Flux compactifications, N=2 gauged supergravities and black holes

Size: px
Start display at page:

Download "Flux compactifications, N=2 gauged supergravities and black holes"

Transcription

1 : Flux Compactifications, N = 2 Gauged Supergravities and Black Holes based on arxiv: [hep-th]

2 Introduction 4 10 Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 2 -

3 Introduction ( ) 10 = 4 (A)dS Minkowski 6 N = 2... Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 3 -

4 Introduction WHY N = 2? N 4 ( ) N = 1 ( ) N = 2 ( ) = controllable!! N = 2 N = 1 Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 4 -

5 Introduction HOW 4D N = 2 from 10D? II ( IIA ) 6 vs 1/4 (ex: Calabi-Yau 3-fold, etc.) (cf: T 6 4 N = 8 )... Calabi-Yau Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 5 -

6 Introduction Beyond Calabi-Yau Calabi-Yau? CY CY (back reactions) 1. CY with fluxes 4D ungauged SUGRA break 10D Eqs. of Motion 2. non-cy with fluxes 4D gauged SUGRA non-cy: SU(n)-structure with torsion, generalized geometry, etc. gauge fields, matter fields, gauge coupling const., mass parameters... Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 6 -

7 Calabi-Yau compactification in type IIA Calabi-Yau 3-fold M CY Ricci Kähler ( ) ( SU(3) SU(4) SO(6)) ds 2 10D = η µν (x) dx µ dx ν 4D + g mn (x, y) dy m dy n CY Levi-Civita 2 (J) 3 (Ω) dj = [m J np] = 0 dω = [m Ω npq] = 0 Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 7 -

8 Flux compactifications in type IIA non-cy 3-fold M 6 Ricci 2-form ( ) (SU(3)-structure ) dj 0 and/or dω 0 CY dj = 3 2 Im(W 1Ω) + W 4 J + W 3, dω = W 1 J J + W 2 J + W 5 Ω Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 8 -

9 Intrinsic torsion classes of SU(3)-structure manifolds dj = 3 2 Im(W 1Ω) + W 4 J + W 3, dω = W 1 J J + W 2 J + W 5 Ω hermitian W 1 = W 2 = 0 balanced W 1 = W 2 = W 4 = 0 complex (1/4-SUSY Minkowski 1,3 ) special hermitian W 1 = W 2 = W 4 = W 5 = 0 Kähler W 1 = W 2 = W 3 = W 4 = 0 CY W 1 = W 2 = W 3 = W 4 = W 5 = 0 conformally CY W 1 = W 2 = W 3 = 3W 4 + 2W 5 = 0 symplectic W 1 = W 3 = W 4 = 0 nearly Kähler W 2 = W 3 = W 4 = W 5 = 0 almost complex (1/4-SUSY AdS 4 ) almost Kähler W 1 = W 3 = W 4 = W 5 = 0 quasi Kähler W 3 = W 4 = W 5 = 0 semi Kähler W 4 = W 5 = 0 half-flat ImW 1 = ImW 2 = W 4 = W 5 = 0 Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes - 9 -

10 Flux compactifications in type IIA (dj, dω) ( ) ( )( ) β I I eλ m ΛI ω Λ d NS-NS α I e ΛI m Λ I Σ Q T e I 0, e 0I : H-flux charges (H fl = e I 0 α I + e 0I β I ) e I a, e ai : geometric flux charges ( ) m ΛI, m Λ I: nongeometric flux charges (e I Λ, e ΛI ) ω Λ Σ + F F 0 + F F 10 e B Ĝ ( F = λ( F), λ( F k ) ( ) [k+1 2 ] Fk ) R-R 1 2 Ĝ = (G Λ 0 + G Λ 2 + G Λ 4 ) ω Λ ( G 0Λ + G 2Λ + G 4Λ ) ω Λ +(G I 1 + G I 3) α I ( G 1I + G 3I ) β I G Λ 0 p Λ, G0Λ q Λ ξ I e ΛI + ξ I e Λ I c (p Λ, q Λ ) T : R-R flux charges (p 0 : Romans mass) Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

