Microsoft Word - OPA M-N破壊包絡線.doc
|
|
|
- けいざぶろう こやぎ
- 7 years ago
- Views:
Transcription
1 RC One Point Advice 3 断面の -N 破壊包絡線 軸力と曲げモーメントを受ける断面の終局耐力は -N 破壊包絡線 (-N failre envelope) によって記述される ( 例えば [1]) これは2つの断面力がお互いに影響を与えることから -N 相互作用図 (-N interaction crve) とも呼ばれる 柱部材には 上部荷重により軸力が常時作用し これが通例偏心荷重として作用するため 断面には曲げモーメントと軸力が作用する さらには 地震荷重 ( 水平荷重 ) により曲げモーメントとせん断力が付加されるので この -N 破壊包絡線は 耐震設計にて重要なツール ( 設計用具 ) となる ( 軸力 +せん断力については 別途考える ) -N 破壊包絡線には断面性能に関する多くの情報が反映されており 構造エンジニアはこれを正しく読取ることが必要である ここでは あらゆる視点から -N 破壊包絡線の特徴と効用を再度考えたい 1. -N 破壊包絡線まず, 図 1 のような鉛直荷重 Pを受ける単柱形式の柱部材を例にとり, 作用する2つの断面力 ( N = 軸力, = 曲げモーメント ) を考える. この場合 1 中心軸圧縮状態 ( e = 0 ): 断面には, 軸力 ( 圧縮 ) のみが作用 2 偏心軸圧縮状態 ( e > 0 ): 断面には, 軸力と曲げモーメントが作用のように分類できる. ここで, e(=eccentoricity) は断面図心からの偏心距離を表し, e = / N により定義されるが, = e N のように考えてよい. P e P N=P =0 N=P =P ( 偏心距離 e) 1 中心軸圧縮力 2 偏心軸圧縮力 図 1 軸力と曲げモーメントを受ける部材の考え方 : 中心 / 偏心軸圧縮状態 このような 2 つの断面力を受ける鉄筋コンクリート断面の -N 破壊包絡線は 縦軸 N, 横軸 として 図 2(a) のような形状を有する 同図では 偏心距離 e ( = / N) がパラメータとなり 図中に記した1,2,3,4,5の主要点を理解することがポイントである. すなわち, e = 0 から出発して, 1
2 順に下記のように定義できる. 1: 単軸圧縮破壊 ( e = 0 ) 2: コア作用点 ( e = ec ) 3: 釣合い破壊 ( e = eb ) 4: 純曲げ破壊 ( e = ) 5: 単軸引張破壊 図 2 (a) -N 破壊包絡線の説明図 (b) 主要点のひずみ分布 さらに 3: 釣合い破壊 ( e = eb ) を遷移点として,2つの破壊形式に分類でき, 次のように整理できる. 鉄筋降伏先行型 ( N N b, e eb ) : この場合, 引張鉄筋の降伏 圧縮コンクリートの圧縮破壊, と典型的な非線形挙動となる. これは軸力のレベルが小さいので, 純曲げの場合と同様な挙動を示すものである. 破壊の様相も穏かであり, 比較的靭性に富む. コンクリート圧縮破壊型 ( N > N b, e < eb ) : この場合 引張ひび割れの進展がなく, 引張鉄筋が未降伏のまま, コンクリートの圧縮破壊を迎える. これは, ひずみ分布 ( 図 2(b)) から判断されるように, 中立軸が図心軸より下方にあり, 引張鉄筋の負荷が小さいことによる. 終局時には, 明瞭な予兆のない脆性的な破壊となり, 急激な耐力低下を呈する. このような特性は,( 引張鉄筋未降伏のため, 脆性的に破壊するという意味で ) 純曲げ状態の過鉄筋 (over-reinforcement) と同じではあるが, 純曲げの場合, 設計上 ( 配筋上 ) 回避されなければならないのに対して, 過鉄筋でない断面 (nder-reinforcement) であっても, 軸力が加わることにより, 釣合い破壊およびコンクリート圧縮破壊型はその包絡線上に必ず存在する. 次に 図 2 (b) は 断面のひずみ分布を描いたもので 先述の1から4を示している ( これらが偏心量 e をパラメータと考えてもよい ) ここで, 改めて 釣合い破壊時によって分類される2つの破壊形式に対する引張鉄筋のひずみ ε s1 とコンクリートの圧縮縁ひずみ ε c を整理する 釣合い破壊時( N = N b, e = eb ) 両材料のひずみ : ε s1 = f y / Es, ε c = ε c 2
