九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics

Size: px
Start display at page:

Download "九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics"

Transcription

1 九州大学学術情報リポジトリ Kyushu University Institutional Repository 楕円回転流の弱非線形安定性のためのオイラー ラグランジュ混合法 福本, 康秀九州大学大学院数理学研究院 Fukumoto, Yasuhide Faculty of Mathematics, Kyushu University 出版情報 : 応用力学研究所研究集会報告. 22AO-S8 (19), pp , 九州大学応用力学研究所バージョン : 権利関係 :

2 No.22AO-S8 COE Reports of RIAM Symposium No.22AO-S8 Development in Nonlinear Wave: Phenomena and Modeling Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy, Kasuga, Fukuoka, Japan, October 28-30, 2010 Co-organized by Kyushu University Global COE Program Education and Research Hub for Mathematics - for - Industry Article No. 19 (pp ) FUKUMOTO Yasuhide Received 21 December 2011 Research Institute for Applied Mechanics Kyushu University March, 2011

3 (FUKUMOTO Yasuhide) 2 3 Kelvin Hopf ( ) 1 Moore-Saffman-Tsai-Widnall (MSTW) 3 [18, 21, 3, 5] MSTW Kelvin m 2 2 Kelvin Fukumoto [5] m m + 2 Kelvin (m,m + 2) = ( 1,1) (m,m + 2) = (1,3) (0,2) [4, 14] Malkus [15] 2 ( [4] ) MSTW MSTW Waleffe [23] Sipp [20] Kelvin Mason & Kerswell [16] MSTW 2 Kelvin Rodrigues & Luca [19] [2, 11, 12] Fukumoto & Hirota [7] Kelvin (= ) 3 Kelvin 1

4 (action) MSTW 2, 3 4 Kelvin 5 Kelvin 6, 7 MSTW [5] 3 (isovortical) [2] (isovortical) 2 [11, 12]. 2 [7]. [10] - [2, 13] [11, 12, 7] D( R 3 ) SDiff(D) Lie g Lie g g u g v g < u,v > 1 g <, > L 2 Lie g Lie [, ] g ad(u 1 )u 2 = [u 1,u 2 ] = (u 2 )u 1 (u 1 )u 2 (u 1,u 2 g) (2.1) g 2 F 1, F 2 Lie-Poisson [ δf1 {F 1,F 2 } = δv, δf ] 2,v δv Poisson F/ = {F,H} ad ad u,ad(ξ ) v = ad(ξ )u,v, (ξ g) Poisson v g [1]: ( ) v δh = ad v. (2.3) δv 2 (2.2)

5 δh/δv u(t) g [13] ad [ad (ξ )v] i = [ ξ ( v) + f ] i (i = 1,2,3) (2.4) f D ξ D f v g D D D D (2.3) v(t) = Ad ( ϕt 1 ) v(0) ϕt δh/δv SDiff(D) 1 {Ad (ϕ)v(0) g ϕ SDiff(D)} (isovortical sheet) ϕ t u(t 0 ) = ( ϕt ϕ 1 ) δh t 0 = t0 δv SDiff(D) ϕ t, g ( ) v(t) (t = 0) ϕ α,0 SDiff(D) v(0) v α (0) = Ad ϕα,0 1 v(0) α R v α (0) v α (t) t ϕ α,t SDiff(D) v(t) v α (t) v α (t) = Ad ( ϕα,t 1 ) ( ( ) ) v(t) = Ad 1 ϕα,t ϕ t v(0) (2.6) α, ϕ α,t ξ α (t) g ϕ α,t = expξ α (t) α O(α 2 ) ξ α = αξ 1 + α 2 ξ 2 /2 +. Ad ( ϕ 1 α,t ) = n=0 [ ad (ξ α )] n /n! (2.6) v α = v + αv 1 + α 2 v 2 /2 + ; (2.5) v 1 = ad (ξ 1 )v, v 2 = ad (ξ 2 )v + ad (ξ 1 )ad (ξ 1 )v (2.7) v 1 = P [ξ 1 ω], v 2 = P [ ξ 1 ( (ξ 1 ω) ) + ξ 2 ω ] (2.8) v = v g ω = v v P ϕ α,t ϕ t u α (t 0 ) = ( ϕα,t ϕ t ϕt 1 0 t0 = u(t 0 ) + n=0 ϕ 1 α,t 0 ) 1 (n + 1)! [ad(ξ α)] n ( ξα ad(v)ξ α ) 2 u α = u + αu 1 + α 2 u 2 /2 + (2.9) u 1 = ξ 1 ad(u)ξ 1, u 2 = ξ 2 ad(u)ξ 2 + ad(ξ 1 ) ( ξ1 ad(u)ξ 1 ) (2.10) 3