11 Flux compactifications in type IIA 10 IIA (democratic formulation) S (10D) IIA = S NS + S R : S NS + S R = 1 2 e 2ϕ{ 1 } R 1 + 4dϕ dϕ 2Ĥ3 Ĥ3 1 8 [ F F] 10 F = λ( F) (d + Ĥ ) F = 0 (d Ĥ ) F = 0 4 N = 2 ( ) ( ) 3 isometry group special Kähler geometry (SKG) quaternionic geometry (QG) QG SKG Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

12 Flux compactifications in type IIA = 2 g 2 e 2φ[ Π T Q H T M V Q ΠH + Π T V Q M H Q T Π V + 4Π T H C T H Q T( Π V Π T V + Π V Π T ) ] V Q CH Π H V R = 1 2 g2 e 4φ( c + Qξ )T ( ) M V c + Qξ V NS V NS + V R = V 4D = g 2[ 4h uv k u k v + Π V = e K V/2 (X Λ, F Λ ) T t a = X a /X 0 a = 1,..., n V SKG V of vector-moduli M V,H ( 1 ReN 0 1 P + P P 3 ) ( ImN 0 3 x=1 0 (ImN ) 1 ( G ab D a P x D b P x 3 P x 2)] (abelian : k a Λ = 0) = 2e φ Π T V Q C H Π H = 2e φ Π T V Q C H Π H = e 2φ Π T V C V (c + Qξ) ) ( ) 1 0 ReN 1 V,H C V,H : symplectic invariant metrics where Π H = e K H/2 (Z I, G I ) T z i = Z i /Z 0 i = 1,..., n H SKG H of hyper-moduli F Λ N ΛΣ X Σ Q C T V Q C H Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

13 4D N = 2 SUGRA N = 2 ( ) N = 2 ( ) 0 = m ΛI = m Λ I = p Λ Standard Gauged SUGRA n V n H [hep-th/ ] 3 0 = m ΛI = m Λ I Gauged SUGRA n V n H 1 [hep-th/ ] generic Gauged SUGRA n V ñ H n T [hep-th/ ] {a, ξ I, ξ I } {p Λ, m Λ I, m ΛI } [hep-th/ ], [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

14 Black hole as an application Anti-de Sitter Black Holes in 4D N = 2 Gauged SUGRA Comments AdS-BH with naked singularity in pure AdS SUGRA L.J. Romans [hep-th/ ], M.M. Caldarelli and D. Klemm [hep-th/ ], etc. SUSY solution of rotating AdS black hole with regular horizon AdS-BH with regular horizon in Gauged SUGRA with VMs (no HMs) [hep-th/ ], [arxiv: ], [arxiv: ], etc. Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

15 Question Question How can we obtain AdS-BH solutions with hypermultiplets? Setup and Result 4D N = 2 gauged SUGRA with VM and UHM from 10D type IIA on non-cy with fluxes Ansatze for matter fields Regular solution (AdS Black Hole) Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

16 Contents Introduction 4D N = 2 Gauged SUGRA from 10D type IIA Vacua Black holes Summary and Discussions

17 Contents Introduction 4D N = 2 Gauged SUGRA from 10D type IIA Vacua Black holes Summary and Discussions

18 Example of Non-CY: coset space G 2 /SU(3) Coset space G 2 SU(3) D. Cassani and A.K. Kashani-Poor [arxiv: ] nearly-kähler (almost complex geometry) NSNS-sector : torsion and H-flux RR-sector : 2-, 4-form and Romans mass (0-form) 1 VM with cubic prepotential F = X1 X 1 X 1 X 0 1 UHM (no other HMs) nilmanifolds and solvmanifolds: M. Graña, R. Minasian, M. Petrini and A. Tomasiello [hep-th/ ] coset spaces with SU(3)- or SU(2)-structure: P. Koerber, D. Lüst and D. Tsimpis [arxiv: ] a pair of SU(3)-structures with (m ΛI, m Λ I): D. Gaiotto and A. Tomasiello [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