3 鉄筋降伏先行型( N N b, e eb ) 両材料のひずみ : ε s1 > f y / Es, ε c = ε c コンクリート圧縮破壊型( N > N b, e < eb ) 両材料のひずみ : ε s1 < f y / Es, ε c = ε c ここで大切なことは いずれの場合も, コンクリートの圧縮縁に対して, ε = ε なる条件にて終局と 定義していることである. 両材料の限界ひずみは, 次のように与えられる. c c 引張鉄筋に対して: ε y = f / E y s 3 圧縮コンクリートに対して: ε = ( 155 f ) / 3 10 ( コンクリート標準示方書 [2]) c c 2. 断面耐力と設計断面力次に -N 破壊包絡線にて規定される断面耐力 および設計断面力を定義しよう 設計断面力は 種々の外荷重によって決まる作用断面力 であるのに対して 終局断面耐力は 部材寸法 / 鉄筋量 / 材料強度によって算出される断面性能 である 両者は 単位は同一だが 構造設計において似て非なる別物と考えるべきで 以下に整理する 設計断面力 N d, d : 部材に作用する断面力 終局断面耐力 N, : 破壊包絡線 ( 相互作用図 ) の線上全ての値上式では 添え字 d=design/ 設計, =ltimate/ 終局 のように見ると分かりやすい ここで 図 3 は - N 破壊包絡線の内外に 1 2 3の設計断面力の座標をプロッ トしたもので 3 点の設計断面力が 1:-N 破壊包絡線内にあり 安全性は照査される 2:-N 破壊包絡線上にあり 断面は破壊している 3: 包絡線外にあり とっくに破壊している であることは容易に判断できる 簡単に言えば 終局断面耐力 > 設計断面力であれば 断面破壊しないことを意味し コンクリート標準示方書 [2] の照査式 ( 終局限界状態 ) に従えば 次式にて記述される N d d γ i 1.0 γ i 1. 0 (1) N ここで 設計断面力を攻撃 ( オフェンス ) 終局断面耐力を防御( デフェンス ) と置き換える分かりやすい 防御が攻撃を上回れば破壊しない ( すなわち式 (1) を満足する ) が 時に 大地震による攻撃が圧倒すると構造物が崩壊する [3] なお 実際の設計に際しては 安全係数を組み入れる必要があり 簡単に言うと 設計断面力は安全係数 ( 荷重係数 ) にて割増し 断面耐力は安全係数 ( 材料係数 部材係数 ) にて割引く ( 小さくする ) かくして 図 3(a) の設計断面力 ( 例えば1 点 ) は外側に移り 断面耐力 (-N 破壊包絡線 ) は縮小し 安全性が確保される 3
4 図 3 (a) -N 破壊包絡線と設計断面力 図 3 (b) 耐震設計 ( 断面力比 (stress ratio) の定義 ) コンクリート標準示方書 [2] の場合 このようにして前出の式 (1) の分母と分子が ( 攻守に別れ ) 算出され 最後に構造物係数 γ i が乗じられていると理解されたい これらの安全係数は大きいほど安全であるが 経済性とも合わせ標準示方書やガイドラインに従うことになる 耐震設計に際しては 常時荷重として一定軸力 ( 場合によっては一定曲げモーメント ) のもとで 地震力により 2 つの断面力, N が同時に作用する このため 前出の式 (1) をそのまま適用することはできない そこで 図 3(b) に例示した断面力比 (stress ratio) [4] を用い + ると便利である これは 断面力比 (stress ratio) λ λ を λ = + + y λ = (2) y 0 のように定義するものである ここでは 0 : 自重による曲げモーメント 1 : 自重 + 地震荷重による曲げモーメント : 部材の降伏モーメント にて定義される さらに y 4
5 + 正側として + 負側として- を上添え字としている 正負の断面力比 λ λ により より適確な耐震性を評価することができる 3. パラメトリックシミュレーション #1 -N 破壊包絡線に関して 断面諸元を変化させたパラメトリックシミュレーションを行い 同図の意味するところをさらに理解しよう そこで 図 4 に 3 ケースのシミュレーションを示したもので 設定したパラメータの増減に伴う破壊包絡線の形状の変化に着目されたい ( 各ケースとも 3 断面が併記されている ) 図 (a) 引張鉄筋 / 圧縮鉄筋を等量配筋とし 両方とも変化 : この場合 引張鉄筋 / 圧縮鉄筋 ( 等量配筋 ) の増加により -N 破壊包絡線がほぼ相似形に拡大 ( 終局耐力が増加 ) していることがわかる 図 (b) 圧縮鉄筋を一定とし 引張鉄筋を変化一方 引張鉄筋のみ増加させた場合 鉄筋降伏先行型の領域 (-N 破壊包絡線の下側 ) のみが拡大しており 圧縮破壊領域では恩恵がない 図 (c) コンクリートの圧縮強度を変化コンクリート強度を増加させた場合 圧縮破壊型 (-N 破壊包絡線の上側 ) にて拡大しており 鉄筋降伏先行型の領域ではほとんど変化はない 5
6 図 4 -N 破壊包絡線の事例解析 : ハ ラメトリックシミュレーション #1 6