6 1 H = D v2 α/2dv H Lie u α (t) g u α (t) = δh δv v α (t) (2.8) (2.10) (t) = v α (t) (2.11) α ξ 1 + (U )ξ 1 (ξ 1 )U = v 1, (2.12) ξ 2 + (U )ξ 2 (ξ 2 )U + (v 1 )ξ 1 (ξ 1 )v 1 = v 2 (2.13) v 1 v 2 (2.8) U = v (2.8) ω = U 1 (2.12) 2 (2.13) [7] 3 (isovortical disturbances) α 2 H (v α ) = H(v) + αh 1 + α 2 H 2 /2 +. ( v/ = 0), 1 (2.7) δh δh H 1 = δv,v 1 = δv, ad (ξ 1 )v = ξ 1, v = 0 (3.1) [1, 2] 2 H 2 = ξ 1, v ( 1 ξ = ω 1 ξ D 1 )dv (3.2) (3.2) (3.2) 2 (2.13) 2 ξ 2 (x,t) (3.2) [2] 2 ξ 2 O(α 2 ) [10] η g J =< η,v > Noether H expη J v α J α =< η,v α > J α J α J α =< η,v > +αj 1 + α 2 J 2 /2 + (2.7) 2 J 1 = η,v 1 = η, ad (ξ 1 )v = ξ 1,ad (η)v, J 2 = η,v 2 = ξ 2,ad (η)v + ξ 1,ad (η)v 1 (3.3) 4

7 v(t) ad (η)v = 0, J 1 = 0 J 2 J 2 = ad(η)ξ 1, ad (ξ 1 )v = ω (ξ 1 L η ξ 1 )dv (3.4) L η ξ 1 = ad(η)ξ 1 ξ 1 η Lie 2 J Kelvin (= Rankine ) Kelvin 1 ( 6 ) z (r,θ,z) 2 r θ U 0 V 0 P 0 0 r 1 D U 0 = 0, V 0 = r, P 0 = r 2 /2 1 (4.1) ũu = α u 01 z z u (m) 01 = A m(t)u (m) 01 (r)eimθ e ikz, A m (t) e iω 0t A m t ω 0 m k Kelvin u (m) 01 L m,k u (m) 01 + p(m) 01 = 0, u (m) 01 = 0 (4.3) L m,k = r u (m) 01 = i ω 0 m + 2 i(ω 0 m) i(ω 0 m) i(ω 0 m) { m r J m(η m r) + ω } 0 m ω 0 m 2 η mj m+1 (η m r) (4.2) (4.4) η m η m 2 = [ 4/(ω 0 m) 2 1 ] k 2, J m m 1 Bessel u (m) 01 = 0 (r = 1) J m+1 (η m ) = (ω 0 m 2)m J m (η m ) (4.6) (ω 0 m)η m [22, 17] 1 m = ±1 (m = 1) (m = 1) m = 1 (k,ω 0 ) = (0,1) m = 1 (k,ω 0 ) = (0, 1) [5, 21] (4.5) 5

8 3 2 1 Ω k 1: Kelvin (m = 1) (m = +1) 5 ũu 2 α 2 u 02 Kelvin α u 01 z z (r ) ε O(εα 2 ) (θ) - [20] (z ) Kelvin [17] O(εα 2 ) O(α 2 ) [7] Kelvin (2.12) u 01 = ξ 1 + (U 0 ) ξ 1 (ξ 1 )U 0 (5.1) U 0 = re θ (5.1) i(ω 0 m)ξ 1 Kelvin (4.2) (5.1) [ ξ 1 = Re ia ] m(t) ω 0 m u(m) 01 (r)eimθ e ikz (5.2) U 0 = re θ U 0 = 2e z (3.4) (2.8) θ z 2 6