19 Geometric flux compactification in type IIA 10D type IIA on G 2 SU(3) with fluxes S = 4D N = 2 abelian gauged SUGRA with B-field (Λ = 0, 1 and ξ 0 (ξ 0, ξ 0 ) T ) [ 1 2 R ( 1) µ ΛΣ F Λ F Σ ν ΛΣ F Λ F Σ g tt dt dt ) dφ dφ e 4φ e2φ db db (Dξ 0 Dξ 0 + D ξ 0 D ξ 0 + db ξ 0 d ξ db ( e RΛ e Λ0 ξ 0) A Λ 1 ] 2 mλ R e RΛ B B V ( 1) g µν, t, B µν, φ; (e 0 Λ, e Λ0 ) : NS-NS sector A Λ µ, ξ 0, ξ 0 ; (m Λ R, e RΛ) : R-R sector GM : (g µν, A 0 µ), VM : (A a µ, t), UHM TM : (φ, B µν, ξ 0, ξ 0 ) Precise data on G 2 SU(3) : e 10 0, m 0 R 0, e R0 0 Dξ 0 = dξ 0 e 0 Λ A Λ 1, D ξ 0 = d ξ 0 e Λ0 A Λ 1 e 0 Λ = 0 = e 00 F2 Σ = da Σ 1 + m Σ R B 2 m 1 R = 0 = e R1 V (t, φ, ξ 0 ) = V NS (t, φ) + V R (t, φ, ξ 0 ) µ ΛΣ ImN ΛΣ, ν ΛΣ ReN ΛΣ D. Cassani [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

20 Equations of motion in gauged SUGRA with B-field R µν 1 2 R g µν = 1 4 g µν µ ΛΣ F Λ ρσf Σρσ µ ΛΣ F Λ µρf Σ νσ g ρσ g µν g tt ρ t ρ t + 2g tt µ t ν t g µν ρ φ ρ φ + 2 µ φ ν φ e 4φ 24 g µν H ρσλ H ρσλ + e 4φ 4 H ρσ µρσh ν (δg µν ) ) e2φ 2 g µν (D ρ ξ 0 D ρ ξ 0 + D ρ ξ0 D ρ ξ0 + e 2φ( ) D µ ξ 0 D ν ξ 0 + D µ ξ0 D ν ξ0 g µν V, 0 = 1 ( g µ µλσ F Σµσ) ( ) ϵµνρσ g 2 g µ ν ΛΣ Fνρ Σ + ϵµνρσ 2 g µb νρ (e RΛ ξ 0 e Λ0 ) e 2φ Q Λ0 D σ ξ 0, (δa Λ µ) 0 = 1 ( g ) µ gtt g µν ν t + 1 g 4 t(µ ΛΣ )FµνF Λ Σµν ϵµνρσ 8 g t(ν ΛΣ )FµνF Λ ρσ Σ t g tt µ t µ t t V, (δt) 0 = 2 ( g ) µ g µν ν φ + e4φ g 6 H µνρh µνρ e 2φ( ) D µ ξ 0 D µ ξ 0 + D µ ξ0 D µ ξ0 φ V, (δφ) 0 = 1 ( µ e 4φ gh µρσ) ] + ϵµνρσ [D µ ξ 0 (C H ) 00 D ν ξ 0 + (e RΛ ξ 0 e Λ0 )F Λ g g µν (δb µν ) +2m Λ Rµ ΛΣ F Σρσ ϵµνρσ g m Λ Rν ΛΣ F Σ µν, 0 = 2 g µ ( g e 2φ g µν D ν ξ 0) + V ξ 0 ϵµνρσ 2 g µb νρ D σ ξ 0 (C H ) 00. (δξ 0 ) Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

21 Contents Introduction 4D N = 2 Gauged SUGRA from 10D type IIA Vacua Black holes Summary and Discussions

22 (Non)-SUSY AdS vacua Vacuum I : N = 1 t = ±1 + i 15 2 Vacuum II : N = 0 [ 3 5 (e 10 ) 2 t = ( ± 1 i 3 ) [ 3 5 (e 10 ) 2 Vacuum III : N = 0 t e R0 m 0 R ] [ 1/3, ξ 0 = m 0 R (e R0) e 10 [ 5 (e 10 ) 4 V = e R0 m 0 R ] 1/3, ξ 0 [ V = m 0 R (e R0) 5 = [ 9 m 0 R (e R0 ) 2 25 e 10 ] 1/3 [, exp(φ ) = 4 ] 1/3 5 e m 0 R (e R0 ) 2 ] 1/3 Λ I c.c. < 0 25 (e 10 ) 4 3 m 0 R (e R0 ) 5 ] 1/3 Λ II c.c. < 0 [ ] 12 e = i R0 1/3 5 (e10 ) 2 m 0, ξ 0 = 0, exp(φ ) = [ 5 R V = 25 [ 5 5 (e 10 ) 4 ] 1/ m 0 R (e R0) 5 Λ III c.c. < 0 ] 1/3 [ ] 1/3, exp(φ ) = 2 25 e m 0 R (e R0 ) 2 5 e m 0 R (e R0) 2 ] 1/3 Note: m 0 R > 0 ; ξ0 is not fixed ; Λ II c.c. < Λ I c.c. < Λ III c.c. D. Cassani and A.K. Kashani-Poor [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