7 4. パラメトリックシミュレーション #2 今度は 圧縮鉄筋 p 2 と引張鉄筋比 p 1 の合計量を一定 (p 1 +p 2 =1.5%) とした 3 断面のパ ラメトリックシミュレーションを図 5 に示す ここでは 無次元量として 縦軸 横軸 = 2 bd f c N N = bdf のように表示している ( ここで b, d1= 断面幅 断面高さ, fc = コンクリー ト圧縮強度 ) この場合 全鉄筋量は同一であるが 鉄筋降伏先行領域では 引張鉄筋比 p 1 が多い順として C B A のように -N 破壊包絡線が拡大し 一方 コンクリート圧縮破壊領域では A B C の順に拡大している このことは 軸力レベル N = 0. 2 および N = 0. 8 にて 3 ケースを比較すれば 一目瞭然である c 図 5 -N 破壊包絡線の事例解析 : ハ ラメトリックシミュレーション #2 次に 断面寸法を変化させたパラメトリックシミュレーションを提示したい ( 図 6) ここでは 縦軸 / 横軸の表示方法を次のようにした 図 (a) 実単位系 : 縦軸 [ kn ] N 横軸 [ kn m] N 図 (b) 強度単位系 : 縦軸 2 [ N/mm ] 横軸 2 [ ] N/mm 2 bd bd まず 図 6(a) では 部材寸法を変化せたものであるが 当然のことながら その断面寸法 ( 図中の寸法単位 :mm) に比例して -N 破壊包絡線は全領域にて拡大する ( 断面耐力は大きくなる ) また 図 6(b) のように強度単位系に変換 ( 断面積にて正規化 ) すると これら 3 断面の破壊包絡線はほぼ同一となる 7
8 図 6 -N 破壊包絡線 : 断面寸法を変化 5. 軸と N 軸を入れ替えるとどうなるか. 通例 -N 破壊包絡線は 横軸 曲げモーメント / 縦軸 軸力 にて表されるが 図 7 のように両軸を入替えると包絡線の新しい特徴に気がつく 図 7 において 軸力 N をパラメータと考え ゼロ ( 点 1) から徐々に増やすと 当初 曲げ終局耐力 が増加するが 点 2( 釣合い破壊点 ) を過ぎると今度は減少に転ずる 極 端な場合 軸圧縮耐力 ( 点 3) での曲げ終局耐力はゼロである すなわち 適度な軸力に より 曲げ終局耐力 を増進することができ 釣合い破壊点にて最大値を与えることにな るが 一方で 過ぎたるは及ばざるが如し であり 過度な軸力は曲げ耐力を減少させることも分かる 8
9 図 7 縦軸と横軸を入替えた -N 破壊包絡線 ここで 次のような仮想実験をしてみよう まず 釣合い破壊点 2 の座標を N, ) =(100kN, 20kN m) と仮定して この柱部材に 軸力 N = 100kN を載荷して ( 次に曲げモーメントを =19kN m まで増加させ 図中の点 a にて止める 点 a では 破壊包絡線の内側にあるので破壊しないが ぎりぎりの所にあることは間違いない ここで 軸力 N を増加させたり 減少させたりしてみよう このとき 点 a では 軸力 N が丁度よい所に位置しているが ( 曲げモーメント を一定にした場合 ) どちらに行っても破壊してしまう すなわち 軸力 N を増加 点 b: 破壊 ( コンクリート圧縮破壊型 ) 軸力 N を減少 点 c: 破壊 ( 鉄筋降伏先行型 ) 荷重を増加させて破壊するのは理解できるが 荷重を減少させても破壊するのは面白い このときのメカニズムを図中にある柱の模式図 ( ひずみ分布 ) によって考えよう 点 a での断面力が載荷されているときは コンクリートの圧縮縁ひずみが 終局ひずみε c に近 い値であり 同時に引張鉄筋が降伏ひずみε に肉迫にしているのである 従って 軸力 N y を増やせば コンクリートが圧縮破壊し (a b) 軸力 N を減らせば 鉄筋を引張降伏させる (a c) ことになる 9
10 参考文献 [1] 例えば acgregor, J. G.: REINFORCED CONCRETE - echanics and Design-, Prentice Hall [2] 土木学会コンクリート委員会 :2007 年制定コンクリート標準示方書 [ 設計編 : 本編 ] [3] 吉川弘道 : 第 2 版鉄筋コンクリートの解析と設計 - 限界状態設計法と性能設計法 - 第 3 章 One Point アドバイス #5 p.53 丸善出版 平成 16 年 2 月 [4] Bozorgnia, Y. and Bertero, V.V. (edited by): Earthqake Engineering from Engineering Seismology to Performance-Based Engineering, CRC Press, 10
<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>
降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ
. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e
課題 軸力と曲げモーメントの相互作用図. はじめに 骨組構造を形成する梁 柱構造部材には, 一般に軸力, 曲げモーメント, せん断力が作用するが, ここでは軸力と曲げモーメントの複合断面力を受ける断面の相互作用図 (interation urve) を考える. とくに, 柱部材では, 偏心軸圧縮力や, 地震 風などの水平力を受け ( 図 -), 軸力 + 曲げ荷重下の検討は, 設計上不可欠となる.