9 ξ 2 1 ξ 1 u 02 = P [ξ 1 ( (ξ 1 e z ))] = ξ 1 ξ 1 / z = 4ik (ω 0 m) 2 A m 2 (0,u (m) 01 w(m) 01, u(m) 01 v(m) 01 ). (5.3) k 6 [15, 4] x ε + y2 1 ε = 1 (6.1) ε ε U = U 0 + εu 1 +, P = P 0 + εp 1 + ; U 1 = r sin2θ, V 1 = r cos2θ, P 1 = 0 (6.2) ε O(ε) U 1 2 ( ) θ = π/4 ( ) θ = π/4 2 3 ũu 2 ε α O(α 3 ) u = U + ũu = U 0 + εu 1 + α u 01 + εα u 11 + α 2 u 02 + α 3 u (6.3) O(ε m α n ) u mn ε (6.1) r = 1 + ε cos2θ/2 + O(ε 2 ) n 7 Moore-Saffman-Tsai-Widnall u n = 0 at r = 1 + ε cos2θ/2 (6.4) 4 Kelvin εu 1 Kelvin O(α) e imθ e i(m+2)θ Kelvin εu 1 O(εα) e imθ e i(m+2)θ Kelvin [18, 21, 5] 2 Rankine 3 m m + 2 Kelvin (k,ω) O(εα) [5] [22]. 7

10 1 k (ω 0 = 0) (ω 0 = 0) (ω 0 0) [21, 3, 5] ω 0 = 0 (m,m + 2) = ( 1,+1) ω 0 = 0 η = 3k u 01 m = ±1 Kelvin u 01 = A u ( ) 01 e iθ e ikz + A + u (+) 01 eiθ e ikz + c.c. (7.1) A ±1 A ± U 1 O(εα) u 11 = { B u ( ) 11 e iθ + B + u (+) 11 eiθ + B 3 u ( 3) 11 e 3iθ + B 3 u (3) 11 e3iθ } e ikz +c.c. (7.2) u (m) 11 (r), u(m+2) 11 (r) O(εα) (6.4) u ( ) du01 2 dr u 01 cos2θ + v 01 sin2θ = 0 at r = 1 (7.3) (7.3) B ± Kelvin 1 A = 1 A + = i 3(3k2 + 1) A + 10 A 10 8(2k 2 = ia. (7.4) + 1) t 10 = εt k (4.6) J 1 (η) = ηj 0 (η) k (ω 0 = 0) a = 3(3k 2 +1)/[8(2k 2 + 1)] [22] A /A + = i. k 2 ω 0 = 0 (k,a) (1.578, ), (3.286, ),. Kelvin [5] Kelvin (3.2) [7] O(α 3 ) e ±iθ e ikz (m = ±1) u (m) 03 L m,k u (m) 03 = N u (m) 01 / 02 2 t 02 = α 2 t N O(α 2 ) O(α 3 ) A ± 8 O(α 3 ) [17] ( 4ik 0, ( A 2 + A + 2) u (+) 01 w(+) 01,( A 2 A + 2) ) u (+) 01 v(+) 01 8 (8.1)

11 (m,m+2) (5.3) Kelvin A = A + O(α 3 ) (= ) da ± dt = i [ εaa + α 2 A ± ( b A± 2 + c A 2)]. (8.2) a (7.4) [ b = 2k (2k 2 + 1) J 0 (η) 2 rj 0 (ηr) 2 J 1 (ηr) 2 dr (11k k 2 + 5)J 0 (η) ], 2 0 [ ] k 2 64k 2 1 c = 12(2k 2 + 1) J 0 (η) 2 rj 0 (ηr) 2 J 1 (ηr) 2 dr + (20k k k 2 27)J 0 (η) 2 0 k (ω 0 = 0) 2 (k;a,b,c) (1.579;0.5312, ,5.222), (3.286;0.5542, 8.286,53.39) (8.2) [9] (5.3) A ± 2 A ±, A 2 A ± [20] A and A + t (8.2) 4 (a,b,c) a > 0, b < 0, c > 0 (8.2) 2 A = A = A + α 2 = ε (8.2) 2 (8.3) da dt = iε ( aa + β A 2 A ) (8.4) β = b + c 2 (Re[A],Im[A]) A = A e iφ A φ d A dt = εa A sin2φ, dφ dt = εacos2φ + εβ A 2 (8.5) A ( 1) A = 0 (xy) φ φ = π/4,3π/4 φ = π/4,3π/4 MSTW instability A φ (8.5) φ = π/4,3π/4 9