23 Contents Introduction 4D N = 2 Gauged SUGRA from 10D type IIA Vacua Black holes Summary and Discussions

24 Ansatze Consider spacetime metric (extremal, static, spherically symmetric AdS 2 S 2 ) ds 2 = e 2A(r) dt 2 + e 2A(r) dr 2 + e 2C(r) r 2( dθ 2 + sin 2 θ dϕ 2) Define electromagnetic charges p Λ 1 4π I S 2 F Λ 2, q Λ 1 4π S 2 FΛ2 [ p Λ µ ΛΣ p Σ + (q Λ ν ΛΓ p Γ )(µ 1 ) ΛΣ (q Σ ν Σ p ) ] Impose (covariantly) constant condition F Λ2 ν ΛΣ F Σ 2 + µ ΛΣ ( F Σ 2 ) 0 µ t, 0 µ φ, 0 D µ ξ 0, 0 D µ ξ0, 0 [µ B νρ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

25 Equations of motion The equation of motion for g µν : δg tt δg rr : e 2C(r) = e2c 2 r 2 ( c1 r + 1 ) 2 δg θθ, δg ϕϕ : e 2A(r) = e 4c 6 I 2 1 e 4c 2(c 1 r + 1) [ 3 c 2 1 (c 1r + 1) 2 (c 1 r + 1) 3 { V + 6 c 1 a1 c 1 a 2 (c 1 r + 1) }] δg rr : a 2 = 1 2(c 1 ) 2 e2c 2 C(r) and A(r) are expressed in terms of I 1, V and constants of integration {a i, c i } e 2A(r) = e 2c 2 (c 1 ) 2 2a 1 c 1 (c 1 r + 1) + e 4c2I 1 (c 1 ) 2 (c 1 r + 1) 2 V 3(c 1 ) 2(c 1r + 1) 2 1 2η r new + Z2 r 2 new Choosing c 1 r + 1 r new (and c 1 1), we can read the Black Hole information: Λ c.c. 3 r2 new e 2c 2 1 : scalar curvature of S 2 a 1 η : mass parameter I 1 Z 2 : square of charges V Λ c.c. : cosmological constant Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

26 Equations of motion The equations of motion for t, φ, ξ 0 : δt : 0 = e 4C I 1 r 4 t + V t V t = 0 and I 1 t = 0 δφ : 0 = 2 V NS + 4 V R V = V NS + V R = 1 2 V NS = V R δξ 0 : 0 = V ξ 0 = V NS ξ 0 + V ( R ξ 0 0 = V ξ 0 ) is trivial { t, ξ 0, φ ; V } BHs Regular Solution = { t, ξ 0, φ ; Λ c.c. } constant in whole region Vacua Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

27 Equations of motion The equations of motion for t, B µν : δt : δb µν : 0 = e 4C I 1 r 4 t + V t 0 = m Λ R µ ΛΣ ( g 2 V t = 0 and I 1 t = 0 ϵ µνρσ F Σρσ) + m Λ R ν ΛΣ F Σ µν ( e RΛ e Λ0 ξ 0) F Λ µν and 0 = D µ ξ0 0 = [ µ, ν ] ξ 0 = e Λ0 F Λ µν with Fθϕ Λ = p Λ sin θ, Ftr Λ = 1 rnew 2 (µ 1 ) ΛΣ( q Σ ν ΣΓ p Γ) Solve them to find an appropriate BH charge configuration Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