コンクリート実験演習 レポート
. 鉄筋コンクリート (RC) 梁の耐力算定.1 断面諸元と配筋 ( 主鉄筋とスターラップ ) スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (a) 試験体 1 スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (b) 試験体 鉄筋コンクリート (RC) 梁の断面諸元と配筋 - 1 - . 載荷条件 P/ P/ L-a a = 5 = a = 5 L = V = P/ せん断力図
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成
スライド 1
第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる
<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63>
付録 1. 吹付枠工の設計例 グラウンドアンカー工と併用する場合の吹付枠工の設計例を紹介する 付録図 1.1 アンカー配置 開始 現地条件の設定現況安全率の設定計画安全率の設定必要抑止力の算定アンカー体の配置計画アンカー設計荷重の設定作用荷重および枠構造の決定設計断面力の算定安全性の照査 土質定数 (C φ γ) 等を設定 例 ) ここでは Fs0.95~1.05 を設定 例 ) ここでは Fsp1.20~1.50
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例
<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>
-1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する
Taro-2012RC課題.jtd
2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重
Microsoft Word - 技術資料Vol.2.docx
技術資料 Vol.2 Civil Engineering & Consultants 株式会社クレアテック東京都千代田区西神田 2 丁目 5-8 共和 15 番館 6 階 TEL:03-6268-9108 / FAX:03-6268-9109 http://www.createc-jp.com/ ( 株 ) クレアテック技術資料 Vol.2 P.1 解析種別キーワード解析の目的解析の概要 3 次元静的線形解析
Microsoft PowerPoint - fuseitei_6
不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という
<8BC882B082A882E682D18EB297CD82F08EF382AF82E CD82E882CC90DD8C E93E7817A2E786477>
コンクリート構造設計の基本 第 6 章曲げおよび軸力を受ける鉄筋コンクリートはりの設計 P7~P96 ( 株 ) 国際建設技術研究所真鍋英規 はじめに 土木学会 コンクリート標準示方書 昭和 6 年版 限界状態設計法 を導入 許容応力度設計法 から 限界状態設計法 へ 7 年版安全性の照査使用性の照査曲げひび割れ幅の制御 変位 変形等耐久性の照査に関する記述が追加 /8/ 鉄筋コンクリート Reinforced
国土技術政策総合研究所資料
5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)
<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>
スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
PowerPoint プレゼンテーション
SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え
< B795FB8C6094C28F6F97CD97E12E786477>
長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)
Microsoft PowerPoint - zairiki_3
材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,
Super Build/FA1出力サンプル
*** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000
目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震
2013 年度 都市設計製図 RC 橋脚の耐震設計 課題 3:RC 橋脚の耐震設計 ( その 2) 2013/12/16 学籍番号 氏名 目次 1 章設計条件... 1 1.1 形状寸法... 1 1.2 上部工反力... 1 1.3 設計水平震度... 1 1.4 単位重量他... 1 1.5 柱... 2 1.5.1 使用材料... 2 1.5.2 鉄筋... 2 1.6 柱躯体自重... 3
<4D F736F F F696E74202D E838A815B83678D5C91A295A882CC90DD8C7682CC8AEE967B F A2E707074>
コンクリート構造物の設計の基本と最近の話題 テキスト : 設計編 1 章コンクリート構造物の設計と性能照査 2011 年 8 月 2 日大阪工業大学井上晋 構造物の設計とは? p.1 対象構造物の用途や機能から定められる要求性能とそのレベルを, 施工中および設計耐用期間のすべてを通じて満たすことができるように, その構造形式, 部材, 断面, 配筋等の諸元を定める行為 対象は耐荷力のみにとどまらない
IT1815.xls
提出番号 No.IT1815 提出先御中 ハンドホール 1800 1800 1500 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 株式会社インテック 1 1. 設計条件奥行き ( 短辺方向 ) X 1800 mm 横幅 Y 1800 mm 側壁高 Z 1500 mm 部材厚 床版 t 1 180 mm 底版 t 150
集水桝の構造計算(固定版編)V1-正規版.xls
集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000
<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>
第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ
計算例 5t超え~10t以下用_(補強リブ無しのタイプ)
