<424F58834A838B836F815B836782CC90DD8C76>

Size: px
Start display at page:

Download "<424F58834A838B836F815B836782CC90DD8C76>"

Transcription

1 1 章断面方向の計算 1.1 設計条件 ( 主たる適用基準 : 土工指針 ) 一般条件 (1) 構造寸法図 () 基礎形式地盤反力度 ( 地盤反力度算出方法 : 全幅 ) 1.1. 材料の単位重量 舗 装 γa (kn/m 3 ).50 盛土 湿 飽 潤 和 γt γsat 鉄筋コンクリート 水 γc γw 土圧係数 鉛直土圧 α 水平土圧 CASE-1 CASE- ( 左 ) Ko ( 右 ) Ko ( 左 ) Ko ( 右 ) Ko

2 1.1.4 水位 case 外水位 (m) 内水位 (m) 路面上載荷重雪荷重歩道荷重その他 (kn/m ) 頂版に作用する温度荷重 T = 0.0 ( ) ( 上昇 ) T = 0.0 ( ) ( 下降 ) 材料の基準値および許容応力度 設計基準強度 σck 4.00 一般部 σca 許容曲げ圧縮応力度 隅角部 ハンチ有 ハンチ無 σca σca 6.00 コンクリ ト 許容支圧応力度許容せん断応力度許容せん断応力度 σca τa1 τa 許容押抜きせん断応力度 τa 許容付着応力度 一般部 隅角部 τoa τoa ヤング係数 Ec 材質 SD345 鉄筋 許容引張応力度 許容引張応力度 ( 頂版 ) σsa σsa 許容圧縮応力度 σsa 0 ヤング係数比 ( Es / Ec ) n 鉄筋かぶり 部 位 かぶり () 部 位 かぶり () 頂 版 上側 下側 右側壁 外側 内側 左側壁 外側 内側 底 版 上側 下側 中 壁 ハンチ筋

3 1.1.9 活荷重 [ T 荷重 ( 単軸 ) 50 (kn) ] 活荷重による地盤反力の低減 = (%) 活荷重による水平土圧考慮活荷重の低減係数後輪 β = 9 (%) 前輪 β = 10 (%) 断面力計算条件 (1) 剛 域 なし () 軸線外に作用する荷重 なし (3) 頂版 底版自重 部材厚のみ考慮 (4) 浮力の考え方 全幅 (5) 活荷重分布作用位置 頂版天端 (6) 底版自重 無視する 許容支持力度 許容支持力度 Qa = (kn/m )

4 1. 荷重 1..1 荷重の組合せ (1) 死荷重 case 荷 重 名 称 載荷する任意死荷重 No 1 () 活荷重 case 荷重種別荷重名称 1 定型 1 定型 T 荷重 ( 単軸 ) 50(kN) 側圧 (3) 組合せ case 死荷重 No 活荷重 No 検討

5 1.. 死荷重 (case-1) [ ] 000 躯体自重 (1) 頂版 w = = 1.5 (kn/m ) () 左側壁 w = = 1.5 (kn/m ) (3) 右側壁 w = = 1.5 (kn/m ) 上載荷重 (1) 舗装および盛土 α 舗装 = = (kn/m ) 盛土 = = (kn/m ) Σwd = (kn/m ) () 路面上載荷重 雪荷重 = 0 (kn/m ) 歩道荷重 = 0 (kn/m ) その他 = 0 (kn/m ) Σqd = 0 (kn/m ) (3) 頂版に作用する荷重 等分布荷重 w = = (kn/m )

6 土圧および水圧 土圧 水圧強度 pi = Ko ( qd + Yo γa + Zo γ ) Ko : 静止土圧係数 左 = 右 = qd : 路面上載荷重 = (kn/m ) Yo : 舗装厚 = 0 (m) γa : 舗装の単位重量 =.50 (kn/m 3 ) γ : 土砂の単位重量 = 1 (kn/m 3 ) Zo : 着目位置での土砂の深さ (m) (1) 左側壁 記 号 着目位置 Zo (m) p (kn/m ) p1 頂版天端 p 頂版軸線 p3 底版軸線 p4 底 面 () 右側壁 記号着目位置 Zo (m) p (kn/m ) p1 頂版天端 p 頂版軸線 p3 底版軸線 p4 底 面 外力集計 項 目 V (kn/m) H (kn/m) x (m) y (m) M (kn.m/m) 頂 版 躯体自重 左側壁 右側壁 上載荷重 土圧 左側壁 右側壁 合計 地盤反力 (1) 合力の作用位置および偏心距離 X = ΣM ΣV = (m) e = B - X = 0 (m)

7 () 地盤反力度 ( 算出方法 : 全幅 ) Me = ΣV e = ql = ΣV B qr = ΣV B ql = ql + qr = qr + (kn.m/m) + 6 Me B = (kn/m ) - 6 Me B = (kn/m ) qr - ql B ql - qr ここに T : 側壁厚 B T = (kn/m ) T = (kn/m ) ql : BOX 全幅左端の地盤反力度 qr : BOX 全幅右端の地盤反力度 ql : qr : 底版軸線左端の地盤反力度 底版軸線右端の地盤反力度

8 1..3 活荷重 (case-1) [ 定型 1:T 荷重 ( 単軸 ) 50 (kn) ] 100.0kN 000 輪荷重強度 Pl+i = P (1+i).75 Pvl = (Pl+i) β D + Do Pl+i : BOX 縦方向単位長さ当りの活荷重 (kn/m) P : 輪荷重 (kn) i : 衝撃係数 Pvl : 換算等分布活荷重 (kn/m ) D : 路面から等分布活荷重載荷位置までの厚さ =.000 (m) Do : 車輪の接地幅 (m) β : 低減係数 Pl+i = Pvl = ( ) = 0.6 (kn/m ) = (kn/m) 載荷荷重 (1) 頂版に作用する鉛直荷重 荷重強度 (kn/m ) 0.6 載荷始点 (m) 載荷幅 (m) 4.00

9 () 左側壁に作用する水平荷重 ( 活荷重土圧 ) 換算等分布荷重 wl = (kn/m ) p = Ko wl = = (kn/m ) (3) 右側壁に作用する水平荷重 ( 活荷重土圧 ) 換算等分布荷重 wl = (kn/m ) p = Ko wl = = (kn/m ) 外力集計 項目 V (kn/m) H (kn/m) x (m) y (m) M (kn.m/m) 頂版 分布 左側壁 分布.550 右側壁 分布.550 合計 地盤反力 (1) 合力の作用位置および偏心距離 X = ΣM ΣV = (m) e = B - X = 0 (m) () 地盤反力度 ( 算出方法 : 全幅 ) Me = ΣV e = (kn.m/m) ql = ( ΣV + 6 Me B B ) = (kn/m ) qr = ( ΣV - 6 Me B B ) = (kn/m ) qr - ql ql = ql + B T = (kn/m ) qr = qr + ql - qr ここに T : 側壁厚 B T = (kn/m ) ql : BOX 全幅左端の地盤反力度 qr : BOX 全幅右端の地盤反力度 ql : qr : 底版軸線左端の地盤反力度 底版軸線右端の地盤反力度

10 1..4 活荷重 (case-) [ 定型 : 側圧 ] 1kN/m 000 載荷荷重 (1) 左側壁に作用する水平荷重 ( 活荷重土圧 ) p = Ko wl = = 5.00 (kn/m ) () 右側壁に作用する水平荷重 ( 活荷重土圧 ) p = Ko wl = = 5.00 (kn/m ) 外力集計 項目 H (kn/m) y (m) M (kn.m/m) 左側壁 分布 右側壁 分布 合計 地盤反力 (1) 地盤反力度 ( 算出方法 : 全幅 ) ql = ± ( 6 Me B ) = (kn/m ) qr = (kn/m ) ql = ql + qr = qr + qr - ql B ql - qr ここに T : 側壁厚 B T = (kn/m ) T = (kn/m ) ql : BOX 全幅左端の地盤反力度 qr : BOX 全幅右端の地盤反力度 ql : qr : 底版軸線左端の地盤反力度 底版軸線右端の地盤反力度

11 1.3 検討ケース No 荷重名称 1 3 死荷重 -1 死 -1+ 活 -1 死 -1+ 活 -

12 1.4 断面力図 曲げモーメント図 ( 検討ケース 1) せん断力図

13 曲げモーメント図 ( 検討ケース ) せん断力図

14 曲げモーメント図 ( 検討ケース 3) せん断力図

15 1.5 応力度計算 曲げ応力度 頂 版 項 目 単 位 左隅角部 外側引張 支間部 内側引張 右隅角部 外側引張 曲げモーメント M kn.m 軸 力 N kn 部材幅 b 部材高 h 有効高 d 外側鉄筋かぶり d1 内側鉄筋かぶり d 必要鉄筋量 外側内側 使用鉄筋 外側内側 中立軸 X 応力度 σc σs 許容応力度 σca σsa 検討ケース

16 左側壁 項 目 単 位 上隅角部 外側引張 外側引張 支間部 内側引張 下隅角部 外側引張 曲げモーメント M kn.m 軸 力 N kn 部材幅 b 部材高 h 有効高 d 外側鉄筋かぶり d1 内側鉄筋かぶり d 必要鉄筋量 外側内側 使用鉄筋 外側内側 中立軸 X 応力度 σc σs 許容応力度 σca σsa 検討ケース 3

17 右側壁 項 目 単 位 上隅角部 外側引張 外側引張 支間部 内側引張 下隅角部 外側引張 曲げモーメント M kn.m 軸 力 N kn 部材幅 b 部材高 h 有効高 d 外側鉄筋かぶり d1 内側鉄筋かぶり d 必要鉄筋量 外側内側 使用鉄筋 外側内側 中立軸 X 応力度 σc σs 許容応力度 σca σsa 検討ケース 3

18 底版 項 目 単 位 左隅角部 外側引張 支間部 内側引張 右隅角部 外側引張 曲げモーメント M kn.m 軸 力 N kn 部材幅 b 部材高 h 有効高 d 外側鉄筋かぶり d 内側鉄筋かぶり d 必要鉄筋量 外側内側 使用鉄筋 外側内側 中立軸 X 応力度 σc σs 許容応力度 σca σsa 検討ケース