28 AdS black holes It turns out that all the charges are zero : p Λ = 0 = q Λ (highly non-trivial) I 1 Z 2 = 0, F Λ µν = 0 0 = Fµν 1 = 2 [µ A 1 ν] + m 1 R B µν A 1 µ = µ λ 0 (gauge-fixing) 0 = F 0 µν = 2 [µ A 0 ν] + m0 R B µν 2 [µ A 0 ν] = m 0 R B µν = (constant) 0 = D µ ξ0 = µ ξ0 e 00 A 0 µ e 10 A 1 µ = µ ξ0 ( e 00 = 0 = A 1 µ) Λ c.c. V < 0 η a 1 is still arbitrary Schwarzschild-AdS Black Holes Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

29 Message 1 Black holes from CY : I 1 t = 0 Value of vector modulus t is not fixed at infinity attractor mechanism BH charges govern value of fields at horizon BH mass is given by BH charges Black holes from non-cy : V t = 0 and I 1 t = 0 Value of vector modulus t is (mostly) fixed at infinity moduli stabilization BH charges are governed by geometric- and RR-flux charges BH mass is arbitrary Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

30 Message 2 (covariantly) constant solutions all the charges are zero! In order to find a black hole with non-trivial charges, the covariantly constant condition must be (partially) relaxed. cf.) Gauged SUGRA without hypermultiplets Fayet-Iliopoulos parameters can be involved There are charged black hole solutions with constant scalars. Bellucci, Ferrara, Marrani and Yeranyan [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

31 Contents Introduction 4D N = 2 Gauged SUGRA from 10D type IIA Vacua Black holes Summary and Discussions

32 Summary and Discussions Studied : 4D N = 2 gauged SUGRA with VMs and TM(UHM) via flux compactification. Reconfirmed : Romans mass is inevitable. Imposed : covariantly constant condition. Found : Schwarzschild-AdS BHs. Different from cases of Calabi-Yau Find charged AdS-BH solutions. Consider a stationary AdS-BH. Various directions! Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

33 Thanks for your attention

34 Appendix Terminology Calabi-Yau compactifications in type IIA Geometric flux compactifications in type IIA Scalar potential

35 Terminology and formulae on special Kähler geometry Prepotential : F is a holomorphic function of X Λ of degree two (F Λ = F/ X Λ ) Kähler potential : K V = log [ i ( X Λ F Λ X Λ F Λ )] ( ) ( Symplectic section : Π V e K V/2 X Λ L Λ F Λ M Λ Kähler metric : g ab = t a t b K V, Kähler covariant derivative : D a Π V = ( t a + 1 K ) V 2 t a Π V ), 1 = i ( L Λ M Λ L Λ M Λ ) t a = Xa X 0 ( f Λ a h Λa Period matrix : N ΛΣ = F ΛΣ + 2i (ImF) ΛΓX Γ (ImF) Σ X X Π (ImF) ΠΞ X Ξ ) Formulae : M Λ = N ΛΣ L Σ, h Λa = N ΛΣ f Σ a (Symplectic matrix) : (M V ) ΛΣ = ( 1 ReN 0 1 ) ( ImN 0 0 (ImN ) 1 ) ( 1 0 ReN 1 ) ( In a similar way... Π H e K H/2 Z I G I ), z i = Zi Z 0, K H = log [ i ( Z I G I Z I G I )], etc. Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

36 Calabi-Yau Compactification in Type IIA Calabi-Yau 3-fold M CY Ricci-flat, torsionless, (compact) Kähler manifold with SU(3) holonomy group Invariant two-form J and three-form Ω on CY w.r.t. Levi-Civita connection: dj = [m J np] = 0, dω = [m Ω npq] = 0 This is suitable for 1/4-SUSY condition with vanishing background fields δ SUSY ψ m± = m ε (10D) ± = 0 ε (10D) + = ε (4D) 1+ η1 + + (c.c.), ε (10D) (ε (4D) 1,2+ )c = ε (4D) 1,2, (η1,2 ) = η 1,2 + = : = ε (4D) 2+ η2 + (c.c.) SU(3)-invariant SU(4) SO(6) η 1 ± = η 2 ± η ±, J mn i η ± γ mn η ±, Ω i η γ mnp η + Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