1 標準吊金具の計算事例 5t 超え ~10t 以下用 ( 補強リブ無しのタイプ ) 015 年 1 月 修正 1:015.03.31 ( 社 ) 鋼管杭 鋼矢板技術協会製品技術委員会 1. 検討条件 (1) 吊金具形状 寸法 ( 材料 : 引張強度 490 N/mm 級 ) 00 30 φ 65 90 30 150 150 60 15 () 鋼管仕様 外径 板厚 長さ L 質量 (mm) (mm)
技術基準改訂による付着検討・付着割裂破壊検討の取り扱いについてわかりやすく解説
技術基準改訂による付着検討 付着割裂破壊検討の取り扱いについてわかりやすく解説 2016 年 6 月 株式会社構造ソフト はじめに 2015 年に 建築物の構造関係技術基準解説書 ( 以下 技術基準と表記 ) が2007 年版から改訂されて 付着検討および付着割裂破壊検討に関して 2007 年版と2015 年版では記載に差がみられ お客様から様々な質問が寄せられています ここでは 付着検討や付着割裂破壊検討に関して
RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小
RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 3 条梁の曲げに対する断面算定 本文案 下線部は改定箇所を示す. 重取消線は削除した部分を示す. 梁の設計用曲げモーメントは, 以下の方法で計算する. () 使用性検討用の長期設計用曲げモーメントは, その部材に長期荷重が作用した場合の最大曲げモーメントとする. () 修復性検討用の短期設計用曲げモーメントは,
AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーショ
AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーション ( 壁厚さ 開口形状 寸法 ) ならびに配筋を仮定する 補強壁架構のせん断耐力を計算する せん断破壊するときのメカニズムは
05設計編-標準_目次.indd
2012 年制定 コンクリート標準示方書 [ 設計編 : 本編 ] 目 次 1 章 総 則 1 1.1 適用の範囲 1 1.2 設計の基本 2 1.3 用語の定義 4 1.4 記 号 7 2 章 要求性能 13 2.1 一 般 13 2.2 耐久性 13 2.3 安全性 14 2.4 使用性 14 2.5 復旧性 14 2.6 環境性 15 3 章 構造計画 16 3.1 一 般 16 3.2 要求性能に関する検討
PowerPoint Presentation
H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力
コンクリート工学年次論文集 Vol.29
論文部分的に主筋の付着を切った RC 梁 RC 有孔梁に関する研究 真田暁子 *1 *2 丸田誠 要旨 : 危険断面からの一定区間の主筋の付着を切った, 部分アンボンド梁 RC 部材, 部分アンボンド RC 有孔梁部材の基本的な構造性能を把握するために, アンボンド区間長, 開孔の有無を因子とした部材実験を実施した 実験結果から, 主筋をアンボンド化することにより, 危険断面に損傷が集中してひびわれ本数が減少し,
DNK0609.xls
提出番号 No.DNK0609 提出先御中 ハンドホール 600 600 900 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 カナフレックスコーポレーション株式会社 1 1. 設計条件奥行き ( 短辺方向 ) X 600 mm 横幅 Y 600 mm 側壁高 Z 900 mm 部材厚 床版 t 1 80 mm 底版 t
Microsoft PowerPoint - zairiki_10
許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から
Microsoft PowerPoint - zairiki_11
許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
<424F58834A838B836F815B836782CC90DD8C76>
1 章断面方向の計算 1.1 設計条件 ( 主たる適用基準 : 土工指針 ) 1.1.1 一般条件 (1) 構造寸法図 00 00 600 4 000 500 5 100 000 500 5 000 500 6 000 () 基礎形式地盤反力度 ( 地盤反力度算出方法 : 全幅 ) 1.1. 材料の単位重量 舗 装 γa (kn/m 3 ).50 盛土 湿 飽 潤 和 γt γsat 1 18.80
鉄筋コンクリート構造物の耐震設計講座
第 1 講 : 鉄筋コンクリートの耐震性能と耐震設計 まえがき地震時に構造物が大きく揺れ動き, 時として大きな震害を被るのは, どのようなメカニズムによるものだろうか? そして, どのように設計すれば, 合理的な耐震設計と言えるのであろうか? まずは, 応答する構造物から震源域まで遡り, 図 1-1 のような模式図を描いてみた. 震源断層から発生した地震波は, 数 kmから数 1kmに及ぶ距離の基盤を伝播し,
コンクリート工学年次論文集 Vol.29
論文打継目を有する無筋コンクリートを RC 巻き補強した橋脚の正負水平交番載荷実験 杉崎向秀 *1 *2 小林薫 要旨 : 無筋コンクリート橋脚の地震被災例では, 施工時の打継ぎ目が弱点となる損傷状況が多く見られることから, 打継ぎ目が大きく影響すると思われる 打継ぎ目を有する無筋コンクリート橋脚を RC 巻き補強した模型試験体を製作し, 静的正負交番載荷試験を実施した 一体化のためのジベル筋を配置した試験体と,
上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで
長柱の座屈 断面寸法に対して非常に長い柱に圧縮荷重を加えると 初期段階においては一様圧縮変形を生ずるが ある荷重に達すると急に横方向にたわむことがある このように長柱が軸圧縮荷重を受けていて突然横方向にたわむ現象を座屈といい この現象を示す荷重を座屈荷重 cr このときの応力を座屈応力 s cr という 図 に示すように一端を鉛直な剛性壁に固定された長柱が自 図 曲げと圧縮を受けるはり + 由端に圧縮力
Microsoft Word - KSスラブ 論文.doc
トラス筋を用いた軽量スラブ (KS スラブ ) 所属名 : 極東工業 ( 株 ) 発表者 : 牛尾亮太 1. はじめに都市再開発にともなうペデストリアンデッキ用床版, 歩道橋, 水路蓋といった比較的小さい荷重が作用する場所への適用を前提として, 軽量スラブ ( 以下 KS スラブ ) の開発 1) を行った.KS スラブは高流動コンクリートを使用した上下面の薄肉コンクリート版とトラス筋を結合した構造である.