19 1.5. せん断応力度 S τm = b d τa b = () 部材 照査位置 S (kn) d () τm ( ) τa ( ) 検討ケース L (m) 左隅角部 頂版 左 τ 点右 τ 点 右隅角部 上隅角部 左側壁 上 τ 点下 τ 点 下隅角部 上隅角部 右側壁 上 τ 点下 τ 点 下隅角部 左隅角部 底版 左 τ 点右 τ 点 右隅角部 注 )τ 点 : せん断応力度照査位置 L : 隅角部格点からの距離

20 1.6 主鉄筋定着位置 隅角部 ( 負の曲げモーメント ) 隅角部の主鉄筋の定着位置は 主鉄筋の配筋量が計算上不要となる位置 ( 抵抗曲げモーメントと 設計曲げモーメントとの交点 ) から定着長を加えた長さとする 単位 頂 左端 版 右端 左側壁 上端 下端 右側壁 上端 下端 底 左端 版 右端 主鉄筋径 mm D19 D19 D19 D16 D19 D16 D16 D16 ( 鉄筋径 ) mm (D19 ) (D19 ) (D19 ) (D16 ) (D19 ) (D16 ) (D16 ) (D16 ) (1) Lm () d (3) Lap 定着位置 Lm : 隅角部格点から抵抗曲げモーメントと設計曲げモーメントとの交点までの距離 d : 部材の有効高 Lap : 定着鉄筋の定着長 () の鉄筋定着位置 : (1)+()+(3) ( Lmにはモーメントシフト分を含む )

21 1.6. 支間部 ( 正の曲げモーメント ) 支間部の主鉄筋の定着位置は 主鉄筋の配筋量が計算上不要となる位置 ( 抵抗曲げモーメントと 設計曲げモーメントとの交点 ) から定着長を加えた長さとする 単位 頂左端 版右端 底左端 版右端 主鉄筋径 mm D19 D19 D19 D19 ( 鉄筋径 ) mm (D19 ) (D19 ) (D19 ) (D19 ) (1) Lm () d (3) Lap 定着位置 Lm : 隅角部格点から抵抗曲げモーメントと設計曲げモーメントとの交点までの距離 d : 部材の有効高 Lap : 定着鉄筋の定着長 () の鉄筋定着位置 : (1)-()-(3)

22 1.6.3 抵抗曲げモーメント 設計曲げモーメント頂版隅角部格点からの距離 (m) 負の曲げモーメント Mr (kn.m) M_min (kn.m) 正の曲げモーメント Mr (kn.m) M_max (kn.m)

23 左側壁隅角部格点からの距離 (m) 負の曲げモーメント Mr (kn.m) M_min (kn.m) 正の曲げモーメント Mr (kn.m) M_max (kn.m)

24 右側壁隅角部格点からの距離 (m) 負の曲げモーメント Mr (kn.m) M_min (kn.m) 正の曲げモーメント Mr (kn.m) M_max (kn.m)

25 底版隅角部格点からの距離 (m) 負の曲げモーメント Mr (kn.m) M_min (kn.m) 正の曲げモーメント Mr (kn.m) M_max (kn.m)

26 1.7 安定計算 死荷重時の計算 躯体自重 部 位 計算式 V (kn/m) X (m) M (kn.m/m) 頂 版 左側壁 右側壁 底 版 ハンチ 1/ / 合 計 上載荷重 (1) 路面上載荷重雪荷重 = 0 (kn/m ) 歩道荷重 = 0 (kn/m ) その他 = 0 (kn/m ) qd = 0 (kn/m ) () 舗装および盛土 α 舗装 = = (kn/m ) 盛土 = = (kn/m ) wd = (kn/m ) (3) 荷重集計 V = ( X = M = V X = ) = (kn/m) = (m) 64 (kn.m/m) 土圧 (1) [ CASE-1 ] 水平土圧係数左 Ko = 右 Ko = 左右の水平土圧係数が等しいため 計算を省略する 揚圧 浮力 1) [ case-1 ] 外水位 = 0 (m)

27 死荷重時の安定計算 (1) [ CASE-1 ] 1) [ case-1 ] 部 位 V (kn/m) H (kn/m) M (kn.m/m) 躯体自重 上載荷重 合 計 合力の作用位置および偏心距離 X = ΣM ΣV = (m) e = B - X = 0 (m) 底面中心におけるモーメント Me = ΣV e = (kn.m/m) 地盤反力度 q = ΣV B ± 6 Me B = (kn/m ) Qa=300.0 (kn/m ) OK = (kn/m )

28 1.7. 活荷重の計算 (1) T-50( 単軸 ) 定型 [1] 1) 頂版に作用する鉛直荷重 計算式 V (kn/m) X (m) M (kn.m/m) ) 側壁に作用する水平荷重 左側壁 p = = (kn/m ) 右側壁 p = = (kn/m ) 計算式 H (kn/m) Y (m) M (kn.m/m) 左側壁 右側壁 合計 3) 集計 V (kn/m) H (kn/m) M (kn.m/m) 頂 版 側 壁 合計 () 側圧定型 [] 1) 側壁に作用する水平荷重左右の水平土圧係数が等しいため 計算を省略する 荷重組合せケースの安定計算 ( 1) 死 -1+ 活 -1 V (kn/m) H (kn/m) M (kn.m/m) 死荷重 [ case-1 ] 活荷重 [ 1 ] 合 計 合力の作用位置および偏心距離 X = ΣM ΣV = (m) e = B - X = 0 (m) 底面中心におけるモーメント Me = ΣV e = (kn.m/m)

29 地盤反力度 q = ΣV B ± 6 Me B = (kn/m ) Qa=300.0 (kn/m ) OK = (kn/m )

30 章縦方向の計算.1 設計条件 (1) 形状寸法図 q= Kv= Kv= () 土被り形状盛土の単位重量 γ = 1 (kn/m 3 ) 座標原点 : 頂版天端左端 No X (m) Y (m)

31 (3) 材料および許容応力度等 設計基準強度 σck 4.00 コンクリート ヤング係数 Ec 許容曲げ圧縮応力度 σca 鉄筋 材質許容曲げ引張応力度 σsa SD ヤング係数比 n 15.0 断面力の算出間隔 m 躯体の単位重量 γc kn/m 断面諸常数 A(m ) y(m) A y(m 3 ) A y (m 4 ) Io(m 4 ) 頂版 底版 左側壁 右側壁 ハンチ頂版 ハンチ底版 合計 断面積 ΣA = (m ) 断面二次モーメント Σ(A y) Ye = =.463 (m) ΣA I = Σ(A y )+ΣIo-Ye ΣA = (m 4 ).3 荷重 (1) 躯体自重断面積 A = (m ) w = A γc = = (kn/m) () 盛土重量 左端からの距離 (m) 載荷長 (m) 左荷重強度 (kn/m) 右荷重強度 (kn/m)

32 (3) 路面過載荷重路面荷重強度 Q = q B = = 6 (kn/m) q : 路面過載荷重強度 (kn/m ) B :BOX 断面方向全幅 (m) 頂版上の載荷荷重路面載荷幅 Ls = (m) 分散幅左側 = 0 (m) 右側 = 0 (m) 載荷幅 分布荷重強度 L = (m) Q Ls L = 6 (kn/m) 載荷位置 ( 左端からの距離 ) = (m).4 断面力 (1) 最大 最小曲げモーメント ブロック Mmax M (kn.m) Mmin ブロック左端からの距離 (m) Mmax Mmin () 最大 最小せん断力 ブロック Smax S (kn) Smin ブロック左端からの距離 (m) Smax Smin (3) 着目点での断面力 ブロック 1 ブロック左端からの距離 (m) M (kn.m) S (kn)

33 ブロック ブロック左端からの距離 (m) M (kn.m) S (kn) 断面力図.5.1 曲げモーメント せん断力

34 .6 曲げ応力度 (1) ブロック 1 項 目 単位 Mmax BOX 全幅 BW BOX 全高 BH 5 頂版厚 50.0 左側壁厚 50.0 右側壁厚 50.0 底版厚 60.0 上ハンチ 側壁 幅 0.0 高 0.0 下ハンチ 側壁 幅 高 曲げモーメント M kn.m 39.5 鉄筋量 頂版外側 d1 As1 D 頂版内側 d As D 底版内側 d3 As D 底版外側 d4 As D 中立軸位置 X ヤング係数比 n 15.0 応力度 σc 0.06 σs 1.09 許容応力度 σca σsa 18

35 () ブロック 項 目 単位 Mmax BOX 全幅 BW BOX 全高 BH 5 頂版厚 50.0 左側壁厚 50.0 右側壁厚 50.0 底版厚 60.0 上ハンチ 側壁 幅 0.0 高 0.0 下ハンチ 側壁 幅 高 曲げモーメント M kn.m 39.5 鉄筋量 頂版外側 d1 As1 D 頂版内側 d As D 底版内側 d3 As D 底版外側 d4 As D 中立軸位置 X ヤング係数比 n 15.0 応力度 σc 0.06 σs 1.09 許容応力度 σca σsa 18

36 3 章ウイングの計算 3.1 左口 : 左ウイング 設計条件 (1) 形状寸法図 : 天端勾配 i = 000 勾配 n = 1 : ( 天端勾配を含む ) () 計算条件 設計基準強度 σck 4.00 コンクリート ヤング係数 Ec 許容曲げ圧縮応力度 σca 鉄筋 材質許容曲げ引張応力度 σsa SD ヤング係数比 n 15.0 静止土圧係数 Ko 土砂の単位重量 γ kn/m 3 1 過載荷重 Qv kn/m 1 過載荷重土砂換算高 ho=qv/γ m 0.556