12 Im[A] s u s Re[A] : Trajectories in (Re[A],Im[A]) k = (s:, u: ) 9 Kelvin ( 5) [15, 4] MSTW ( ) ( 3 ) [8] ( ) [1] Arnol d, V. I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l hydrodynamique des fluids parfaits, Ann. Inst. Fourier Grenoble 16 (1966), [2] Arnol d, V. I.: Sur un principle variationnel pour les écoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaire, J. Méc. 5 (1966), [3] Eloy, C. and Le Dizès, S.: Stability of the Rankine vortex in a multipolar strain field, Phys. Fluids 13 (2001),

13 [4] Eloy, C, Le Gal, P. and Le Dizès, S.: Experimental Study of the Multipolar Vortex Instability, Phys. Rev. Lett. 85 (2000), [5] Fukumoto, Y.: The three-dimensional instability of a strained vortex tube revisited, J. Fluid Mech. 493 (2003), [6] Fukumoto, Y., Hattori, Y. and Fujimura, K.: Proc. of the 3rd International Conference on Vortex Flows and Vortex Models (The Japan Society of Mechanical Engineers, 2005) pp [7] Fukumoto, Y. and Hirota, M.: Elliptical instability of a vortex tube and drift current induced by it, Phys. Scr. T132 (2008), [8] Fukumoto, Y., Hirota, M. and Mie, Y.: Lagrangian approach to weakly nonlinear stability of elliptical flow, Phys. Scr. T142 (2010), [9] Guckenheimer, J. and Mahalov, A.: Instability induced by symmetry reduction, Phys. Rev. Lett. 68 (1992), [10] Hirota, M.: Math-for-Industry Tutorial: Spectral theories of non-hermitian operators and their application, COE Lecture Note Vol. 20 (Kyushu University, 2009), pp [11] Hirota, M. and Fukumoto, Y.: Energy of hydrodynamic and magnetohydrodynamic waves with point and continuous spectra, J. Math. Phys. 49 (2008), [12] Hirota, M. and Fukumoto, Y.: Action-angle variables for the continuous spectrum of ideal magnetohydrodynamics, Phys. Plasmas 15 (2008), [13] Holm, D. D., Schmah, T. and Stoica, C.: Geometric Mechanics and Symmetry (Oxford University Press, 2009). [14] Kerswell, R. R.: Elliptical instability, Annu. Rev. Fluid Mech. 34 (2002), [15] Malkus, W. V. R.: An experimental study of the grobal instabilities due to the tidal (elliptical) distortion of a rotating, Geophys. Astrophys. Fluid Dyn. 48 (1989), [16] Mason, D. M. and Kerswell, R. R.: Nonlinear evolution of the elliptical instability: an example of inertial wave breakdown, J. Fluid Mech. 396 (1999), [17] Mie, Y. and Fukumoto, Y.: Weakly nonlinear saturation of stationary resonance of a rotating flow in an elliptic cylinder, J. Math-for-Industry 2 (2010), [18] Moore, D. W. and Saffman, P. G.: Instability of a straiht vortex filament in a strain field, Proc. R. Soc. Lond. A 346 (1975), [19] Rodrigues, S. B. and Luca, J. D.: Weakly nonlinear analysis of short-wave elliptical instability, Phys. Fluids 21 (2009),