Microsoft Word - 建築研究資料143-1章以外
4. ブレース接合部 本章では, ブレース接合部について,4 つの部位のディテールを紹介し, それぞれ問題となる点や改善策等を示す. (1) ブレースねらい点とガセットプレートの形状 (H 形柱, 弱軸方向 ) 対象部位の概要 H 形柱弱軸方向にガセットプレートタイプでブレースが取り付く場合, ブレースの傾きやねらい点に応じてガセットプレートの形状等を適切に設計する. 検討対象とする接合部ディテール
材料の力学解答集
材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /
強度のメカニズム コンクリートは 骨材同士をセメントペーストで結合したものです したがって コンクリート強度は セメントペーストの接着力に支配されます セメントペーストの接着力は 水セメント比 (W/C 質量比 ) によって決められます 水セメント比が小さいほど 高濃度のセメントペーストとなり 接着
コンクリートの強度 コンクリートの最も重要な特性は強度です ここでは まず コンクリート強度の基本的特性について解説し 次に 呼び強度および配合強度がどのように設定されるか について説明します 強度のメカニズム 強度の影響要因 強度性状 構造物の強度と供試体強度 配合 ( 調合 ) 強度と呼び強度の算定 材料強度のばらつき 配合強度の設定 呼び強度の割増し 構造体強度補正値 舞鶴市および周辺部における構造体強度補正値
1 2 D16ctc250 D16ctc250 1 D25ctc250 9,000 14,800 600 6,400 9,000 14,800 600 以上 6,500 隅角部テーパーをハンチ処理に 部材寸法の標準化 10cm ラウンド 10cm ラウンド 定尺鉄筋を用いた配筋 定尺鉄筋 配力筋位置の変更 ( 施工性考慮 ) 配力筋 主鉄筋 配力筋 主鉄筋 ハンチの除去底版テーパーの廃止 部材寸法の標準化
<4D F736F F F696E74202D D D4F93AE89F097E D F4390B32E B93C782DD8EE682E
DYMO を用いた動的解析例 単柱式鉄筋コンクリート橋脚の動的耐震設計例 解説のポイント DYMOを使った動的解析による耐震性能照査の流れ 構造のモデル化におけるポイント 固有振動解析 動的解析条件 動的解析結果 ( 各種応答 ) の見方 安全性の照査 形状寸法あるいは支承諸元の変更始め 橋梁構造のモデル作成 固有振動解析による橋梁の固有振動特性の把握 動的解析条件の設定 動的解析の実施及び解析結果の評価
第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510
第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 5 14.1 検討の背景と目的 9 mm角以上の木材のたすき掛け筋かいは 施行令第 46 条第 4 項表 1においてその仕様と耐力が規定されている 既往の研究 1では 9 mm角筋かい耐力壁の壁倍率が 5. を満たさないことが報告されているが 筋かい端部の仕様が告示第 146 号の仕様と異なっている 本報では告示どおりの仕様とし 9 mm角以上の筋かいたすき掛けの基礎的なデータの取得を目的として検討を行った
水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があ
水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があるために 高さ方向の型枠工事に制限が生じ コンクリートの水平打ち継ぎを余儀なくされる可能性が考えられる
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = (1/2) KH Z : 地域係数 KS: 設計用標準震度 KV: 設計用鉛直震度 1-2. 設計条件耐震クラス
を 0.1% から 0.5% 1.0% 1.5% 2.0% まで増大する正負交番繰り返し それぞれ 3 回の加力サイクルとした 加力図および加力サイクルは図に示すとおりである その荷重 - 変位曲線結果を図 4a から 4c に示す R6-1,2,3 は歪度が 1.0% までは安定した履歴を示した
エネルギー吸収を向上させた木造用座屈拘束ブレースの開発 Development of Buckling Restrained Braces for Wooden Frames with Large Energy Dissapation 吉田競人栗山好夫 YOSHIDA Keito, KURIYAMA Yoshio 1. 地震などの水平力に抵抗するための方法は 種々提案されているところであるが 大きく分類すると三種類に分類される
Microsoft PowerPoint - 01_内田 先生.pptx
平成 24 年度 SCOPE 研究開発助成成果報告会 ( 平成 22 年度採択 ) 塩害劣化した RC スラブの一例 非破壊評価を援用した港湾コンクリート構造物の塩害劣化予測手法の開発 かぶりコンクリートのはく落 大阪大学大学院鎌田敏郎佐賀大学大学院 内田慎哉 の腐食によりコンクリート表面に発生したひび割れ ( 腐食ひび割れ ) コンクリート構造物の合理的な維持管理 ( 理想 ) 開発した手法 点検
1258+水路Ver44.xdw
- はじめに - 平成 22 年 11 月記事更新 ( 株 )SIP システム 本システムは 土地改良基準 水路工 および ため池整備 ( 計算例 ) に準拠した水路工の常時 地震時の安定計算および部材断面の照査を行います 部材断面検討では 鉄筋コンクリート および 無筋コンクリート の断面照査が可能です 検討形状としては 左右側壁の高さが異なる偏土圧の検討も可能です 偏土圧の計算においては 左右側壁の背面上へ上載荷重や土質定数を個別に指定が可能で
<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63>
資料 9 液化石油ガス法施行規則関係技術基準 (KHK0739) 地上設置式バルク貯槽に係るあと施工アンカーの構造等 ( 案 ) 地盤面上に設置するバルク貯槽を基礎と固定する方法として あと施工アンカーにより行う 場合の構造 設計 施工等は次の基準によるものとする 1. あと施工アンカーの構造及び種類あと施工アンカーとは アンカー本体又はアンカー筋の一端をコンクリート製の基礎に埋め込み バルク貯槽の支柱やサドル等に定着することで
構造番号質疑回答 3 講習会資料 P5 判定事例の対応集 横補剛材について屋根ブレース等により水平移動が拘束された大梁に対して 例えば図 1 のよう下図 a 又は b 又は a b 材共に ( 梁に ) 対する横補剛材として c の火打ち材をに大梁せいの中心位置に横補剛材を設け 補剛材
S 造 1 講習会資料 P6 露出柱脚設計フロー 14の基礎コンクリート破壊防止等の検討について (a) 柱脚のアンカーボルトがせん断力を負担しない場合 (a) 柱脚の終局せん断力 (Ds 算定時 ) をベースプレート下面の摩擦で処理できる 柱軸力による B.PL 底面の摩擦力でせん断力を負担できる場合は アンカーボ 場合はアンカーボルトによる基礎立上がり部側面のコーン状破壊の検討を省略 ルトにせん断力が作用しないとして基礎立上がり部のコーン状破壊の検討を省
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH =
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
Microsoft Word - 第5章.doc
第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.