37 3.1. 断面力計算 (1) 台形部 MA = 1 γ Ko { LA4 1 n + (Hs+ho) 3 n LA 3 + (Hs + ho Hs) = ( ) { ( ) = (kn.m) } LA } SA = 1 γ Ko { LA3 3 n + (Hs+ho) LA + (Hs + ho Hs) LA} n = ( ) { ( ) 6.450} = (kn) () 設計断面力 M = (kn.m) S = (kn) Mm = M h α Sm = S h α = = = (kn.m/m) = (kn/m) Hs : 先端のウイング高さ (m) LA : 台形部分のウイング長 (m) ho : 過載荷重土砂換算高 (m) n : 天端勾配を含めた台形部分の勾配比 MA : 台形部分に作用する土圧による曲げモーメント (kn.m) SA : 台形部分に作用する土圧によるせん断力 (kn.m) h : ウイング付根部の有効高さ (m) α : 曲げモーメントの割増係数 α : せん断力の割増係数

38 3.1.3 応力度計算 項 目 単位 背面 常時 曲げモーメント M kn.m せん断力 S kn 81.9 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 必要鉄筋量 Asr 使用鉄筋量 As mm p K C S 中立軸位置 X 応力度 σc 6.43 σs τ 0.05 許容応力度 σca σsa 18 τa 主鉄筋定着位置 主鉄筋の定着位置は 主鉄筋の低減量が計算上不要となる位置 ( 抵抗曲げモーメントと 設計曲げモーメントとの交点 ) から定着長を加えた長さとする (1) 抵抗曲げモーメント 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 低減後の鉄筋量 As mm 許容応力度 σca σsa 18 抵抗曲げモーメント Mr kn.m 100.8

39 () 抵抗曲げモーメントと設計曲げモーメントとの交点 付根からの距離 L m 有効幅 h m 4.40 曲げモーメント M kn.m せん断力 S kn 単位幅当り断面力 Mm Sm kn.m/m kn/m (3) 定着位置 定着鉄筋 D 定着長 Lo = (m) 定着位置 L = L + Lo =.116 (m) ( ウイング付根からの距離 )

40 3. 左口 : 右ウイング 3..1 設計条件 (1) 形状寸法図 : 天端勾配 i = 000 勾配 n = 1 : ( 天端勾配を含む ) () 計算条件 設計基準強度 σck 4.00 コンクリート ヤング係数 Ec 許容曲げ圧縮応力度 σca 鉄筋 材質許容曲げ引張応力度 σsa SD ヤング係数比 n 15.0 静止土圧係数 Ko 土砂の単位重量 γ kn/m 3 1 過載荷重 Qv kn/m 1 過載荷重土砂換算高 ho=qv/γ m 0.556

41 3.. 断面力計算 (1) 台形部 MA = 1 γ Ko { LA4 1 n + (Hs+ho) 3 n LA 3 + (Hs + ho Hs) = ( ) { ( ) = (kn.m) } LA } SA = 1 γ Ko { LA3 3 n + (Hs+ho) LA + (Hs + ho Hs) LA} n = ( ) { ( ) 6.450} = (kn) () 設計断面力 M = (kn.m) S = (kn) Mm = M h α Sm = S h α = = = (kn.m/m) = (kn/m) Hs : 先端のウイング高さ (m) LA : 台形部分のウイング長 (m) ho : 過載荷重土砂換算高 (m) n : 天端勾配を含めた台形部分の勾配比 MA : 台形部分に作用する土圧による曲げモーメント (kn.m) SA : 台形部分に作用する土圧によるせん断力 (kn.m) h : ウイング付根部の有効高さ (m) α : 曲げモーメントの割増係数 α : せん断力の割増係数

42 3..3 応力度計算 項 目 単位 背面 常時 曲げモーメント M kn.m せん断力 S kn 81.9 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 必要鉄筋量 Asr 使用鉄筋量 As mm p K C S 中立軸位置 X 応力度 σc 6.43 σs τ 0.05 許容応力度 σca σsa 18 τa 主鉄筋定着位置 主鉄筋の定着位置は 主鉄筋の低減量が計算上不要となる位置 ( 抵抗曲げモーメントと 設計曲げモーメントとの交点 ) から定着長を加えた長さとする (1) 抵抗曲げモーメント 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 低減後の鉄筋量 As mm 許容応力度 σca σsa 18 抵抗曲げモーメント Mr kn.m 100.8

43 () 抵抗曲げモーメントと設計曲げモーメントとの交点 付根からの距離 L m 有効幅 h m 4.40 曲げモーメント M kn.m せん断力 S kn 単位幅当り断面力 Mm Sm kn.m/m kn/m (3) 定着位置 定着鉄筋 D 定着長 Lo = (m) 定着位置 L = L + Lo =.116 (m) ( ウイング付根からの距離 )

44 4 章ウイングの計算 4.1 右口 : 左ウイング 設計条件 (1) 形状寸法図 : 天端勾配 i = 000 勾配 n = 1 : ( 天端勾配を含む ) () 計算条件 設計基準強度 σck 4.00 コンクリート ヤング係数 Ec 許容曲げ圧縮応力度 σca 鉄筋 材質許容曲げ引張応力度 σsa SD ヤング係数比 n 15.0 静止土圧係数 Ko 土砂の単位重量 γ kn/m 3 1 過載荷重 Qv kn/m 1 過載荷重土砂換算高 ho=qv/γ m 0.556

45 4.1. 断面力計算 (1) 台形部 MA = 1 γ Ko { LA4 1 n + (Hs+ho) 3 n LA 3 + (Hs + ho Hs) = ( ) { ( ) = (kn.m) } LA } SA = 1 γ Ko { LA3 3 n + (Hs+ho) LA + (Hs + ho Hs) LA} n = ( ) { ( ) 6.450} = (kn) () 設計断面力 M = (kn.m) S = (kn) Mm = M h α Sm = S h α = = = (kn.m/m) = (kn/m) Hs : 先端のウイング高さ (m) LA : 台形部分のウイング長 (m) ho : 過載荷重土砂換算高 (m) n : 天端勾配を含めた台形部分の勾配比 MA : 台形部分に作用する土圧による曲げモーメント (kn.m) SA : 台形部分に作用する土圧によるせん断力 (kn.m) h : ウイング付根部の有効高さ (m) α : 曲げモーメントの割増係数 α : せん断力の割増係数

46 4.1.3 応力度計算 項 目 単位 背面 常時 曲げモーメント M kn.m せん断力 S kn 81.9 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 必要鉄筋量 Asr 使用鉄筋量 As mm p K C S 中立軸位置 X 応力度 σc 6.43 σs τ 0.05 許容応力度 σca σsa 18 τa 主鉄筋定着位置 主鉄筋の定着位置は 主鉄筋の低減量が計算上不要となる位置 ( 抵抗曲げモーメントと 設計曲げモーメントとの交点 ) から定着長を加えた長さとする (1) 抵抗曲げモーメント 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 低減後の鉄筋量 As mm 許容応力度 σca σsa 18 抵抗曲げモーメント Mr kn.m 100.8

47 () 抵抗曲げモーメントと設計曲げモーメントとの交点 付根からの距離 L m 有効幅 h m 4.40 曲げモーメント M kn.m せん断力 S kn 単位幅当り断面力 Mm Sm kn.m/m kn/m (3) 定着位置 定着鉄筋 D 定着長 Lo = (m) 定着位置 L = L + Lo =.116 (m) ( ウイング付根からの距離 )

48 4. 右口 : 右ウイング 4..1 設計条件 (1) 形状寸法図 : 天端勾配 i = 000 勾配 n = 1 : ( 天端勾配を含む ) () 計算条件 設計基準強度 σck 4.00 コンクリート ヤング係数 Ec 許容曲げ圧縮応力度 σca 鉄筋 材質許容曲げ引張応力度 σsa SD ヤング係数比 n 15.0 静止土圧係数 Ko 土砂の単位重量 γ kn/m 3 1 過載荷重 Qv kn/m 1 過載荷重土砂換算高 ho=qv/γ m 0.556

49 4.. 断面力計算 (1) 台形部 MA = 1 γ Ko { LA4 1 n + (Hs+ho) 3 n LA 3 + (Hs + ho Hs) = ( ) { ( ) = (kn.m) } LA } SA = 1 γ Ko { LA3 3 n + (Hs+ho) LA + (Hs + ho Hs) LA} n = ( ) { ( ) 6.450} = (kn) () 設計断面力 M = (kn.m) S = (kn) Mm = M h α Sm = S h α = = = (kn.m/m) = (kn/m) Hs : 先端のウイング高さ (m) LA : 台形部分のウイング長 (m) ho : 過載荷重土砂換算高 (m) n : 天端勾配を含めた台形部分の勾配比 MA : 台形部分に作用する土圧による曲げモーメント (kn.m) SA : 台形部分に作用する土圧によるせん断力 (kn.m) h : ウイング付根部の有効高さ (m) α : 曲げモーメントの割増係数 α : せん断力の割増係数

50 4..3 応力度計算 項 目 単位 背面 常時 曲げモーメント M kn.m せん断力 S kn 81.9 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 必要鉄筋量 Asr 使用鉄筋量 As mm p K C S 中立軸位置 X 応力度 σc 6.43 σs τ 0.05 許容応力度 σca σsa 18 τa 主鉄筋定着位置 主鉄筋の定着位置は 主鉄筋の低減量が計算上不要となる位置 ( 抵抗曲げモーメントと 設計曲げモーメントとの交点 ) から定着長を加えた長さとする (1) 抵抗曲げモーメント 部材幅 b 部材高 h 50.0 有効高 d ヤング係数比 n 15.0 低減後の鉄筋量 As mm 許容応力度 σca σsa 18 抵抗曲げモーメント Mr kn.m 100.8

51 () 抵抗曲げモーメントと設計曲げモーメントとの交点 付根からの距離 L m 有効幅 h m 4.40 曲げモーメント M kn.m せん断力 S kn 単位幅当り断面力 Mm Sm kn.m/m kn/m (3) 定着位置 定着鉄筋 D 定着長 Lo = (m) 定着位置 L = L + Lo =.116 (m) ( ウイング付根からの距離 )

集水桝の構造計算(固定版編)V1-正規版.xls

集水桝の構造計算(固定版編)V1-正規版.xls 集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000

More information

1 2 D16ctc250 D16ctc250 1 D25ctc250 9,000 14,800 600 6,400 9,000 14,800 600 以上 6,500 隅角部テーパーをハンチ処理に 部材寸法の標準化 10cm ラウンド 10cm ラウンド 定尺鉄筋を用いた配筋 定尺鉄筋 配力筋位置の変更 ( 施工性考慮 ) 配力筋 主鉄筋 配力筋 主鉄筋 ハンチの除去底版テーパーの廃止 部材寸法の標準化

More information

表紙

表紙 表紙 目次 章 設計条件. 型式. 構造形式. 形状寸法. 料の単位体積重量および地盤の性状.5 許容応度.6 地下水位.7 上載荷重.8 設計震度.9 水平土圧係数.0 各断面方向におけるスパン比 章 鉛直断面(短辺方向)ボックスラーメン. 荷重.. 荷重組み合わせケース 5 5 5... 常時荷重組み合わせ 5... 地震時荷重組み合わせ 6.. 常時の荷重計算 7.. 地震時の荷重計算. 断面計算(FRAME計算)

More information

IT1815.xls

IT1815.xls 提出番号 No.IT1815 提出先御中 ハンドホール 1800 1800 1500 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 株式会社インテック 1 1. 設計条件奥行き ( 短辺方向 ) X 1800 mm 横幅 Y 1800 mm 側壁高 Z 1500 mm 部材厚 床版 t 1 180 mm 底版 t 150

More information

目次 章設計条件 適用基準 形式 形状寸法 地盤条件 使用材料 土砂 載荷荷重 その他荷重 浮力 土圧 水圧 基礎の条件..