14 [20] Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained Lamb-Oseen vortex, Phys. Fluids 12 (2000), [21] Tsai, C.-Y. and Widnall, S. E.: The stability of short waves on a straight vortex filament in a weak externally imposed strain field, J. Fluid Mech. 73 (1976), [22] Vladimirov, V. A., Tarasov, V. F. and Rybak, L. Y.: Stability of elliptically deformed rotation of an ideal incompressible fluid in a Coriolis force field, Izv. Atmos. Ocean. Phys. 19 (1983), [23] Waleffe. F. A.: The 3D instability of a strained vortex and its relation to turblence, PhD thesis. MIT (1989). 12

数理研渦波09.dvi

数理研渦波09.dvi (Yasuhide Fukumoto) Faculty of Mathematics, Kyushu University (Makoto Hirota) Japan Atomic Energy Agency 1 1858 Helmholtz [9] (vorticity) 1859 Helmholtz [10] Green Kirchhoff Green 20 Lighthill [20] 20

More information

é éτ Γ ζ ä

é éτ Γ ζ ä é éτ Γ ζ ä é é éτ Γ ζ ä \\ é \ No.16ME-S1 Reports of RIAM Symposium No.16ME-S1 Physics and Mathematical Structures of Nonlinear Waves Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy,

More information

(ANAGISAWA Daichi) (NISHINARI Katsuhiro) 1 1 Helbing Social Force Model [1] Social Force Social Force [2][3] [3] 1

(ANAGISAWA Daichi) (NISHINARI Katsuhiro) 1 1 Helbing Social Force Model [1] Social Force Social Force [2][3] [3] 1 No.17ME-S2 Reports of RIAM Symposium No.17ME-S2 Phenomena and Mathematical Theory of Nonlinear Waves and Nonlinear Dynamical Systems Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy,

More information

é éτ Γ ζ ä

é éτ Γ ζ ä é éτ Γ ζ ä é é éτ Γ ζ ä \\ é \ No.16ME-S1 Reports of RIAM Symposium No.16ME-S1 Physics and Mathematical Structures of Nonlinear Waves Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy,

More information

九州大学学術情報リポジトリ Kyushu University Institutional Repository ソリトンの二次元相互作用について 及川, 正行九州大学応用力学研究所 辻, 英一九州大学応用力学研究所 Oikawa, Masayuki Research Institute for A

九州大学学術情報リポジトリ Kyushu University Institutional Repository ソリトンの二次元相互作用について 及川, 正行九州大学応用力学研究所 辻, 英一九州大学応用力学研究所 Oikawa, Masayuki Research Institute for A 九州大学学術情報リポジトリ Kyushu University Institutional Repository ソリトンの二次元相互作用について 及川, 正行九州大学応用力学研究所 辻, 英一九州大学応用力学研究所 Oikawa, Masayuki Research Institute for Applied Mechanics, Kyushu University Tsuji, Hidekazu

More information

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t

1 capillary-gravity wave 1) 2) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 12, 13, 14, 15) RMI 11) RTI RTI y = η(x, t) η t 1 capillary-gravity wave 1) ) 3, 4, 5) (RTI) RMI t 6, 7, 8, 9) RMI RTI RMI RTI, RMI 10, 11) 1, 13, 14, 15) RMI 11) RTI RTI 3 3 4 y = η(x, t) η t + ϕ 1 η x x = ϕ 1 y, η t + ϕ η x x = ϕ y. (1) 1 ϕ i i (i

More information

Δ =,, 3, 4, 5, L n = n

Δ =,, 3, 4, 5, L n = n 九州大学学術情報リポジトリ Kyushu University Institutional Repository 物理工科のための数学入門 : 数学の深い理解をめざして 御手洗, 修九州大学応用力学研究所 QUEST : 推進委員 藤本, 邦昭東海大学基盤工学部電気電子情報工学科 : 教授 http://hdl.handle.net/34/500390 出版情報 : バージョン :accepted

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

Korteweg-de Vries

Korteweg-de Vries Korteweg-de Vries 2011 03 29 ,.,.,.,, Korteweg-de Vries,. 1 1 3 1.1 K-dV........................ 3 1.2.............................. 4 2 K-dV 5 2.1............................. 5 2.2..............................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

PL2N.K*1k[o=] SMd"kZlR &2gX})X&fJ 27 / 2 n 25 5W 2o`N?3R,PL*+DS>*K.lF$kOGN"/i9?js".lNZj".lNi$U?$`"b)YhGN[o=]rtM7_el<7gsGrO7?# 1 O8aK

