynamics Hiroki NAGAKURA, Yukawa Institute for Theoretical Physics,

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

空力騒音シミュレータの開発

空力騒音シミュレータの開発 41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

Banach-Tarski Hausdorff May 17, 2014 3 Contents 1 Hausdorff 5 1.1 ( Unlösbarkeit des Inhaltproblems) 5 5 1 Hausdorff Banach-Tarski Hausdorff [H1, H2] Hausdorff Grundzüge der Mangenlehre [H1] Inhalte

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3 67 1 Landau Damping and RF Current Drive Kazuya UEHARA* 1 Abstract The current drive due to the rf travelling wave has been available to sustain the plasma current of tokamaks aiming the stational operation.

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès,

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès, Title < 特別寄稿 > 数学の無尽蔵性 と二つの哲学 -- カヴァイエスとゲーデル -- Author(s) 中村, 大介 Citation 哲学論叢 (2016), 43: 27-39 Issue Date 2016 URL http://hdl.handle.net/2433/219150 Right Type Departmental Bulletin Paper Textversion

More information

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( ) 71 特集 オープンソースの大きな流れ Nonlinear Sloshing Analysis in a Three-dimensional Rectangular Pool Ken UZAWA, The Center for Computational Sciences and E-systems, Japan Atomic Energy Agency 1 1.1 ( ) (RIST) (ORNL/RSICC)

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotaro SATO*4, Toshihiko SHAKOUCHI and Okitsugu FURUYA Department

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

研究成果報告書

研究成果報告書 Simulation Study of Interaction between Alfvén Eigenmodes and Energetic Particles (TAE ) TAE TAE MHD ITER We studied the interaction between Alfvén eigenmodes and energetic particles in fusion plasmas

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

untitled

untitled Unit 4. n 1 = n 1 ex[i(k x ωt + δ n )] n 1 : k: k = π/λ δ n : k = kxˆ, δ n = n 1 = n 1 os(k x x ωt) v = ω k k k Re(ω) > Im(ω) > Im(ω) < Im(k) E 1 = E 1 ex[i( k x - ωt)] E 1 : + v g ω ω ω ω = = xˆ + yˆ

More information

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and 316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and K. R. Sreenivasan), Solid Mech. Appl., 129, Springer,

More information

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r) ( ( (3 Lax : (4 Bäcklud : (5 (6 d q = e q q e q q + ( m q ( r = q q r ϕ(r ϕ (r 0 5 0 q q q + 5 3 4 5 m d q = ϕ (r + ϕ (r + ( Hooke ϕ(r = κr (κ > 0 ( d q = κ(q q + κ(q + q = κ(q + + q q (3 ϕ(r = a b e br

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

空間多次元 Navier-Stokes 方程式に対する無反射境界条件 81 Navier-Stokes Poinsot Lele Poinsot Lele Thompson Euler Navier-Stokes A Characteristic Nonreflecting Boundary Condition for the Multidimensional Navier-Stokes Equations Takaharu YAGUCHI, Kokichi SUGIHARA

More information

Bloomfield, L. (1933). Language. Chomsky, N. (1957). Syntactic structures. George Allen and Unwin. Mouton. Chomsky, N. (1964). Current issues in linguistic theory. Mouton. Chomsky, N. (1965). Aspects of

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

teionkogaku43_527

teionkogaku43_527 特集 : 振動流によるエネルギー変換 熱輸送現象と応用技術 * Oscillatory Flow in a Thermoacoustic Sound-wave Generator - Flow around the Resonance Tube Outlet - Masayasu HATAZAWA * Synopsis: This research describes the oscillatory

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Date 2017 URL http://hdl.handle.net/2433/229150 Right

More information

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1 16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1 [4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7]

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

砂浜砕波帯における流れと地形変化

砂浜砕波帯における流れと地形変化 47 * Currents and Morphological Changes in the Surf Zone on a Sandy Beach Yoshiaki KURIYAMA, Littoral Drift Division, Port and Airport Research Institute 1 1 1) ρd M M x y 2 + + = (1) t x y 2.1 M x UM