目次 章設計条件 適用基準 形式 形状寸法 地盤条件 使用材料 土砂 載荷荷重 その他荷重 浮力 土圧 水圧 基礎の条件.. 3 鉄筋コンクリート造擁壁の構造計算例 逆 T 型 ( 粘性土 ):H=5.0m タイプ 56 目次 章設計条件... 59. 適用基準... 59. 形式... 59.3 形状寸法... 59.4 地盤条件... 59.5 使用材料... 60.6 土砂... 60.7 載荷荷重... 6.8 その他荷重... 6.9 浮力... 6.0 土圧... 6. 水圧... 63. 基礎の条件... 63..

More information

DNK0609.xls

DNK0609.xls 提出番号 No.DNK0609 提出先御中 ハンドホール 600 600 900 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 カナフレックスコーポレーション株式会社 1 1. 設計条件奥行き ( 短辺方向 ) X 600 mm 横幅 Y 600 mm 側壁高 Z 900 mm 部材厚 床版 t 1 80 mm 底版 t

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

目次 1章 設計条件 1.1 一般事項 適用基準 1.3 形式 形状寸法 1.5 使用材料 土砂 1.7 載荷荷重 雪荷重 1.9 その他荷重 水位 1.11 浮力 土圧 1.13 水圧 基礎の

目次 1章 設計条件 1.1 一般事項 適用基準 1.3 形式 形状寸法 1.5 使用材料 土砂 1.7 載荷荷重 雪荷重 1.9 その他荷重 水位 1.11 浮力 土圧 1.13 水圧 基礎の 擁壁の設計 サンプルデータ 詳細出力例 MANUCHO10 側壁高さ, 盛土勾配が異なり 偏土圧が作用 する U 型擁壁 の設計計算例 目次 1章 設計条件 1.1 一般事項 1 1 1. 適用基準 1.3 形式 1 1 1.4 形状寸法 1.5 使用材料 1 1.6 土砂 1.7 載荷荷重 3 1.8 雪荷重 1.9 その他荷重 3 3 1.10 水位 1.11 浮力 3 4 1.1 土圧 1.13

More information

1258+水路Ver44.xdw

1258+水路Ver44.xdw - はじめに - 平成 22 年 11 月記事更新 ( 株 )SIP システム 本システムは 土地改良基準 水路工 および ため池整備 ( 計算例 ) に準拠した水路工の常時 地震時の安定計算および部材断面の照査を行います 部材断面検討では 鉄筋コンクリート および 無筋コンクリート の断面照査が可能です 検討形状としては 左右側壁の高さが異なる偏土圧の検討も可能です 偏土圧の計算においては 左右側壁の背面上へ上載荷重や土質定数を個別に指定が可能で

More information

POWER-直接基礎Ⅱの出力例(表形式)

POWER-直接基礎Ⅱの出力例(表形式) page < 出力例 > 地盤の支持力の計算 S01 (1F Y1@X1 ) BxL hf hw C,O r2 r1 基礎底面の形状 長方形 基礎最小幅 B 1.20 (m) 基礎の長さ L 2.60 (m) 基礎下端の深さ hf GL- 1.20 (m) 地下水位 hw GL- 3.90 (m) 根入れ深さ Df 1.20 (m) 土質定数 砂層 基礎下の土重量 γ1 18.14 (kn/m 3

More information

Super Build/宅造擁壁 出力例1

Super Build/宅造擁壁 出力例1 宅造擁壁構造計算書 使用プログラム : uper Build/ 宅造擁壁 Ver.1.60 工事名 : 日付 : 設計者名 : 宅地防災マニュアル事例集 015/01/7 UNION YTEM INC. Ⅶ-1 建設地 : L 型擁壁の設計例 壁体背面を荷重面としてとる場合 *** uper Build/ 宅造擁壁 *** 160-999999 [ 宅地防災マニュアル Ⅶ-1] 015/01/7 00:00

More information

< E9197BF2E786264>

< E9197BF2E786264> 添付資料 2. 構造計算書 添付資料 2.1 監査廊工 ( 左岸出入口部 ) 計算断面図 添 2.1-1 配筋要領図 ( 計算結果 ) 添 2.1-2 左岸側出入口部 ボックスカルバートの構造計算 計算断面 1 L-23 1 添 2.1-3 左岸側出入口部ボックスカルバートの計算 (L-23,d=13.0m) 1 設計条件 1.1 形状寸法 ボックス形式 監査廊ボックス 3600 6002500500

More information

<30382D348E6C95D392508F838E788E9D939995AA957A89D78F642E786C73>

<30382D348E6C95D392508F838E788E9D939995AA957A89D78F642E786C73> 4 辺単純支持版等分布荷重の構造検討このソフトは 集水桝の蓋のようにただコンクリート版を被せるだけの版の構造計算書です 通常 集水桝の蓋は車が乗る場合はグレーチングを使い 1m 角程度の集水桝であれば標準図集にあります また 大きなサイズになると人力では持ち上がらず 分割しますから単純梁により計算できます しかるに 集水桝蓋の構造計算 で検索してこられる方が数多くいらっしゃいます 多少はお役に立てるかと思い

More information

<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63>

<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63> 付録 1. 吹付枠工の設計例 グラウンドアンカー工と併用する場合の吹付枠工の設計例を紹介する 付録図 1.1 アンカー配置 開始 現地条件の設定現況安全率の設定計画安全率の設定必要抑止力の算定アンカー体の配置計画アンカー設計荷重の設定作用荷重および枠構造の決定設計断面力の算定安全性の照査 土質定数 (C φ γ) 等を設定 例 ) ここでは Fs0.95~1.05 を設定 例 ) ここでは Fsp1.20~1.50

More information

1- 擁壁断面の形状 寸法及び荷重の計算 ( 常時 ) フェンス荷重 1 kn/m 1,100 0 上載荷重 10 m kn/ 3, (1) 自重 地表面と水平面とのなす角度 α=0.00 壁背面と鉛直面とのなす角度 θ=.73 擁壁

1- 擁壁断面の形状 寸法及び荷重の計算 ( 常時 ) フェンス荷重 1 kn/m 1,100 0 上載荷重 10 m kn/ 3, (1) 自重 地表面と水平面とのなす角度 α=0.00 壁背面と鉛直面とのなす角度 θ=.73 擁壁 構造計算例鉄筋コンクリート造擁壁の構造計算例 1 常時 1-1 設計条件 (1) 擁壁の型式及び高さ型式 : 片持梁式鉄筋コンクリート造 L 型擁壁擁壁の高さ :H'=3.00m 擁壁の全高 :H =3.50m () 外力土圧の作用面は縦壁背面とする 上載荷重 : q=10kn/ mフェンス荷重 ( 水平力 ) : 1kN/ m (3) 背面土土質の種類 : 関東ローム土の単位体積重量 :γs=16.0/

More information

< B38BD C78F6F97CD97E12D332E786477>

< B38BD C78F6F97CD97E12D332E786477> 無筋擁壁設計システム Ver4.2 適用基準 土地改良事業計画設計基準 設計 農道 (H7/3) 土地改良事業計画設計基準 設計 水路工 (H26/3) 日本道路協会 道路土工 擁壁工指針 (H24/7) 土木学会 大型ブロック積み擁壁設計 (H6/6) 宅地防災マニュアルの解説 第二次改訂版 (H9/2) 出力例 ブロック積み擁壁の計算書 ( 安定計算および部材断面計算 ) 開発 販売元 ( 株

More information

Microsoft Word - 技術資料Vol.2.docx

Microsoft Word - 技術資料Vol.2.docx 技術資料 Vol.2 Civil Engineering & Consultants 株式会社クレアテック東京都千代田区西神田 2 丁目 5-8 共和 15 番館 6 階 TEL:03-6268-9108 / FAX:03-6268-9109 http://www.createc-jp.com/ ( 株 ) クレアテック技術資料 Vol.2 P.1 解析種別キーワード解析の目的解析の概要 3 次元静的線形解析

More information

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73> スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で

More information

RC単純床版橋(オルゼン解析) 出力例

RC単純床版橋(オルゼン解析) 出力例 目次 1 章設計条件 1 1-1 設計条件 1 1-2 主版および幅員構成寸法 2 2 章主版断面の設計 3 2-1 幅員構成 ( 主版内 ) 3 2-2 荷重条件 3 2-2-1 死荷重 3 2-2-2 活荷重 5 2-3 橋軸方向 Mxの影響値 6 2-3-1 a1 点における影響値 7 2-3-2 a5 点における影響値 8 2-3-3 縁端載荷による係数値 9 2-3-4 a1 点における影響線面積