37 Calabi-Yau Compactification in Type IIA NS-NS fields in 10D are expanded around CY : R-R fields : ϕ(x, y) = φ(x) ( ) (χȷ g mn (x, y) = iv a (x) (ω a ) mn (y), g mn (x, y) = i z ȷ ) mpq Ω pq n (x) Ω 2 (y) B 2 (x, y) = B 2 (x) + b a (x)ω a (y) t a (x) b a (x) + iv a (x) Ĉ 1 (x, y) = A 0 1(x) Ĉ 3 (x, y) = A a 1(x) ω a (y) + ξ I (x)α I (y) ξ I (x)β I (y) cohomology class on CY basis degrees H (1,1) ω a a = 1,..., h (1,1) H (0) H (1,1) ω Λ = (1, ω a ) Λ = 0, 1,..., h (1,1) H (2,2) H (6) ω Λ = ( ω a, vol. vol. ) H (2,1) χ i i = 1,..., h (2,1) H (3) (α I, β I ) I = 0, 1,..., h (2,1) dω Λ = 0 = d ω Λ dα I = 0 = dβ I Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

38 Calabi-Yau Compactification in Type IIA 10D Type IIA action S (10D) IIA = S NS + S R + S CS : S NS = 1 e 2ϕ{ 1 } R 1 + 4dϕ dϕ 2 2Ĥ3 Ĥ3 S R + S CS = 1 { F2 4 F 2 + ( F4 Ĉ1 F ) ( 3 F4 Ĉ1 F ) } B 2 F 4 F 4 4D N = 2 ungauged SUGRA: Neither gauge couplings, Nor scalar potential S (4D) = {1 2 R 1 G ab dta dt b h uv dq u dq v ImN ΛΣF Λ F Σ ReN ΛΣF Λ F Σ} gravitational multiplet g µν, A 0 1 vector multiplet (VM) A a 1, t a, t b t a SKG V hypermultiplet (HM) z i, z ȷ, ξ i, ξj z i SKG H universal hypermultiplet (UHM) φ, a, ξ 0, ξ0 a B 2 (Hodge dual) {q u } 4n H + 4 HM = Special QG = {z i, z ȷ } + {ξ i, ξ j } + {φ, a, ξ 0, ξ 0 } 2n H (SKG H ) 2n H 4 (UHM) = {z i, z ȷ } SKG H + {φ} + {a, ξ I, ξ J } Heisenberg Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

39 Geometric flux compactification in type IIA 10D type IIA action S (10D) S NS = 1 2 IIA = S NS + S R = S NS + S R + S CS : (democratic form) e 2ϕ{ 1 } R 1 + 4dϕ dϕ 2Ĥ3 Ĥ3, SR = 1 8 [ F F] 10 with constraint F = λ( F) and EoM (Bianchi) (d + Ĥ ) F = 0 (d Ĥ ) F = 0 non-cy with SU(3)-structure with m Λ R = 0 non-cy with SU(3)-structure with mλ R = 0 4D N = 2 abelian gauged SUGRA (with ξ I (ξ I, ξ I ) T ): S (4D) = d 4 x g [ 1 2 R ImN ΛΣF Λ µνf Σµν ϵµνρσ 8 g ReN ΛΣF Λ µνf Σ ρσ g ab µ t a µ t b g iȷ µ z i µ z ȷ µ φ µ φ + e2φ 2 (M H) IJ D µ ξ I D µ ξ J e2φ 4 ( Dµ a ξ I (C H ) IJ D µ ξ J) 2 V (t, t, q) ] (e Λ I, e ΛI ) : geometric flux charges & e RΛ : RR-flux charges (with constraints e Λ I e ΣI e ΛI e Σ I = 0) t a SKG V and z i SKG H HM are ungauged (in general) non-cy data D µ ξ I = µ ξ I e Λ I A Λ µ & D µ ξi = µ ξi e ΛI A Λ µ D µ a = µ a (2e RΛ ξ I e ΛI + ξ I e Λ I )A Λ µ V (t, t, q): scalar potential D. Cassani [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