RC単純床版橋(オルゼン解析) 出力例
目次 1 章設計条件 1 1-1 設計条件 1 1-2 主版および幅員構成寸法 2 2 章主版断面の設計 3 2-1 幅員構成 ( 主版内 ) 3 2-2 荷重条件 3 2-2-1 死荷重 3 2-2-2 活荷重 5 2-3 橋軸方向 Mxの影響値 6 2-3-1 a1 点における影響値 7 2-3-2 a5 点における影響値 8 2-3-3 縁端載荷による係数値 9 2-3-4 a1 点における影響線面積
Microsoft PowerPoint - 静定力学講義(6)
静定力学講義 (6) 静定ラーメンの解き方 1 ここでは, 静定ラーメンの応力 ( 断面力 ) の求め方について学びます 1 単純ばり型ラーメン l まず, ピンとローラーで支持される単純支持ばり型のラーメン構造の断面力の求め方について説明します まず反力を求める H V l V H + = 0 H = Y V + V l = 0 V = l V Vl+ + + l l= 0 + l V = + l
コンクリート工学年次論文集 Vol.28
報告波形鋼板ウェブ - 下床版巻込み式継手の耐荷性能 山口佳起 *1 秋山博 *2 *3 竹中計行 要旨 : 波形鋼板ウェブの下フランジが下床版を下から巻き込む様な構造となる波形鋼板ウェブ- 下床版巻込み式継手は, 我が国では実績が無く適用にあたってはその耐力および破壊形態の把握が必要となる そこで, 本実験では実物大部分モデルにより波形鋼板ウェブ- 下床版巻込み式継手の曲げ試験を実施し, その耐力
POWER-直接基礎Ⅱの出力例(表形式)
page < 出力例 > 地盤の支持力の計算 S01 (1F Y1@X1 ) BxL hf hw C,O r2 r1 基礎底面の形状 長方形 基礎最小幅 B 1.20 (m) 基礎の長さ L 2.60 (m) 基礎下端の深さ hf GL- 1.20 (m) 地下水位 hw GL- 3.90 (m) 根入れ深さ Df 1.20 (m) 土質定数 砂層 基礎下の土重量 γ1 18.14 (kn/m 3
Super Build/宅造擁壁 出力例1
宅造擁壁構造計算書 使用プログラム : uper Build/ 宅造擁壁 Ver.1.60 工事名 : 日付 : 設計者名 : 宅地防災マニュアル事例集 015/01/7 UNION YTEM INC. Ⅶ-1 建設地 : L 型擁壁の設計例 壁体背面を荷重面としてとる場合 *** uper Build/ 宅造擁壁 *** 160-999999 [ 宅地防災マニュアル Ⅶ-1] 015/01/7 00:00
1
鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート
Microsoft Word - 要領.doc
テストハンマーによるコンクリート強度推定要領 平成 25 年 7 月 熊本県土木部 テストハンマーによるコンクリート強度推定要領本要領は 硬化コンクリートのテストハンマー強度の試験方法 ( 案 ) (2010 制定コンクリート標準示方書 [ 規準編 ] JSCE-G 504-2007) 及び テストハンマーによる強度推定調査の 6 つのポイント ( 平成 13 年 独立行政法人土木研究所 ) を参考に作成したものです
コンクリート工学年次論文集 Vol.30
525 論文低強度コンクリートで造られた RC 建築物の耐震診断に関する研究 岸田幸治 *1 田村雄一 *2 三島直生 *3 *4 畑中重光 要旨 : 本報では, 低強度コンクリート建築物の耐震性能を評価することを目的として, コンクリート強度が各部材の耐震性能評価に及ぼす影響について簡単なモデル化を行うとともに, 梁部材の曲げ実験を行い, 既往の耐力評価式との適合性について検討を行った その結果,
コンクリート工学年次論文集 Vol.30
論文ポリマーセメントモルタルを用いて補強した RC 造基礎梁の補強効果に関する実験的研究 安藤祐太郎 *1 田中卓 *2 *3 中野克彦 要旨 : 現在, 戸建住宅直接基礎における開口部補強工法,RC 造基礎梁の曲げおよびせん断補強工法が注目されている 阪神淡路大震災や新潟県中越沖地震等の大地震が発生する度に, 基礎の強度の弱い部分からひび割れや破断等の被害が生じている そこで, 補強工法として,
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
. 柱の断面計算式柱は軸方向力と曲げモーメントを同時に受けるので, 許容軸方向力 N と許容曲げモーメント M は連成して, 解図 14.3, 解図 14.4 に示すような M - N 曲線として得られる. よって, この曲線を求めるには, 軸方向力 ( 縦軸の値 ) を先に定めて許容曲げモーメント
14 条柱の軸方向力と曲げに対する断面算定 本文案 下線部は改定箇所を示す. 重取消線は削除した部分を示す 1. 柱の設計用曲げモーメントは, 以下の方法で計算する. (1) 使用性検討用の長期設計用曲げモーメントは, その部材に長期荷重が作用した場合の最大曲げモーメントとする. () 修復性検討用の短期設計用曲げモーメントは, その部材に長期荷重と水平荷重が同時に作用した場合の最大曲げモーメントとする..