More information

(1) 擁壁の設計 東京都 H=2.0m < 常時に関する計算 > 2000 PV w1 w2 w3 PH GL 350 1800 97 4 土の重量 16.0, コンクリートの重量 24.0 摩擦係数 0.30, 表面載荷 9.8 ( 土圧係数は直接入力による ) 安定計算用の土圧係数 0.500 壁体計算用の土圧係数 0.500 W1 = 12.6, W2 = 12.3, W3 = 78.1 PH

More information

<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376>

<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376> ボックスカルバートの地震時設計 浮き上がりの検討. 設計条件 () 設計地震動 地震動 レベル () 概要図 400 3900 3000 3000 4000 (3) ボックスカルバート条件 ) 寸法諸元形状 内幅 B(mm) 内高 H(mm) 頂版厚 T(mm) 底版厚 T(mm) 左側壁厚 T3(mm) 右側壁厚 T4(mm) 外幅 B0(mm) 外高 H0(mm) 頂版ハンチ高 C(mm) 底版ハンチ高

More information

耐震性貯水槽の計算 Operation Guidance 操作ガイダンス

耐震性貯水槽の計算 Operation Guidance 操作ガイダンス 耐震性貯水槽の計算 Operation Guidance 操作ガイダンス 本書のご使用にあたって 本操作ガイダンスは おもに初めて本製品を利用する方を対象に操作の流れに沿って 操作 入力 処理方 法を説明したものです ご利用にあたって最新情報は 製品添付のHELP のバージョン情報をご利用下さい 本書は 表紙に掲載時期の各種製品の最新バージョンにより ご説明しています ご利用いただく際には最新バージョンでない場合もございます

More information

FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =

FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = (1/2) KH Z : 地域係数 KS: 設計用標準震度 KV: 設計用鉛直震度 1-2. 設計条件耐震クラス

More information

Taro-2012RC課題.jtd

Taro-2012RC課題.jtd 2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重

More information

<82658C5E95578EAF928C208BAD93788C768E5A8F >

<82658C5E95578EAF928C208BAD93788C768E5A8F > 001 F 型標識柱強度計算書 ( 柱長 6.75m ) (1400 * 3800) (1400 * 3800) 略図 000 3800 300 300 6750 300 550 900 300 5700 STK-φ76.3x.8 STK-φ165.x4.5 STK-φ67.4x6.6 50 300 5000 1400 3000 100 1400 P. 1 1. 一般事項 1-1 概要 F 型 標識柱

More information

土留め工の設計サンプルデータ 概略出力例 Mix3+2 鉄道標準 慣用法と弾塑性法の設計計算例切梁 アンカー併用工法のサンプルデータ

土留め工の設計サンプルデータ 概略出力例 Mix3+2 鉄道標準 慣用法と弾塑性法の設計計算例切梁 アンカー併用工法のサンプルデータ 土留め工の設計サンプルデータ 概略出力例 Mix+ 鉄道標準 慣用法と塑法の設計計算例切梁 アンカー併用工法のサンプルデータ 目次 章 慣用法. 右壁の設計.. 最終掘削時 ()検討条件 )検討条件 )地盤条件 ()根入れ長の計算 )結果要旨 ()断力の計算 )結果要旨 4 4 )土留め壁の剛の検討 (4)支保工反力の計算 5 8 )結果要旨 )外力表 8 8.. 壁体応力度 章 塑法 0. 右壁の設計..

More information

GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH =

GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =

More information

計算例 5t超え~10t以下用_(補強リブ無しのタイプ)

計算例 5t超え~10t以下用_(補強リブ無しのタイプ) 1 標準吊金具の計算事例 5t 超え ~10t 以下用 ( 補強リブ無しのタイプ ) 015 年 1 月 修正 1:015.03.31 ( 社 ) 鋼管杭 鋼矢板技術協会製品技術委員会 1. 検討条件 (1) 吊金具形状 寸法 ( 材料 : 引張強度 490 N/mm 級 ) 00 30 φ 65 90 30 150 150 60 15 () 鋼管仕様 外径 板厚 長さ L 質量 (mm) (mm)

More information

益永八尋 2013 年 11 月 24 日 管体構造計算 益永八尋 パイプラインの縦断図及び水理縦断図のデータから管体構造計算に必要なデータ ( 静水圧 水撃圧 土かぶり 荷重条件等 ) を抽出し 管種選定を行うための構造計算を行う このソフトを利用し 各管種の経済比較のための資料作成も容易に行える

益永八尋 2013 年 11 月 24 日 管体構造計算 益永八尋 パイプラインの縦断図及び水理縦断図のデータから管体構造計算に必要なデータ ( 静水圧 水撃圧 土かぶり 荷重条件等 ) を抽出し 管種選定を行うための構造計算を行う このソフトを利用し 各管種の経済比較のための資料作成も容易に行える 管体構造計算 パイプラインの縦断図及び水理縦断図のデータから管体構造計算に必要なデータ ( 静水圧 水撃圧 土かぶり 荷重条件等 ) を抽出し 管種選定を行うための構造計算を行う このソフトを利用し 各管種の経済比較のための資料作成も容易に行える 例えば 掘削 埋戻し土量 の計算も 縦断図のデータと標準断面図のデータから可能であり 各管種別の工事費積算も容易に行え る また 筆者が作成したスラストブロックの計算ソフト

More information

参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π

参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π 番号 場所打ちコンクリート杭の鉄筋かご無溶接工法設計 施工に関するガイドライン 正誤表 (2015 年 7 月更新 ) Page 行位置誤正 1 p.3 下から 1 行目 場所打ちコンクリート杭施工指 針 同解説オールケーシング工法 ( 土木 ): 日本基礎建設協会 (2014) 2 p.16 上から 3 行目 1) 補強リングと軸方向主筋を固定する金具の計算 3 p.22 図 4-2-1 右下 200

More information

道路土工擁壁工指針 (H24) に準拠 重力式擁壁の安定計算 ( 盛土土圧対応 ) 正規版 Ver 基本データの入力 2 地形データの入力 3 計算実行 Ver /01/18 Civil Tech 洋洋 本ソフトの概要 機能 道路土工 擁壁工指針 ( 平成 24 年度

道路土工擁壁工指針 (H24) に準拠 重力式擁壁の安定計算 ( 盛土土圧対応 ) 正規版 Ver 基本データの入力 2 地形データの入力 3 計算実行 Ver /01/18 Civil Tech 洋洋 本ソフトの概要 機能 道路土工 擁壁工指針 ( 平成 24 年度 道路土工擁壁工指針 (H24) に準拠 重力式擁壁の安定計算 ( 盛土土圧対応 ) 正規版 Ver.1.10 1 基本データの入力 2 地形データの入力 3 計算実行 Ver 1.10 2019/01/18 Civil Tech 洋洋 本ソフトの概要 機能 道路土工 擁壁工指針 ( 平成 24 年度版 ) に準拠して 重力式擁壁の安定計算を行ないます 滑動 転倒 地盤支持力の安定検討を行うことができます

More information

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例

More information

目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震

目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震 2013 年度 都市設計製図 RC 橋脚の耐震設計 課題 3:RC 橋脚の耐震設計 ( その 2) 2013/12/16 学籍番号 氏名 目次 1 章設計条件... 1 1.1 形状寸法... 1 1.2 上部工反力... 1 1.3 設計水平震度... 1 1.4 単位重量他... 1 1.5 柱... 2 1.5.1 使用材料... 2 1.5.2 鉄筋... 2 1.6 柱躯体自重... 3

More information

<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145>

<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145> 円形標準マンホール 上部斜壁 + 床版タイプ 浮上がりの検討. 設計条件 () 設計地震動 地震動レベル () 概要図 呼び方内径 都型 ( 内径 0cm) 00 00 0 600 0 0.00.0 0.0 0.0.0.70 0 60 00 60 60 00.0.0 00 00 00 00 00 P () マンホール条件 ) 寸法諸元 6 7 種類 呼び名 高さ モル 上部 下部 タル 外径 内径

More information

Microsoft PowerPoint - zairiki_7

Microsoft PowerPoint - zairiki_7 許容応力度設計の基礎 曲げに対する設計 材料力学の後半は 許容応力度設計の基礎を学びます 構造設計の手法は 現在も進化を続けています 例えば 最近では限界耐力計算法という耐震設計法が登場しています 限界耐力計算法では 地震による建物の振動現象を耐震設計法の中に取り入れています しかし この設計法も 許容応力度設計法をベースにしながら 新しい概念 ( 限界設計法 ) を取り入れて発展させたものです ですから

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

<8B5A8F708E77906A89FC92F988C E FCD2E786477>

<8B5A8F708E77906A89FC92F988C E FCD2E786477> 第 8 章練積み造擁壁の標準構造図 8.1 標準構造図の種類練積み造擁壁の種類としては 擁壁の背面の状態 ( 切土か盛土 ) によって切土タイプと盛土タイプの2 種類があります 表 8-1 参照過去に造成が行われている場合及び切土と盛土を同時に行う場合には 盛土タイプを使用してください 8.2 標準構造図使用上の注意点 1) 設置地盤の地耐力が表 8-1 の値以上にしてください 軟弱地盤や 過去に埋立てを行

More information

多自然 河川護岸自然 環境に調和する擁壁工ブランチブロック工法設計マニュアル - 2018 年度版 - 平成 30 年 4 月 ブランチブロック工法協会 ***** 目次 ***** 1. 適用範囲 1 2. 適用基準 1 3. 設計条件 1 (1) 擁壁の形式 1 (2) 荷重 1 (3) 荷重の組合せ 1 (4) 許容応力度 1 (5) 土圧 2 (6) せん断抵抗角 ( 内部摩擦角 ) 3

More information

砂防堰堤設計計算 透過型砂防堰堤

砂防堰堤設計計算  透過型砂防堰堤 1 砂防堰堤設計計算 透過型砂防堰堤 目次 2 1 設計条件 1 2 設計流量の算出 2 2-1 渓床勾配 2 2-2 土石流濃度 2 2-3 土石流ピーク流量 2 3 水通しの設計 3 3-1 開口部の設定 3 3-2 土石流ピーク流量 (Qsp) に対する越流水深 6 3-3 設計水深 8 4 水通し断面 8 5 越流部の安定計算 9 5-1 安定条件 9 5-2 設計外力の組合せ 9 5-3