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

IPSJ SIG Technical Report Vol.2013-ARC-207 No.23 Vol.2013-HPC-142 No /12/17 1,a) 1,b) 1,c) 1,d) OpenFOAM OpenFOAM A Bottleneck and Cooperation

IPSJ SIG Technical Report Vol.2013-ARC-207 No.23 Vol.2013-HPC-142 No /12/17 1,a) 1,b) 1,c) 1,d) OpenFOAM OpenFOAM A Bottleneck and Cooperation 1,a) 1,b) 1,c) 1,d) OpenFOAM OpenFOAM A Bottleneck and Cooperation with the Post Processes in Numerical Calculation of Transient Phenomena Taizo Kobayashi 1,a) Yoshiyuki Morie 1,b) Toshiya Takami 1,c)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

MS#sugaku(ver.2).dvi

MS#sugaku(ver.2).dvi 1 1,,,.,,,,,.,.,,,.,, Computer-Aided Design).,,, Boltzmann,, [1]., Anderson, []., Anderson, Schrödinger [3],[4]., nm,,.,,,.,, Schrödinger.,, [5],[6].,,.,,, 1 .,, -. -, -., -,,,. Wigner-Boltzmann Schrödinger,

More information

第8章 位相最適化問題

第8章 位相最適化問題 8 February 25, 2009 1 (topology optimizaiton problem) ( ) H 1 2 2.1 ( ) V S χ S : V {0, 1} S (characteristic function) (indicator function) 1 (x S ) χ S (x) = 0 (x S ) 2.1 ( ) Lipschitz D R d χ Ω (Ω D)

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

(a) (b) (c) 4. (a) (b) (c) p.2/27

(a) (b) (c) 4. (a) (b) (c) p.2/27 338 8570 255 Tel : 048 858 3577 Fax : 048 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru Copyright (C) 2002, Tohru Ikeguchi, Saitama University. All rights reserved.

More information

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU PIV IHI Marine United Inc. ( IHIMU ) has already developed several

More information

200708_LesHouches_02.ppt

200708_LesHouches_02.ppt Numerical Methods for Geodynamo Simulation Akira Kageyama Earth Simulator Center, JAMSTEC, Japan Part 2 Geodynamo Simulations in a Sphere or a Spherical Shell Outline 1. Various numerical methods used

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

( ) 1 1.1? ( ) ( ) ( ) 1.1(a) T m ( ) 1.1(a) T g ( ) T g T g 500 74% ( ) T K ( 1.1(b) 15 T g T g 10 13 T g T g T g [ ] A ( ) exp (1.1) T T 0 Vogel-Fulcher T 0 T 0 T K T K Ortho-Terphenil (OTP) SiO 2 (1.1)

More information

商学論叢 第52巻 第1号

商学論叢 第52巻 第1号 S Richard Cantillon Adam SmithJean B. Say SJohn Stuart Mill Peter F. Drucker 1) entrepreneur 2) 3) 1) Drucker [1985], p.26. 38 2) 1730 34 Higgs [1931], Introduction, p. 3) Cantillon [1987], p.75. 40 1755

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices ASAKURA Nobuyuki, Japan Atomic Energy Research Institute, Naka, Ibaraki 311-0193, Japan e-mail: asakuran@fusion.naka.jaeri.go.jp The Plasma Boundary of Magnetic Fusion Devices Naka Fusion Research Establishment,

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applied Heat Technology Division, Japan Atomic Energy Agency,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3. 5 S 2 tot = S 2 T (y, t) + S 2 (y) = const. Z 2 (4.22) σ 2 /4 y = y z y t = T/T 1 2 (3.9) (3.15) s 2 = A(y, t) B(y) (5.1) A(y, t) = x d 1+α dx ln u 1 ] 2u ψ(u), u = x(y + x 2 )/t s 2 T A 3T d S 2 tot S

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information