PL2N.K*1k[o=] SMdkZlR &2gX})X&fJ 27 / 2 n 25 5W 2o`N?3R,PL*+DS>*K.lF$kOGN/i9?js.lNZj.lNi$U?$`b)YhGN[o=]rtM7_el<7gsGrO7?# 1 O8aK No.18ME-S5 Reports of RIAM Symposium No.18ME-S5 Crossover among theoretical, numerical and experimental studies on nonlinear waves Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

No.26AO-S2 Reports of RIAM Symposium No.26AO-S2 State of arts and perspectives of nonlinear wave science Proceedings of a symposium held at Chikushi C

No.26AO-S2 Reports of RIAM Symposium No.26AO-S2 State of arts and perspectives of nonlinear wave science Proceedings of a symposium held at Chikushi C 九州大学学術情報リポジトリ Kyushu University Institutional Repository セルオートマトンの逆超離散化における重ね合わせ原理とその応用 吉井, 理比古東京大学大学院情報理工学系研究科 星野, 隆行東京大学大学院情報理工学系研究科 満渕, 邦彦東京大学大学院情報理工学系研究科 https://doi.org/10.15017/1807496 出版情報 : 応用力学研究所研究集会報告.

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 高速流体力学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067361 このサンプルページの内容は, 第 1 版発行時のものです. i 20 1999 3 2 2010 5 ii 1 1 1.1 1 1.2 4 9 2 10 2.1 10 2.2 12 2.3 13 2.4 13 2.5

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描 419 特集 宇宙における新しい流体力学 - ブラックホールと SASI- SASI Study of SASI in Black Hole Accretion Flows by Employing General Relativistic Compressive Hydrodynamics Hiroki NAGAKURA, Yukawa Institute for Theoretical Physics,

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3

68 JAXA-RR r v m Ó e ε 0 E = - Ó/ r f f 0 f 1 f = f 0 + f 1 x k f 1 = f k e ikx Ó = Ó k e ikx Ó k 3 67 1 Landau Damping and RF Current Drive Kazuya UEHARA* 1 Abstract The current drive due to the rf travelling wave has been available to sustain the plasma current of tokamaks aiming the stational operation.

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

JA.qxd

JA.qxd Application Note 1432 J rmsj RJ pp J pp t, P σ J rms RJ t (t) 1 ϕ (t) S (t) = P(2π f d t + ϕ (t)) S P f d ϕ (t) J ϕ 1 1 J [s] = ϕ [rad] J [UI] = ϕ [rad] 2π f d 2π Φ(t) 2π f d t ϕ (t) 1 d 1 d ƒ (t) = Φ(t)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 = #A A A. F, F d F P + F P = d P F, F P F F A. α, 0, α, 0 α > 0, + α +, α + d + α + + α + = d d F, F 0 < α < d + α + = d α + + α + = d d α + + α + d α + = d 4 4d α + = d 4 8d + 6 http://mth.cs.kitmi-it.c.jp/

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

砂浜砕波帯における流れと地形変化

砂浜砕波帯における流れと地形変化 47 * Currents and Morphological Changes in the Surf Zone on a Sandy Beach Yoshiaki KURIYAMA, Littoral Drift Division, Port and Airport Research Institute 1 1 1) ρd M M x y 2 + + = (1) t x y 2.1 M x UM

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c 29 2 1 2.1 2.1.1.,., 5.,. 2.1.1,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c v., V = (u, w), = ( / x, / z). 30 2.1.1: 31., U p(z),

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

: ( ) : ( ) :! ( ) / 32

: ( ) : ( ) :! ( ) / 32 2015 9 30 ( ) 2015 9 30 1 / 32 : ( ) : ( ) :! ( ) 2015 9 30 2 / 32 http://nalab.mind.meiji.ac.jp/koudai2015/ ( ) 2015 9 30 3 / 32 ( ) ( ) ( : ) 1 2 (2014) 1 M2 2 ( ) 2015 9 30 4 / 32 ( ) ( ) ( : ) 1 2

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information