More information

耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日

耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日 耐雪型歩道柵 (P 種 )H=1.1m ランク 3 ( 基礎ブロック ) 平成年月日 目 次 1. 目的 1 2. 耐雪型の設置計画 1 3. 構造諸元 1 4. 許容応力度 1 4-1 使用部材の許容応力度 ( SS400,STK410 相当 1 4-2 無筋コンクリートの引張応力度 1 4-3 地盤の耐荷力 1 5. 設計荷重 2 5-1 鉛直力 ( 沈降力 ) 2 5-2) 水平力 ( クリープ力

More information

<93C18F572B363092B794C28B4C8E E30612E786477>

<93C18F572B363092B794C28B4C8E E30612E786477> - はじめに - 平成 29 年 12 月記事更新 ( 株 )SIP システム 長方形板 (RC 鋼 鋳鋼 鋳鉄 ) の断面解析を 有限要素法 または 級数解 ( 理論解 ) で行います 支持条件は 12 タイプ 有限要素 の場合は 三辺固定一辺自由支持を含め 全ての支持条件で検討可能な他 四辺の支持条件を個別に指定した手法も可能です また 級数解 では 構造力学公式集 に基づいた公式により断面力を求めます

More information

施設・構造3-4c 京都大学原子炉実験所研究用原子炉(KUR)の耐震安全性評価の妥当性確認に係るクロスチェックについて(報告)

施設・構造3-4c 京都大学原子炉実験所研究用原子炉(KUR)の耐震安全性評価の妥当性確認に係るクロスチェックについて(報告) 機器配管系の確認 検討箇所 使用済み燃料貯蔵プール 生体遮へい体 制御棒駆動装置案内管 粗 微調整棒取付部分 炉心直下 1 次系冷却配管 炉心支持構造物 検討方法は 事業者と同じ 61 機器配管への水平入力地震動 1200.0 加速度(cm/sec/sec) 1000.0 500.0 最大値 =1116.0 最小値 =-1045.2 0.0 8000.0 絶対加速度応答スペクトル(cm/sec/sec)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

<95F18D908F912E4F5554>

<95F18D908F912E4F5554> 1 基礎設計書 山田太郎様邸新築工事 2014 年 7 月 1 日 株式会社設計室ソイル 目次 2 1 建物条件 2 1-1 建物概要 2 1-2 平面図 2 1-2-1 基礎の節点座標 3 1-2-2 基礎外周の節点番号 3 1-2-3 スラブを示す4 点の節点番号 3 1-3 荷重条件 4 1-3-1 基礎寸法 4 1-3-2 荷重条件 4 2 スウェーデン式サウンディング試験 5 2-1 調査点

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

Microsoft PowerPoint - zairiki_10

Microsoft PowerPoint - zairiki_10 許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

<90E096BE8F912E786477>

<90E096BE8F912E786477> セメント系固化材による地盤改良の計算 概要書 地下水位 地盤改良 W ( 有 ) シビルテック 2013.05.21 セメント系固化材による地盤改良計算 について 1. 本計算ソフトの概要 本計算ソフトは 軟弱な地盤上に設置される直接基礎の地盤改良の必要性の確認 およびセメント系固化材による地盤改良を行なった場合の改良仕様 ( 改良深さ 改良幅 改良強度 ) を計算するものです [ 適用可能な地盤改良の種類

More information

<4D F736F F F696E74202D E518D6C8E9197BF31817A92DD82E E494C282CC8D5C91A2>

<4D F736F F F696E74202D E518D6C8E9197BF31817A92DD82E E494C282CC8D5C91A2> 参考資料 1 吊り天井板の構造 目的 事故の起きた吊り天井板の構造や設計条件等を調査し 当初設計について把握したもの 平成 25 年 3 月 27 日 ( 水 ) 中日本高速道路株式会社 1 トンネル各部の名称 (1) 吊り金具 排気ダクト 送気ダクト 1200mm 90mm 隔壁板 受け台 80mm コンクリートアンカー 無収縮モルタル 天井板 手すり 吸気口 天井板 スタット ホ ルト 1 1

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

建築支保工一部1a計算書

建築支保工一部1a計算書 P7118088-(1) 型枠支保工 (1) 計算書 工事名称 (1) B1FL-3570~1FL (W1-W~WE~WF 間 ) 1 / 1 1: 条件 鉄筋コンクリートの単位重量 r 3.50 kn /m 3 (.400 t/m 3 ) 作業荷重 W 1 ( 作業荷重 :1.47kN/m + 衝撃荷重 :1.96kN/m) 3.430 kn /m (0.350 t/m ) 合板 (1mm) の許容曲げ応力度

More information

<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63>

<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63> 資料 9 液化石油ガス法施行規則関係技術基準 (KHK0739) 地上設置式バルク貯槽に係るあと施工アンカーの構造等 ( 案 ) 地盤面上に設置するバルク貯槽を基礎と固定する方法として あと施工アンカーにより行う 場合の構造 設計 施工等は次の基準によるものとする 1. あと施工アンカーの構造及び種類あと施工アンカーとは アンカー本体又はアンカー筋の一端をコンクリート製の基礎に埋め込み バルク貯槽の支柱やサドル等に定着することで

More information

4) 横桁の照査位置 P.27 修正事項 横桁 No07~No18 ( 少主桁のNo01からNo06は格子計算による 断面力が発生しないので省略 ) 照査点 No 溶接部名称 継手名称 等級 1 横桁腹板上 主桁腹板 すみ肉 F H 2 横桁腹板下 主桁腹板 すみ肉 F H ただし 上記の 2 つ照

4) 横桁の照査位置 P.27 修正事項 横桁 No07~No18 ( 少主桁のNo01からNo06は格子計算による 断面力が発生しないので省略 ) 照査点 No 溶接部名称 継手名称 等級 1 横桁腹板上 主桁腹板 すみ肉 F H 2 横桁腹板下 主桁腹板 すみ肉 F H ただし 上記の 2 つ照 鋼道路橋の疲労設計資料 4. 疲労設計計算例 の横桁計算の修正 横桁の主桁への連結部の溶接にて 腹板部にすみ肉溶接を フランジ部に完全溶込溶接を採用した設計事例を掲載していますが 溶接部の応力計算の方法を修正いたします 異なる種類の溶接を混在させた場合には 母材の全断面を効とした場合に比べ 各部位の応力の分担が変わるわるため 溶接部の断面を用いて断面性能を計算し 応力を計算しました 詳細については

More information

<4D F736F F D B8C91CE8FC6955C5F90DD8C7682CC8EE888F882AB5F30372E3039>

<4D F736F F D B8C91CE8FC6955C5F90DD8C7682CC8EE888F882AB5F30372E3039> 道営農業農村整備事業設計の手引き 新旧対照表 平成 30 年 3 月 28 日事調第 1321 号農政部長通知の一部訂正 ( 空白 ) 新旧対照表改正現行備考 ------------------ 設計の手引き ---------------- ------------------ 設計の手引き ---------------- 目次 目次 第 1 章 省略 第 2 章 省略 第 3 章排水路 P

More information

コンクリート実験演習 レポート

コンクリート実験演習 レポート . 鉄筋コンクリート (RC) 梁の耐力算定.1 断面諸元と配筋 ( 主鉄筋とスターラップ ) スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (a) 試験体 1 スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (b) 試験体 鉄筋コンクリート (RC) 梁の断面諸元と配筋 - 1 - . 載荷条件 P/ P/ L-a a = 5 = a = 5 L = V = P/ せん断力図

More information

<4D F736F F D2096D88E4F BE095A88D C982E682E989A189CB8DDE8B7982D197C090DA8D878BE095A882CC8C9F92E8>

<4D F736F F D2096D88E4F BE095A88D C982E682E989A189CB8DDE8B7982D197C090DA8D878BE095A882CC8C9F92E8> 木三郎 4 金物工法による横架材及び梁接合金物の検定 -1- 木三郎 4 追加マニュアル本マニュアルでは 木三郎 Ver4.06 で追加 変更を行った項目について説明しています 1. 追加内容 (Ver4.06) (1) 追加項目 1 横架材のせん断を負担する金物の検討を追加 2 水平構面の許容せん断耐力の計算書で選定に用いる金物リストを追加 1 横架材のせん断を負担する金物の検討を追加一般財団法人日本住宅

More information

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2 1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m 1.200 m m 0.150 m 0.150 m m m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 50.79 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 10.000

More information

Microsoft PowerPoint - 構造設計学_2006

Microsoft PowerPoint - 構造設計学_2006 構造設計学 講義資料 構造設計は 建築物に作用すると思われる荷重によって生じる構造物内部の抵抗力 ( 応力 ) を 各構造要素 ( 柱 はり 床 壁など ) が安全に支持するために 各構造要素の部材断面を具体的に決定するためのプロセスを言います 本講義では 1 鉛直荷重 ( 固定荷重 積載荷重 積雪荷重 ) に対するはりや柱の設計条件を解説します 2その設計条件を踏まえて 鉄筋コンクリート構造と鋼構造はりの構造原理を解説します

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 ここでは 5 章で示した方法により急傾斜地における崩壊する恐れがある層厚の面的分布が明らかとなった場合のがけ崩れ対策手法について検討する 崩壊する恐れがある層厚の面的な分布は 1 土砂災害警戒区域等における土砂災害防止対策の推進に関する法律( 以下

More information

目次 章 本体縦方向計算(設計条件). 設計条件.. 基本条件.. 樋門概略側面図.. 樋門概略平面図.. 堤体形状図. 材料.. 単位重量.. コンクリート.. PC鋼材.. 鋼板(しゃ水鋼矢板). 盛土.. 堤防盛土. 地盤条件 6.. 地層条件.. 沈下量算出点. 函体形状.. スパン ブロッ

目次 章 本体縦方向計算(設計条件). 設計条件.. 基本条件.. 樋門概略側面図.. 樋門概略平面図.. 堤体形状図. 材料.. 単位重量.. コンクリート.. PC鋼材.. 鋼板(しゃ水鋼矢板). 盛土.. 堤防盛土. 地盤条件 6.. 地層条件.. 沈下量算出点. 函体形状.. スパン ブロッ 柔構造樋門の設計 サンプルデータ 出力例 Sample 連矩形 PC 可とう性継手門柱形式 : 柱 胸壁 : なし翼壁 : 逆 T 型計算例 目次 章 本体縦方向計算(設計条件). 設計条件.. 基本条件.. 樋門概略側面図.. 樋門概略平面図.. 堤体形状図. 材料.. 単位重量.. コンクリート.. PC鋼材.. 鋼板(しゃ水鋼矢板). 盛土.. 堤防盛土. 地盤条件 6.. 地層条件.. 沈下量算出点.