40 Generic form of 4D N = 2 gauged SUGRA with B-field Non-vanishing m Λ R dualizes the axion field a in standard SUGRA to B-field. 4D gauged action is different from the standard one: S (4D) = [ 1 2 R( 1) ImN ΛΣF Λ 2 F Σ ReN ΛΣF Λ 2 F Σ 2 g ab dt a dt b g iȷ dz i dz ȷ dφ dφ e 4φ 4 H 3 H 3 e2φ 2 (M H) IJ Dξ I Dξ J V ( 1) + 1 [ξ 2 db I (C H ) IJ Dξ J + ( 2e RΛ ξ I e ΛI + ξ I I e ) ] Λ A Λ 1 1 ] 2 mλ Re RΛ B 2 B 2 Constraints among flux charges: e Λ I e ΣI e ΛI e Σ I = 0, m Λ R e Λ I = 0 = m Λ R e ΛI Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

41 Scalar potential Scalar potential from (non)geometric flux compactifications: V = g 2[ 4h uv k u k v + 3 x=1 V NS = g ab D a P + D b P + + g iȷ D i P + D ȷ P + 2 P + 2 ( g ab D a P x D b P x 3 P x 2)] =... V NS + V R (abelian: k a Λ = 0) = 2 g 2 e 2φ[ Π T Q H T M V Q ΠH + Π T V Q M H Q T Π V + 4Π T H C T H Q T( Π V Π T V + Π V Π T ) ] V Q CH Π H V R = g ab D a P 3 D b P 3 + P 3 2 = 1 2 g2 e 4φ( e RΛ e ΛI ξ I + e Λ I ξi ) (ImN ) 1 ΛΣ ( e RΣ e ΣI ξ I + e Σ I ξi ) Π V = e KV/2 (X Λ, F Λ ) T t a = X a /X 0 a = 1,..., n V SKG V of vector-moduli ( 0 1 C V,H = 1 0 ) P + P 1 + ip 2 = 2e φ Π T V Q C H Π H P P 1 ip 2 = 2e φ Π T V Q C H Π H ; Q = P 3 m ΛI m Λ I = e 2φ Π T V C V (c R + Qξ) ( ) I eλ e ΛI, Q = C T H Q C V c R = Π H = e KH/2 (Z I, G I ) T z i = Z i /Z 0 i = 1,..., n H SKG H of hyper-moduli ( ) m Λ R e RΛ Cassani et.al. [arxiv: ], [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

42 Flux Compactifications in Type IIA Coset spaces with SU(3)-structure: D. Cassani and A.K. Kashani-Poor [arxiv: ] M 6 G 2 SU(3) = S6 Sp(2) S(U(2) U(1)) = CP 3 SU(3) U(1) U(1) = F(1, 2; 3) SM = SKG V SU(1, 1) U(1) ( SU(1, 1) ) 2 : t 3 : st 2 U(1) ( SU(1, 1) ) 3 : stu U(1) HM = SQG SU(2, 1) U(2) : UHM SU(2, 1) U(2) : UHM SU(2, 1) U(2) : UHM SKG H HM matters 1 VM + 1 UHM 2 VM + 1 UHM 3 VM + 1 UHM Each SKG V has a cubic prepotential: F = 1 3! d abc X a X b X c X 0 nilmanifolds and solvmanifolds: M. Graña, R. Minasian, M. Petrini and A. Tomasiello [hep-th/ ] coset spaces with SU(3)- or SU(2)-structure: P. Koerber, D. Lüst and D. Tsimpis [arxiv: ] a pair of SU(3)-structures with (m ΛI, m Λ I): D. Gaiotto and A. Tomasiello [arxiv: ] Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

43 Fin.

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

(2012 5 07 ) Flux Compactifications, and Gauged Supergravities ( ) ( ) Gauged supergravity : ( ) ( R ) Nucl. Phys. B258 (1985) 46 10D M 6 4D N = 1 10D = 4D Minkowski + 6D internal space M 6 : ds 2 10D

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

“‡”�„³…u…›…b…N…z†[…‰

“‡”�„³…u…›…b…N…z†[…‰ 2009 8 31 / 4 : : Outline 4 G MN T t g x mu... g µν = G MN X M x µ X N x ν X G MN c.f., : X 5, X 6,... g µν : : g µν, A µ : R µν 1 2 Rg µν = 8πGT µν : G MN : R MN 1 2 RG MN = 0 ( ) Kaluza-Klein G MN =

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information