公開小委員会 鉄筋コンクリート構造計算規準の改定案
2012 年 8 月 24 日高知 耐震壁の設計法の過去, 現在 および将来 ( 現在 AIJ で検討している内容 ) 新潟大学工学部建設学科建築コース 教授 加藤大介 耐震壁の設計法の過去, 現在および将来 ( 現在 AIJ で検討している内容 ) 1. 耐震壁の設計法等の歴史 2.2010 年の RC 規準 11 次改定について 3.2013 年 (?) 発刊予定の保有水平耐力規準の作業について
技術基準およびRC規準改訂による開口補強筋の取り扱いについてわかりやすく解説
技術基準および RC 規準改訂による開口補強筋の取り扱いについてわかりやすく解説 017 年 11 月 株式会社構造ソフト はじめに 015 年に 建築物の構造関係技術基準解説書 ( 以下 技術基準と表記 ) が007 年版から改訂されて 鉄筋コンクリート構造計算規準 ( 以下 RC 規準と表記 ) の010 年版が本格的に運用されるようになり 耐震壁の開口補強筋の計算についても RC 規準 (010)
(Ver.4.-L0 Ver.4.-L0) 08 年 0 月 主な項目 新設内容 複合標準第 Ⅲ 編. に準拠した 矩形断面の鋼管 (CFT 矩形断面 ) に関する断面照査機能を追加しました CFT 部材の照査項目別の適用断面 VePP-HS CFT 部材における復旧性の照査 [ 損傷 ] 変形 項
目 次 バージョンアップ 時期 ページ (Ver.4.0-L0) (Ver.4.-L0) 08 年 0 月 p. (Ver.4.0-L06) (Ver.4.-L0) 07 年 月 p. (Ver.4.0-L05) (Ver.4.0-L06) 07 年 月 p.3 (Ver.4.0-L04) (Ver.4.0-L05) 06 年 5 月 p.3 (Ver.4.0-L03) (Ver.4.0-L04)
建築支保工一部1a計算書
P7118088-(1) 型枠支保工 (1) 計算書 工事名称 (1) B1FL-3570~1FL (W1-W~WE~WF 間 ) 1 / 1 1: 条件 鉄筋コンクリートの単位重量 r 3.50 kn /m 3 (.400 t/m 3 ) 作業荷重 W 1 ( 作業荷重 :1.47kN/m + 衝撃荷重 :1.96kN/m) 3.430 kn /m (0.350 t/m ) 合板 (1mm) の許容曲げ応力度
Microsoft PowerPoint - 構造設計学_2006
構造設計学 講義資料 構造設計は 建築物に作用すると思われる荷重によって生じる構造物内部の抵抗力 ( 応力 ) を 各構造要素 ( 柱 はり 床 壁など ) が安全に支持するために 各構造要素の部材断面を具体的に決定するためのプロセスを言います 本講義では 1 鉛直荷重 ( 固定荷重 積載荷重 積雪荷重 ) に対するはりや柱の設計条件を解説します 2その設計条件を踏まえて 鉄筋コンクリート構造と鋼構造はりの構造原理を解説します
参考資料 -1 補強リングの強度計算 1) 強度計算式 (2 点支持 ) * 参考文献土木学会昭和 56 年構造力学公式集 (p410) Mo = wr1 2 (1/2+cosψ+ψsinψ-πsinψ+sin 2 ψ) No = wr1 (sin 2 ψ-1/2) Ra = πr1w Rb = π
番号 場所打ちコンクリート杭の鉄筋かご無溶接工法設計 施工に関するガイドライン 正誤表 (2015 年 7 月更新 ) Page 行位置誤正 1 p.3 下から 1 行目 場所打ちコンクリート杭施工指 針 同解説オールケーシング工法 ( 土木 ): 日本基礎建設協会 (2014) 2 p.16 上から 3 行目 1) 補強リングと軸方向主筋を固定する金具の計算 3 p.22 図 4-2-1 右下 200
1 組立治具の設置 2 補強帯鉄筋の配置 3 固定アングルの設置 4 連結ピンの挿入 5 結束金具の設置と締め付け 6 吹付けモルタルの施工 コテ仕上げ図 2 CB フープ工法の施工手順 表 1 試験体諸元 補強前 補強後 試験体断面寸法軸方向断面寸法吹付厚固定 a/d 帯鉄筋帯鉄筋 No. (mm
東急建設技術研究所報 No.37 U.D.C 691.328.4 U.D.C 691.328.4 組立て式補強鋼材と吹付けモルタルによる RC 柱のRC 柱の耐震補強に関する実験的研究 耐震補強に関する実験的研究 * ** * 北沢 * 宏和黒岩 ** 俊之前田欣昌 * 北沢宏和黒岩俊之前田欣昌 *** *** ** 前原 *** 聡早川 *** 健司伊藤正憲 ** 前原聡早川健司伊藤正憲 要約 :
第1章 単 位
H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H
屋根ブレース偏心接合の研究開発
論文 報告 屋根ブレース偏心接合の研究開発 ~BT 接合ピースを用いた大梁 小梁 屋根ブレース接合部 ~ Research and Development of Eccentric Joints in Roof Brace 戸成建人 * Tatsuto TONARI 谷ヶ﨑庄二 * Shoji YAGASAKI 池谷研一 * Kenichi IKETANI 中澤潤 * Jun NAKAZAWA 川田工業システム建築の鉄骨生産ラインの特徴を活かして製作コストを低減するために,
Microsoft PowerPoint - elast.ppt [互換モード]
弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)
第 2 章 構造解析 8
第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書