More information

Taro11-aマニュアル.jtd

Taro11-aマニュアル.jtd L A m ton m kn t t kn t kn t m m kn ton ton m m m kn/ CK CK = N/mm ca sa a cm kn/ kn/ kn/ kn/ kn/ kn/ kn/ - - kn/m WL % /m - - A c sin cos kn/m kn/m kn/m / - / A A H V H A cos V A sin - - = N/mm P P m

More information

RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小

RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小 RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 3 条梁の曲げに対する断面算定 本文案 下線部は改定箇所を示す. 重取消線は削除した部分を示す. 梁の設計用曲げモーメントは, 以下の方法で計算する. () 使用性検討用の長期設計用曲げモーメントは, その部材に長期荷重が作用した場合の最大曲げモーメントとする. () 修復性検討用の短期設計用曲げモーメントは,

More information

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e 課題 軸力と曲げモーメントの相互作用図. はじめに 骨組構造を形成する梁 柱構造部材には, 一般に軸力, 曲げモーメント, せん断力が作用するが, ここでは軸力と曲げモーメントの複合断面力を受ける断面の相互作用図 (interation urve) を考える. とくに, 柱部材では, 偏心軸圧縮力や, 地震 風などの水平力を受け ( 図 -), 軸力 + 曲げ荷重下の検討は, 設計上不可欠となる.

More information

Microsoft PowerPoint - 橋工学スライド.ppt

Microsoft PowerPoint - 橋工学スライド.ppt 橋工学 : 授業の目的 橋の設計 施工に関する基本的な考え方を学習する. 特に, 道路橋の上部工 ( 鋼製橋桁 ) の設計について学習することに主眼をおく. 橋工学 : 達成目標 1. 橋の基本的機能と構成を説明できること. 2. 道路橋の設計における基本的な考え方と手順を説明できること. 3. 単純な道路橋上部工 ( 鋼製橋桁 ) について具体的な設計作業が行えること. 橋工学 : 関連する学習教育目標

More information

第 5 章ボックスカルバート

第 5 章ボックスカルバート 第 5 章ボックスカルバート 第 5 章ボックスカルバート 第 1 節設計一般 ( 標準 ) この設計便覧は国土交通省近畿地方整備局管内のボックスカルバートの設計に適用する ボックスカルバートの設計は示方書及び通達がすべてに優先するので 示方書類の改訂 新しい通達などにより内容が便覧と異なった場合は便覧の内容を読み変えること また 内容の解釈での疑問点などはその都度担当課と協議すること 表 5-1-1

More information

防護柵の設計計算 Ver.2 Operation Guidance 操作ガイダンス 本書のご使用にあたって 本操作ガイダンスは おもに初めて本製品を利用する方を対象に操作の流れに沿って 操作 入力 処理方 法を説明したものです ご利用にあたって最新情報は 製品添付のHELP のバージョン情報をご利用下さい 本書は 表紙に掲載時期の各種製品の最新バージョンにより ご説明しています ご利用いただく際には最新バージョンでない場合もございます

More information

L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(B タイプ ) H=1900~2500 断面図 正面 背面図 製品寸法表 適用 製品名 H H1 H2 B 各部寸法 (mm) B1 B2 T1 T2 T3 T4 T5 水抜孔位置 h1 h2 参考質量 (kg) (

L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(B タイプ ) H=1900~2500 断面図 正面 背面図 製品寸法表 適用 製品名 H H1 H2 B 各部寸法 (mm) B1 B2 T1 T2 T3 T4 T5 水抜孔位置 h1 h2 参考質量 (kg) ( L 型擁壁 (CP-WALL) 構造図 CP-WALL( タイプ ) =10~0 断面図 正面 背面図 製品寸法表 適用 製品名 1 2 各部寸法 (mm) 1 2 T1 T2 T3 T4 T5 水抜孔位置 h1 h2 参考質量 (kg) (kn/m2) 連結穴 M16 背面 正面 -10-10 1295 1295 945 945 155 155 155 155 80 80 1 1 1825 1882

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3 章 PC 橋と PRC 橋の概略比較設計本章では コンクリート桁橋で一般的と考えられる支間長 80mの3 径間連続ラーメン箱桁橋をモデルケースとし PC 構造と PRC 構造それぞれで概略設計を行うことにより それぞれの構造の特性と性能に及ぼす影響や 特に疲労損傷のリスクに対する比較分析を行った なお PC 構造は従来の道路橋示方書 1) に従った設計とし PRC 構造は土木学会コンクリート標準示方書

More information

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N

3.300 m m m m m m 0 m m m 0 m 0 m m m he m T m 1.50 m N/ N 3.300 m 0.500 m 0.300 m 0.300 m 0.300 m 0.500 m 0 m 1.000 m 2.000 m 0 m 0 m 0.300 m 0.300 m -0.200 he 0.400 m T 0.200 m 1.50 m 0.16 2 24.5 N/ 3 18.0 N/ 3 28.0 18.7 18.7 14.0 14.0 X(m) 1.000 2.000 20 Y(m)

More information

表紙

表紙 表紙 目次 1章 結果一覧 1.1 理計算 1 1 1.1.1 各位置における深と流速 1 1.1. 叩きの検討 1 1.1.3 しゃ工の根入長 1 1.1.4 護床工の検討 1 1.1.5 護床工のブロック重量 1 1. 安定計算 1..1 転倒に対する照査 1.. 滑動に対する照査 1..3 地盤支持力に対する照査 1.3 本の設計 1.3.1 基部 1.4 叩きの設計 3 1.4.1 基部 3

More information

Microsoft Word - 8章8.1_8.2_重力式1,2.docx

Microsoft Word - 8章8.1_8.2_重力式1,2.docx 48 49 8. 重力式擁壁の計算算例その 8.. 設計計条件 () 重要要度区分道路幅幅員が広く, 擁壁が万一損傷したとしても交通機能への影影響は少ないため, 重要度区区分は 重要度 とする () 要求求性能常時の作用 : 性能 レベル 地震動の作用 : 性能 レベル 地震動の作用 : 性能 3 (3) 構造造寸法形状寸寸法 : 図 8.. を参照照のこと ブロック長 L8m (4) 上載載荷重

More information

Microsoft Word - 第5章.doc

Microsoft Word - 第5章.doc 第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

-

- 計算書番号 :01710014655 日付 :017 年 10 月 0 日 14:6:55 面材張り大壁 詳細計算書 仕様名 新グレー本モデルプラン 大壁 1. 計算条件 1. 1 概要情報 仕様名仕様詳細 特記事項 新グレー本モデルプラン 大壁 壁面を構成する面材数階高 H(mm) 壁長 (mm) 1 枚 730 910 1. 面材 釘情報 面材寸法 (mm) 730 910 面材厚さ t(mm)

More information

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63>

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63> 6.1 目的 6.RC 梁の曲げ及びせん断試験 RC 梁の基本特性を 梁の曲げ せん断実験を通じて学ぶ RC 梁の断面解析を行い 実験で用いる梁の曲げ及びせん断耐力 荷重変形関係を予想する 梁のモデル試験体を用いた実験を通じて 荷重と変形の関係 ひび割れの進展状況 最終破壊性状等を観察する 解析の予想と実験結果とを比較し 解析手法の精度について考察する 梁の様々な耐力 変形能力 エネルギー吸収能力について考察し

More information

<874B91E631308FCD976995C78D5C91A2907D8F572E707562>

<874B91E631308FCD976995C78D5C91A2907D8F572E707562> 第 10 章 擁壁構造図集 95 第 10 章擁壁構造図集 第 1 節間知 等練積み擁壁標準構造図 1 標準構造図使 上の留意点 (1) 本指針に示す標準構造図は 背面土の土質が関東ローム 硬質粘土その他これらに類する土質の強度以上を有し かつ 設置地盤の許容地耐力が各図の条件を満足する場合に使用することができる なお 設置地盤に必要な長期許容応力度が100kN/ m2 (10 tf/ m2 ) を超えるものを使用する場合には

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

第 1 章

第 1 章 第 4-4 章 ボックスカルバート 4-4-1 第 4-4 章ボックスカルバート目次 第 1 節総則... 4 1. 適用の範囲... 4 2. 定義... 4 3. 分類... 5 4. 従来型カルバートの適用範囲... 6 5. 従来型以外のカルバート... 6 第 2 節調査 計画... 7 1. 基礎地盤と許容支持力度... 7 2. 内空断面... 7 2.1 道路用カルバート... 7

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

マンホールの設計 3D 配筋 Ver.7 Operation Guidance 操作ガイダンス 本書のご使用にあたって 本操作ガイダンスは おもに初めて本製品を利用する方を対象に操作の流れに沿って 操作 入力 処理方 法を説明したものです ご利用にあたって最新情報は 製品添付のHELP のバージョン情報をご利用下さい 本書は 表紙に掲載時期の各種製品の最新バージョンにより ご説明しています ご利用いただく際には最新バージョンでない場合もございます

More information

L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(C タイプ ) H=600~700 断面図 正面 背面図 H T1 T2 T4 T3 T4 H2 H1 100 B1 B2 T5 H 連結穴 M16 背面 水抜孔 φ75 正面 水抜孔 φ90 h1 h2 製品寸法表

L 型擁壁 (CP-WALL) 構造図 S=1/30 CP-WALL(C タイプ ) H=600~700 断面図 正面 背面図 H T1 T2 T4 T3 T4 H2 H1 100 B1 B2 T5 H 連結穴 M16 背面 水抜孔 φ75 正面 水抜孔 φ90 h1 h2 製品寸法表 L 型擁壁 (CP-WALL) 構造図 CP-WALL(C タイプ ) =0~0 断面図 正面 背面図 T1 T2 T4 T3 T4 2 1 1 2 T5 連結穴 M16 背面 φ75 正面 φ h1 h2 製品寸法表 適用製品名 -0-0 1 2 1 0 0 2 3 8 0 330 330 各部寸法 (mm) 2 3 T1 位置 T2 T3 T4 T5 h1 h2 (kg) 3 3 参考質量 467

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft Word - OPA M-N破壊包絡線.doc

Microsoft Word - OPA M-N破壊包絡線.doc RC One Point Advice 3 断面の -N 破壊包絡線 軸力と曲げモーメントを受ける断面の終局耐力は -N 破壊包絡線 (-N failre envelope) によって記述される ( 例えば [1]) これは2つの断面力がお互いに影響を与えることから -N 相互作用図 (-N interaction crve) とも呼ばれる 柱部材には 上部荷重により軸力が常時作用し これが通例偏心荷重として作用するため

More information

untitled

untitled 平成 19 年 10 月記事更新 ( 株 )SIP システム はじめに 本システムは 集水桝構造の鉄筋コンクリートまたは無筋コンクリートの常時 地震時の部材断面計算および安定計算 ( 浮上り / 支持力 ) を行います 解析方法は 3 辺固定スラブ法 水平応力解析 および 両端固定梁 三辺固定版 ( 近畿地建 ) から選択が可能です データ入力は 図表入力により躯体形状や土砂形状 また荷重状態をイメージ図で確認しながら入力設定が可能で

More information

液状化判定計算(道示編)V20-正規版.xls

液状化判定計算(道示編)V20-正規版.xls 道路橋示方書対応版 液状化の判定計算 (LIQCAL-D) シェアウエア 正規版 液状化判定基準 : 道路橋示方書 同解説 Ⅴ 耐震設計編 ( 平成 14 年 3 月 ) 最初にお読み下さい 計算へ進む > Ver 2.0 (2008.04.07) ( 有 ) シビルテック 本ソフトはシェアウエアソフト ( 有料 ) です 本ソフトは試用版として利用できますが 土の重量 ( 飽和重量と湿潤重量 )

More information

平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ]

平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ] 平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ] と [2 格子モデルによる微小変位理論 ( 棒部材の簡易格子モデル )] および [3 簡易算出式による方法

More information

<4D F736F F D20834A C C7997CA89BB298B5A8F708E9197BF28914F94BC AAE90AC816A2E646F63>

<4D F736F F D20834A C C7997CA89BB298B5A8F708E9197BF28914F94BC AAE90AC816A2E646F63> 5-8 埋設断面および土被り表 1) 突出型 (1) 埋設条件項 目 (1) (2) (3) ト ラ ッ ク 荷 重 後輪片側 100kN 後輪片側 100kN 後輪片側 100kN 裏 込 め 材 料 良質土 φ450 以下 砕石 4 号 5 号 φ500 以上 砕石 3 号 4 号 土の反力係数 (E ) 300 700 1400( 転圧十分 ) 変形遅れ係数 (Fd) 1.5 1.5 1.25

More information

カルバート工においては, 日本道路協会から発刊されている 道路土工 -カルバート工指針 が最も一般的に用いられている. 同指針は, 平成 22 年 3 月に改訂され, 指針が対象とする構造物を明らかにし, 性能規定の枠組みを取り入れた設計法を採用する際に基づくべき, 解析手法, 設計方法, 材料,

カルバート工においては, 日本道路協会から発刊されている 道路土工 -カルバート工指針 が最も一般的に用いられている. 同指針は, 平成 22 年 3 月に改訂され, 指針が対象とする構造物を明らかにし, 性能規定の枠組みを取り入れた設計法を採用する際に基づくべき, 解析手法, 設計方法, 材料, 第 8 章カルバート工 第 1 節 総則 1.1 適用の範囲 本章はカルバート工の設計に適用するが, ここに定めていない事項については表 -8.1.1 に記す関係図書等を参考にするものとする. なお, 道路下に埋設される上 下水道管, 共同溝及び地下横断歩道などについては, それぞれが定める技術基準によるものとする. 表 -8.1.1 関係図書 関係図書 発行年月 発行 道路土工カルバート工指針 (

More information

Super Build/FA1出力サンプル

Super Build/FA1出力サンプル *** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000

More information

05設計編-標準_目次.indd

05設計編-標準_目次.indd 2012 年制定 コンクリート標準示方書 [ 設計編 : 本編 ] 目 次 1 章 総 則 1 1.1 適用の範囲 1 1.2 設計の基本 2 1.3 用語の定義 4 1.4 記 号 7 2 章 要求性能 13 2.1 一 般 13 2.2 耐久性 13 2.3 安全性 14 2.4 使用性 14 2.5 復旧性 14 2.6 環境性 15 3 章 構造計画 16 3.1 一 般 16 3.2 要求性能に関する検討

More information

技術基準およびRC規準改訂による開口補強筋の取り扱いについてわかりやすく解説

技術基準およびRC規準改訂による開口補強筋の取り扱いについてわかりやすく解説 技術基準および RC 規準改訂による開口補強筋の取り扱いについてわかりやすく解説 017 年 11 月 株式会社構造ソフト はじめに 015 年に 建築物の構造関係技術基準解説書 ( 以下 技術基準と表記 ) が007 年版から改訂されて 鉄筋コンクリート構造計算規準 ( 以下 RC 規準と表記 ) の010 年版が本格的に運用されるようになり 耐震壁の開口補強筋の計算についても RC 規準 (010)

More information

AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーショ

AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーショ AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーション ( 壁厚さ 開口形状 寸法 ) ならびに配筋を仮定する 補強壁架構のせん断耐力を計算する せん断破壊するときのメカニズムは

More information

<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63>

<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63> 第 7 章 地盤調査 地盤改良計画 第 1 節地盤調査 1 地盤調査擁壁の構造計算や大規模盛土造成地の斜面安定計算等に用いる土質定数を求める場合は 平成 13 年 7 月 2 日国土交通省告示第 1113 号地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件 ( 以下 この章において 告示 という

More information

<93C18F DBB966882A682F192E E352E786477>

<93C18F DBB966882A682F192E E352E786477> Ver.5 リリース中 建設省河川砂防技術基準 案 同解説 設計編に準拠した砂防えん堤部の設計システム 価格 6,000- 税+HASP 込 本商品を別保有HASP に追加登録する場合 価格は 05,00- 税込 となります 改訂新版 建設省河川砂防基準 案 同解説 設計編 Ⅰ および設計編 Ⅱ 日本河川協会 国土交通省 国土技術政策総合研究所資料第 64 号 砂防基本計画策定指針 土石流 流木対策編

More information

<4D F736F F D2091E D291E682508FCD91E DF F808D5C91A2907D816A D E646F63>

<4D F736F F D2091E D291E682508FCD91E DF F808D5C91A2907D816A D E646F63> 第 2 節鉄筋コンクリート造擁壁 1 標準構造図の種類本標準構造図は 宅地造成技術基準 ~ 設計編 ~ 第 3 章第 2 節鉄筋コンクリート造擁壁構造基準 に基づき 背面土について 地山の関東ローム (φ=20 C=20kN) 及び砂質土 (φ=30 C=0 kn) の2 種類によって分類し作成しています 高さ / 背面土 型式 つま先あり L 型擁壁 つま先なし 逆 L 型擁壁 1m 関東ローム

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え

More information

Microsoft Word - KSスラブ 論文.doc

Microsoft Word - KSスラブ 論文.doc トラス筋を用いた軽量スラブ (KS スラブ ) 所属名 : 極東工業 ( 株 ) 発表者 : 牛尾亮太 1. はじめに都市再開発にともなうペデストリアンデッキ用床版, 歩道橋, 水路蓋といった比較的小さい荷重が作用する場所への適用を前提として, 軽量スラブ ( 以下 KS スラブ ) の開発 1) を行った.KS スラブは高流動コンクリートを使用した上下面の薄肉コンクリート版とトラス筋を結合した構造である.

More information

Rockwalloutput3.xdw

Rockwalloutput3.xdw CIVIL WORKS . 基本条件 -. 一般事項データ名 : sampledata タイトル : 落石防護擁壁 (H4.00m 切土部擁壁 地震時あり) -. 落石防護工の種別 落石防護擁壁 ( 柵併用 ) -. 照査対象と計算ケース 照査対象 計算ケース 落石防護柵 落石時 ( 柵衝突時 ) 及び柵根入れ部 落石防護擁壁 常時 堆積時 地震時 落石時 ( 柵衝突時 ) 落石時 ( 壁衝突時 )

More information

鋼連続合成ラーメン 2 主鈑桁橋へのコンパクト断面設計法および二重合成構造の適用検討 東田典雅 1 西川孝一 1 登石清隆 2 脇坂哲也 2 西村治 2 田嶋一介 2 1 東日本高速道路 ( 株 ) 新潟支社 ( 新潟市中央区天神 1-1 プラーカ3 4F) 2 大日本コンサルタン

鋼連続合成ラーメン 2 主鈑桁橋へのコンパクト断面設計法および二重合成構造の適用検討 東田典雅 1 西川孝一 1 登石清隆 2 脇坂哲也 2 西村治 2 田嶋一介 2 1 東日本高速道路 ( 株 ) 新潟支社 ( 新潟市中央区天神 1-1 プラーカ3 4F) 2 大日本コンサルタン (4) 鋼連続合成ラーメン 2 主鈑桁橋へのコンパクト断面設計法および二重合成構造の適用検討 大日本コンサルタント株式会社北陸支社技術部構造保全計画室 田嶋一介氏 50 鋼連続合成ラーメン 2 主鈑桁橋へのコンパクト断面設計法および二重合成構造の適用検討 東田典雅 1 西川孝一 1 登石清隆 2 脇坂哲也 2 西村治 2 田嶋一介 2 1 東日本高速道路 ( 株 ) 新潟支社 ( 950-0917

More information